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Abstract — Different types of uncertainty are widely spread in
all areas of human activity. Probabilistic uncertainties are related
to the chances of occurrence of random events. To deal with this
kind of uncertainty, statistics and probability theory are
successfully employed. Another kind of uncertainty, fuzzy
uncertainties refer to imprecision and fuzziness of different kinds
of measurements. To cope with this kind of uncertainty, the fuzzy
set theory is used. This paper addresses widespread approaches
to combining probabilistic and fuzzy uncertainties. The
theoretical fundamentals of the approaches are considered within
the context of the generalized theory of uncertainty (GTU).
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l. INTRODUCTION

Uncertainties accompany practically all kinds of human
activities. What is the partner’s hand in a card game? What
will be the profitability of company shares in a year? What is
the distance to the object when it is measured by eye? The list
of uncertainties like that can be easily extended.

How can we take into consideration, evaluate and analyse
different kinds of uncertainties? Historically, the first type of
uncertainty to deal with which the theoretical and practical
foundations were elaborated, were the chances of random
events occurrence. A push to the development of probability
theory was the need to evaluate the chances of players in
different hazardous games. Probability theory has gone a long
way of development. Nowadays it provides a sound
mathematical apparatus for dealing with specific uncertainties
in different areas of human activity. Hereinafter, we will call
such uncertainties probabilistic.

Statistics can provide ways to practically evaluate the
parameters of different kinds of probability distributions and
stochastic dependencies. But statistics and probability theory
cannot help to represent vague subjective opinions about the
distance to an object. Here we face another kind of
uncertainty: ambiguity, imprecision or fuzziness. To cope with
this kind of uncertainty, fuzzy set theory can be applied
successfully. Further we will call that kind of uncertainty fuzzy
uncertainties.

Let us extend consideration frames. Let us assume that the
range of relevant variable changes is divided into fuzzy
subsets. How can we evaluate the probability that a real value
of that variable will belong to a certain fuzzy subset? Let us
consider another problem. Let the function of probability
distribution of some random variable be constructed. Due to
different disturbing factors, it is impossible to construct a

precise distribution. For each specific value of the random
variable, only a fuzzy subset can be determined, to which the
value of distribution function can belong. How should we then
construct such a fuzzy distribution function?

Neither probability theory, nor fuzzy set theory can provide
any answers to the above-mentioned questions. The answers
requested can only be obtained through combining the
probabilistic and fuzzy approach. This paper examines some
widespread approaches to this kind of combination. The
theoretical foundations of the approaches are discussed within
the generalized theory of uncertainty (GTU).

Il. THEORETICAL FOUNDATIONS OF COMBINATION OF
UNCERTAINTIES

Nowadays a lot of publications are available offering
different methods for combining probabilistic and fuzzy
uncertainties. Most of these techniques deal with solving
specific tasks. On the other hand, the knowledge and
experience acquired in the field of analysis and management
of uncertainties of different kind have initiated attempts to
develop a generalized theory of uncertainty that would include
separate kinds of uncertainty as special cases. One of the most
successful works in that field is the generalized theory of
uncertainty (GTU), whose detailed fundamentals are given in
[9]. As the author shows, GTU differs three-fold from other
approaches to managing uncertainties. First, the statement that
information is statistical in nature is replaced by a statement
that information is a generalized constraint. The concept of a
generalized constraint plays a central role in GTU. Due to that,
the concepts of graduation and granulation are introduced. The
concept of graduation refers to the aspect that any relevant
values can be related to the degree of membership in certain
groups of values (in particular, in fuzzy sets). It is assumed
that relevant values are, or are allowed to be granulated. A
granule is a group of values drawn together by
indistinguishability, similarity, proximity or functionality [9].
In general case, the concepts of graduation and granulation
can be related to the concept of a linguistic variable. Any
linguistic variable includes a fuzzy set of values of relevant
variable, as well as a set of variable membership values.
Second, the theory abandons using the concept of bivalence
and employs fuzzy logic. Third, the theory implies using
techniques that enable handling information described in the
natural language.

To ensure that information expressed in the natural
language can be processed by formal methods, it has to be
transformed into the form enabling the direct use of respective
techniques. To transform the initial information into a suitable
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formal representation, the GTU uses the concept of
precisiation. As mentioned in [9], precisiation and precision
have different facets. More specifically, it is recommended
considering precisiation as A-precisiation, where X is an index
variable, whose modalities identify various modalities of
precisiation.

