Flexible Neofuzzy Neuron and Neurofuzzy Network for Monitoring Time Series Properties
Abstract
Keywords: 
Flexible activationmembership function; flexible neofuzzy neuron; forecasting; identification learning algorithm

Full Text: 
References
V. Raghavan, A. Hafez “Dynamic Data Mining”, J. of the American Society for Information Science, pp. 220229, 2000.
E. Lughofer, Evolving Fuzzy Systems: Methodologies, Advanced Concepts and Applications. Springer, 2011.
R.H. Abiyev, O. Kaynak “Fuzzy wavelet neural networks for identification and control of dynamic plants  A novel structure and a comparative study”, IEEE Trans. on Industrial Electronics, vol. 55(8), pp. 31333140, 2008.
Ye. Bodyanskiy, I. Pliss, O. Vynokurova, “Adaptive waveletneuro fuzzy network in the forecasting and emulation tasks”, Int. J. on Information Theory and Applications, vol. 15(1), pp. 4755, 2008.
Ye. Bodyanskiy, I. Pliss, O. Vynokurova, “Hybrid waveletneurofuzzy system using adaptive Wneurons”, Wissenschaftliche Berichte, FH Zittau/Goerlitz, vol. 106(N.24542490), pp. 301308, 2008.
Ye. Bodyanskiy and I. Pliss and O. Vynokurova Hybrid GMDHneural network of computational intelligence. Proc. 3rd International Workshop on Inductive Modelling, Poland, Krynica, 2009.
T. Miki and T. Yamakawa, “Analog implementation of neofuzzy neuron and its on board learning”. in Computational Intelligence and Application, N.E. Mastorakis, Ed., WSES Press, 1999, pp. 144149.
T. Yamakawa and T. Miki and E. Uchino and H. Kusanagi A neo fuzzy neuron and its applications to system identification and prediction of the system behaviour. Proc. 2nd Int. Conf. on Fuzzy Logic and Neural Networks  "IIZUKA92", Iizuka, Japan, 1992.
E. Uchino and T. Yamakawa, “Soft computing bases signal prediction, restoration, and filtering”, in Intelligent Hybrid Systems: Fuzzy Logic, Neural Networks, and Genetic Algorithms, Da Ruan, Ed., Boston, Kluwer Academic Publishers, 1997, pp. 331349.
Ye. Bodyanskiy and I. Kokshenev and V. Kolodyazhniy An adaptive learning algorithm for a neo fuzzy neuron. Proc. 3nd Int. Conf. of European Union Society for Fuzzy Logic and Technology (EUSFLAT'03), Zittau, Germany, 2003.
G.C. Goodwin, P.J. Ramadge, P.E. Caines “A globally convergent adaptive predictor”. Automatica, vol. 17(1), pp. 135140, 1981.
Ye.V. Gorshkov, V.V. Kolodyazhniy, I.P. Pliss “Adaptive learning algorithm for a neofuzzy neuron and neurofuzzy network based on a polynomial membership functions”, Bionica Intellecta: Sci. Mag., vol. 61(1), pp. 7881, 2004.
Ye. Bodyanskiy, Ye. Viktorov, “The cascade neofuzzy architecture using cubicspline activation functions”, Int. J. Information Theories and Application, vol. 16(3), pp. 245259, 2009.
V. Kolodyazhniy, Ye. Bodyanskiy, Cascaded multiresolution spline based fuzzy neural network. Eds. P. Angelov, D. Filev, N.Kasabov. Proc. Int. Symp. on Evolving Intelligent Systems, Leicester, UK, 2010.
Ye. Bodyanskiy, N. Lamonova, I. Pliss, O. Vynokurova, “An adaptive learning algorithm for a wavelet neural network”, Expert Systems, vol. 22(5), pp. 235240, 2005.
Ye. Bodyanskiy, O. Vynokurova, “Hybrid adaptive waveletneurofuzzy system for chaotic time series identification”, Information Science, vol. 220, pp. 170179, 2013.
L.X. Wang, J. Mendel, “Generating fuzzy rules by learning from examples” IEEE Trans. Syst., Man, and Cyb., vol. 22, pp. 14141427, 1992.
J.S. Jang, C.T. Sun, and E. Mizutani Neurofuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice Hall, 1997.
Refbacks
 There are currently no refbacks.
Copyright (c) 2013 Yevgeniy Bodyanskiy, Iryna Pliss, Olena Vynokurova
This work is licensed under a Creative Commons Attribution 4.0 International License.