Nano-Accelerometers for Acceleration Measurement of Objects Moving in the Rarefied Gaseous Environments

Aleksandrs Matvejevs, Andrejs Matvejevs

Abstract


Solution of the nano-acceleration problem of solid body in the diluted gas environment is considered. To resolve the problem, the interaction effect principle of kinematic solid bodies in sparse atmosphere is used. The bodies differ by weights, midsection areas, and facing resistances in the environment, while there is a variety of moving options for the interaction of solid bodies in sparse atmosphere in general. A brief mathematical survey of algorithms, which determine accelerations of moving objects in the diluted gas environment, is presented. The nano-accelerometer algorithm for the object with two solid bodies in case, where the body weights are constants or changed occasionally in time, is studied. Specifications of the body orbit under external forces in the sparse gas environment are received depending on the orbit correction intervals. Modelling of the object with nano-accelerometer is presented by means of MatLab/Simulink software. Investigation results confirm the effectiveness of using nano-accelerometer for this class of real-world objects in the diluted gas environment.

Keywords:

Body interaction principles; braking and drift accelerations; nano-acceleration measurement; nano- accelerometer; rarefied gaseous environment

Full Text:

PDF

References


Ковтуненко В.М., Камеко В.М., Яскевич Э.П. Аэродинамика орбитальных космических аппаратов, Киев: Наукова думка, 1977.

Эльясберг П.Е. Введение в теорию полёта искусственных спутников Земли, М.: Наука, 1965.

Горлин С.М. Экспериментальная аэромеханика, М.; Высшая школа, 1970.

Баранцев Р.Г. Взаимодействие разреженного газа с обтекаемыми поверхностями, М.Наука,1975.

Змиевская Г.И. Аэродинамика спутников и определение параметров взаимодействия потока с поверхностью по торможению в верхней атмосфере Земли ИСЗ «Космос-166», «Космос-230». В кн.: Прикладные задачи космической баллистики, М.: «Наука», 1973.

Ориентация и навигация подвижных объектов: современные информационные технологии. Под ред. Б.С. Алёшина, К.К. Веремеенко, А.И. Черноморского, М.: ФИЗМАТЛИТ, 2006.

Nazarenko A.I., Cefola P. J., Yurasov V.S. Estimating Atmospheric Density Variations to Improve LEO Orbit Prediction Accuracy, AAS 98- 190, AAS/AIAA Space Flight Mechanics Meeting (Monterey, CA), February 1998.

Bowman, B. R., Storz, M.F., “High Accuracy Satellite Drag Model (HASDM) Review,” AAS 2003-625, AAS/AIAA Astrodynamics Specialist Conference, Big Sky, Mt, August, 2003.

Труды отраслевой научно-технической конференции приборостроительных организаций Роскосмоса «Информационно- управляющие и измерительные системы – 2007», Королёв, 2007.

Marcos, F. A., New Satellite Drag Modeling Capabilities. 44th AIAA Aerospace Sciences Meeting and Exhibit 9 - 12 January 2006, paper AIAA 2006-470, Reno, Nevada.

Matvejevs, Al., Matvejevs An., Latvijas Republikas patents Nr. 14575 A, Pieteikums Nr. P-12-100, Riga, 2012 ).

Matvejevs, Al., Matvejevs, An. and Vulfs, G.. Adaptive Control of the Electrical Solar Sail Based on Parametric Identification. Scientific Proceedings of Riga Technical University, Computer Science, Information Technology and Management Science, series 5, vol. 36, Riga, 2008, pp. 10-18.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2012 Aleksandrs Matvejevs, Andrejs Matvejevs

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.