Relevant meanings obtained as a result of precisiation can
be divided into two classes [9]: (1) i-meaning that is in essence
an intension of the initial information; i-meaning is related to
certain numerical evaluations of the initial information, e.g.,
attribute values in the task of object classification, and (2)
extension or e-meaning. This kind of meaning is used to
describe entities, when they are not characterized by numerical

values. It is clear that in general case i-meanings are more
informative than e-meanings.

Some generalized constraints that bear a direct relation to
the topic of this study are considered below.

A. Probabilistic Constraints

In a standard case, such constraints can be set in different
forms, e.g., in the form of probability distribution function or
continuous random variable probability density function, in
the form of a list of random events and corresponding to them
probabilities. In GTU, a generalized probabilistic constraint
can also be defined in fuzzy subsets. A simple example
illustrating the concept is shown in Fig. 1.

Fig. 1. lllustration of the concept of a generalized probabilistic constraint in GTU

Let a set of objects be evaluated by means of attribute A.
Since it is impossible to determine precise values of the
attribute for the object, it is divided into three fuzzy subsets:
using previously defined linguistic variables A;, A, and Ags.
Then a fuzzy event will be falling of the real value of the
attribute to one of fuzzy subsets. From Fig. 1 it follows
directly that a real value of the attribute can at the same time
belong to two fuzzy subsets. In this case, we have to speak
about simultaneous implementation of two fuzzy events.

Formally, the probability of fuzzy event A can be defined as

(8]
Pr(A) = [ 1,(0) f ()dx = E (1,(x)), 1)

where f(x) — the probability density function for a relevant
random variable.

If a fuzzy event is determined by a fuzzy subset in the
interval [a, b]b of relevant random variable, then

Pr(A) = [ 1 (X) F ()= E (14(x)) @

a
For a discrete sample with consequences Xx;, X, ...
expression (2) will look as follows:

> Xn
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Pr(A):iuA(xi) F(x)=E(m00). @)

In any case, the probability value of fuzzy event A is equal
to the mathematical expectation of relevant values of the
membership function.

If fuzzy event A is made by implementation of random
variable X3, Xp, ... , X, with probabilities py, p2, ... , pn »
respectively, the entropy of fuzzy event A can be calculated as

[71:
HP(A) ==Y 1, (%) p;log p,. )
i=1

B. Usuality Constraints

The construction of probability distributions and evaluation
of their parameters are performed on the basis of statistical
data (samples). These factors essentially affect the process of
statistical data processing [3]:

1. Uncertainty due to the correlation between the data being
observed and universe of possible data.

2. Imprecision of empirical phenomenon measurement,
which leads to an increase in statistical data imprecision.
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3. Vagueness related to the use of linguistic terms in the real

world description.

4. Partial or complete non-knowledge connected to the

value of phenomenon in the examples under observation.

5. Imprecision caused by granulation of terms used in the

description.

% = X(@,)
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If due to some reasons it is impossible to unambiguously
evaluate implementation of a random variable, it can be
evaluated as fuzzy subsets. In this case we deal with a fuzzy
random variable (FRV). Conditional fuzzy variable
implementation is shown graphically in Fig. 2.

xeXeR

Fig. 2. Graphical representation of implementation of a sample fuzzy random variable

There are several approaches to formal definition of a
FRV. A technique discussed in [5] is the most common one;
according to it, probabilistic space (€2, A, P) is a statistical
mechanism generating a FRV. Then a FRV is determined
by means of mapping

X:Q—->F.(R),
such that for each value a e [0, 1] the mapping of a-level

X, 1 Q— K. (R) with

X, (o) :[inf (X(a)a)),sup(x(a)a ))],Va)eQ

is a compact convex random set, i.e., Borel-measurable in
the Borel o-field, generated by means of topology related to
Hausdorff metric. The assumption of Borel-measurability
enables handling generated random sets by analogy with
probabilities and constructing probabilistic distributions of
FRV.

As an illustration, Fig. 3 depicts the sample graphs of
distribution function and distribution density function of a
sample fuzzy random variable.
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Fig. 3. (a) a sample graph of distribution function and (b) a sample graph of distribution density function of a sample fuzzy random variable

As can be seen from Fig. 3, for the given value of a
random variable Xx;, the value of distribution function is a
fuzzy triangular number and any value of distribution
function is related to the corresponding membership value.

