An Overview of the Application of Deep Learning in Short-Read Sequence Classification
Abstract
Keywords: |
Bioinformatics; Computational Biology; Machine Learning
|
Full Text: |
References
P. Turnbaugh et al. “The Human Microbiome Project,” Nature, vol. 449, pp. 804–810, 2007. https://doi.org/10.1038/nature06244
E. Pasolli et al. “Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle,” Cell, vol. 176, no. 3, pp. 649–662.e20, 2019. https://doi.org/10.1016/j.cell.2019.01.001
D. E. Wood, J. Lu, & B. Langmead, “Improved metagenomic analysis with Kraken 2,” Genome Biology, vol. 20, Article no. 257, 2019. https://doi.org/10.1186/s13059-019-1891-0
K. Vervier et al. “Large-scale machine learning for metagenomics sequence classification,” Bioinformatics, vol. 32, no. 7, pp. 1023–1032, 2016. https://doi.org/10.1093/bioinformatics/btv683
R. Menegaux and J.-P. Vert, “Continuous Embeddings of DNA Sequencing Reads and Application to Metagenomics. J. Comput. Biol., vol. 26, no. 6, pp. 509–518, June 2019. https://doi.org/10.1089/cmb.2018.0174
M. Rojas-Carulla et al. “GeNet: Deep Representations for Metagenomics,” bioRXiv, preprint. Available: https://doi.org/10.1101/537795
Q. Liang et al. “DeepMicrobes: taxonomic classification for metagenomics with deep learning,” NAR Genomics & Bioinformatics, vol. 2, no. 1, 2020. https://doi.org/10.1093/nargab/lqaa009
S. Mangul et al. “Systematic benchmarking of omics computational tools,” Nat. Commun., vol. 10, Art. no. 1393, 2019. https://doi.org/10.1038/s41467-019-09406-4
P. P. Gardner et al. “A meta-analysis of bioinformatics software benchmarksreveals reveals that publication-bias unduly influences software accuracy,” bioRxiv, preprint. Available: https://doi.org/10.1101/092205
MGI DNBSEQ-T7 [Online]. Available: https://en.mgitech.cn/products/instruments_info/5/ [Accessed September 2020]
Zymo control sample documentation [Online]. Available: https://files.zymoresearch.com/protocols/_d6300_zymobiomics_microbial_community_standard.pdf [Accessed August 2020]
Vowpal Wabbit documentation [Online]. Available: https://github.com/VowpalWabbit/vowpal_wabbit/wiki [Accessed September 2020]
MetaVW data store [Online]. Available: http://cbio.mines-paristech.fr/largescalemetagenomics/large-scale-metagenomics-1.0.tar.gz [Accessed August 2020]
GitHub repository [Online]. Available: https://github.com/lucren/itms_bio_ml_2020 [Accessed September 2020]
R. Maier, R. Zimmer, & R. Küffner, “A Turing test for artificial expression data,” Bioinformatics, vol. 29, no. 10, pp. 2603–2609, 2013. https://doi.org/10.1093/bioinformatics/btt438
NCBI taxonomic data [Online]. Available: ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz [Accessed July 2020]
A. Joulin, E. Grave, P. Bojanowski and T. Mikolov, “Bag of tricks for efficient text classification,” arXiv preprint 1607.01759, 2016.
DeepMicrobes documentation [Online]. Available: https://github.com/MicrobeLab/DeepMicrobes/blob/master/document/train.md [Accessed August 2020]
GeNet implementation [Online]. Available: https://github.com/lucren/GeNet/blob/master/code/genet_train.py [Accessed September 2020]
fastDna paired-end functionality [Online]. Available: https://github.com/rmenegaux/fastDNA/blob/b4aa88cf95e50e38d35e996b1a0b4a8b626f2fee/src/model.cc [Accessed August 2020]
IAPT taxonomic nomenclature [Online]. Available: https://www.iapt-taxon.org/nomen/main.php?page=art3[Accessed September 2020]
Kraken2 manual [Online]. Available: https://github.com/DerrickWood/kraken2/wiki/Manual [Accessed September 2020]
DOI: 10.7250/itms-2020-0005
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Kristaps Bebris, Inese Polaka
This work is licensed under a Creative Commons Attribution 4.0 International License.