I1l. SOME EXAMPLES OF PRACTICAL APPLICATION OF
UNCERTAINTY COMBINATION METHODS

Let us start this section with discussing some examples
of practical use of probabilities of fuzzy events. In [4], a
specific method for constructing fuzzy classifiers is
proposed. The essence of fuzzy classifiers is as follows.
Assume that a training set of instances is specified. For each
instance, its membership in one of classes, ¢, € C is known.
Each instance is evaluated using a set of attributes A. For
every attribute A; € A, a set of its fuzzy values a; € A; is
defined. As a measure of attribute informativity, the notion
of the so-called star entropy is used:

192

H:(C/Aﬁ) = _z p*(aij)z p*(ck /aij)logz p*(Ck /aij)’
j=1 k=1

(®)

where p*(a ) — the probability of a fuzzy event: an
instance of the training set has the value of attribute a;
with non-zero value of membership function, p’(c, /&, j
— the probability of a fuzzy event: an instance with attrlbute
value a; belongs to class C, .

At the flrst step of algorithm execution, the value of star
entropy, H C / A)Z is calculated using expression (5) for
each attrlbute The attribute that has the largest
value of H (C I A\ ) is used as the base one. This attribute
corresponds to the root node of a fuzzy decision tree. The
branches coming from the root node correspond to the
values @; of attribute A . At the end of each branch a
training set is represented, which is distinguished using
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these attribute values. For each of the distinguished subsets,
the searching activity of the most informative attribute is
performed. A node representing such an attribute is joined
to the corresponding branch of a fuzzy decision tree. The
process of consecutive construction of a fuzzy decision tree
(classifier) is continued until one of stopping criteria is
satisfied in all end positions of the tree. Using the
constructed classifier, classification of new instances which
do not belong to the initial training set is performed.

Another variant of constructing fuzzy classifiers on the
basis of the notion of fuzzy statistical entropy is given in
[2]. As opposed to the definition of star entropy (5), the
fuzzy statistical entropy is defined as follows:

H . =—iPr(Aj)Iogzpr( A)=
=2 E(u, (0log (ECu, 00N 6)

However, the above-mentioned definition requires that
for each value x the sum of values of functions of
membership in different fuzzy subsets is equal to 1. Such a
requirement is quite restrictive for wide use of the
suggested technique.

Let us now consider some examples of the use of fuzzy
statistics. Common statistical models enable one to infer
knowledge from relevant initial data. Here it is assumed
that both initial and inferred data are represented in the
deterministic form. It is clear that due to different reasons
the inferred data can be more or less uncertain. However,
standard statistics has developed plenty of successful
methods for modelling this kind of uncertainties.

Fuzzy statistics is designed for operating FRV. Likewise
standard statistics, it has multiple directions. Let us consider
some of them.

Fuzzy Hypothesis Testing. Hypothesis testing is one of
the key techniques in standard statistics. It includes a
sequence of procedures that are used to confirm the truth of
the proposed hypothesis under the specified conditions and
to accept it as a legitimate statement or to show that the
hypothesis is false and reject it. Normally, in statistics the
null hypothesis is a statement made regarding a certain
parameter of distribution, 6, though other statements may
be posed as well. An alternative (supplementary or
duplicative) hypothesis is a statement that is confirmed
when the null hypothesis proves to be false.

Let us consider two conditional hypotheses:
H,:0e€¥; H :00\Y,
where 6 — a parameter to be analysed;
W — the range of values of parameter @ that is of
interest;
O\W¥ - the supplement to the range of all possible
values of parameter 6.

The above-mentioned hypotheses can be reformulated in a
fuzzy environment as follows:

Ho : 1ty (0); H, gy (0)
Special approaches are elaborated to make fuzzy testing

of the hypotheses. More detailed information about one of
such techniques can be found in [1].

Fuzzy Regression Analysis. The main objective of
standard regression analysis is to define the stochastic
correlation between the values of explanatory variables X,
..., X, and the value of response variable Y. In the case of
linear regression model, this correlation can be expressed as
follows:

Y, =by +bx;, +... 40X, +€,

where b;, i=0, ..., n, are linear regression coefficients;
e — the residual that represents random errors.
Commonly it is assumed that e; ~ N(0, 67).

In the fuzzy regression model it is assumed that the
correlation itself between the explanatory variables and the
response variable is fuzzy [6]. According to this model,
regression coefficients are fuzzy numbers:

¥, =b, ®bex, ®...Dh, +x,,, ©

where @ — the symbol of fuzzy numbers addition;
e — the symbol of multiplication of a fuzzy
number by a real number.

The evaluation of fuzzy regression coefficients bij is
made on the basis of the principle of minimization of the
fuzziness extent of response variable § and can be viewed
as a specific optimization task. To solve this task,
mathematical programming can be employed.

Fuzzy Time Series. If some parameter of a process varies
over time, the values of the parameter at different time
moments compose a time series. If due to some reasons it is
impossible to unambiguously evaluate the values of
parameters in time series, then fuzzy values of that
parameter are used. In this case one can speak about a fuzzy
time series. Using the appropriate techniques, different
tasks can be solved on the basis of such data as, for
example, forecasting possible values of the relevant
parameter at the time points that will be of interest to us in
the future.

IV. CONCLUSIONS

During the past decades several effective approaches to
combining random and fuzzy uncertainties have been
developed. This paper has briefly examined two major
directions of the approach: probabilities of fuzzy events and
fuzzy probabilities. The theoretical foundations of the
approaches are described using the generalized theory of
uncertainty of L. Zadeh. Besides, some practical
applications of the techniques considered are discussed
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within each area. Based on the analysis of the material
provided, it can be concluded that numerous theoretical and
practical studies conducted give evidence of the high
potential of the suggested techniques for solving
complicated practical tasks. However, ever more profound
research is required to ensure the development of new
techniques and algorithms that will have a strong theoretical
validation and at the same time will be simple and easy to
use, which is especially topical for the fuzzy regression
analysis and fuzzy time series analysis.
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Olegs UZga-Rebrovs, Galina KuleSova. DazZas pieejas varbiitiskas un izplidusas nenoteiktibas kombinéSanai

Dazada veida nenoteiktibas plasi izplatitas dazadas cilveku darbibas jomas. Vesturiski pirmais nenoteiktibas tips, kuram bija izstradati teorgtiskie un praktiskie
pamati, ir gadijuma notikumu iestasanas izredzes (varbutéjas nenoteiktibas). Varbitibas teorija izgajusi garu attistibas celu. Paslaik varbiitibas teorija nodro$ina
jaudigu matematisko aparatu specifisku nenoteiktibu vadiSanai dazadas cilvéku darbibas jomas. Tacu varbiitibas teorija un statistika nevar palidzet atspogulot
izplidusus subjektivus prieksstatus par relevanto realo lielumu nenoteiktibu (izplidusas nenoteiktibas). Lai tiktu gala ar tada veida nenoteiktibam, veiksmigi
izmanto izpliduso kopu teoriju. Tatu nozimiga interese ir varbiitgjo un izplidugo nenoteiktibu kombingsanai. Saja raksta tiek apskatitas atseviskas pieejas tadam
kombinacijam. Materiala izklasts notick L. Zade visparigas nenoteiktibu teorijas ietvaros. Saja teorija apgalvojuma vietd, ka informacija ir statistiska p&c savas
bitibas, tiek izmantots apgalvojums, ka informacija ir visparinats ierobeZojums. Otrkart, teorija neizmanto bivalences jédzienu, bet izmanto izpladuso logiku.
Treskart, §T teorija paredz tadu metozu izmanto$anu, ar kuru palidzibu var apstradat informaciju, kura tiek izteikta dabiga valoda. Saja rakstd tiek mingti
atseviskie izplatitie ierobezojumi, kas atbilst dazadiem nenoteiktibu kombingSanas veidiem. Tiek piedavati ilustrativie izplidusas sadalfjuma funkcijas un
izpludusas sadalijuma blivuma funkcijas pieméri nosacitam gadijuma mainigajam lielumam. Tiek apskatits ilustrativs izplidusa gadijuma mainiga piemeérs. Tiek
analizeti nenoteiktibu kombingSanas praktiskie piem@ri: izpluduso klasifikatoru konstruésana, izpliduSo hipotézu parbaude, izpludusi regresijas analize un
izpladusas laika rindas. Darba nobeiguma ir paradita turpmako p&tijumu nepiecieSamiba.

Ouer Yikra-Peopos, l'anuna Kynemosa. HexoTopsle moaxoabl K KOMOMHHPOBAHHMIO BEPOSITHOCTHON M HEYETKOI Heonpe/eIeHHOCTH

PasnuyHOro pozja HEONPeAeNEHHOCTH INHPOKO PACHPOCTPAHEHBI B Ppa3HBIX OONACTAX YENOBEUECKOH IeATeNbHOCTH. JICTOpUUECKH IEpBBIM THUIIOM
HEONpPE/IeTEHHOCTH, I KOTOpPOro OBLIM pa3pabOTaHBl TEOPETHUECKME M MPAKTHYECKHE OCHOBBI, OBUIM IIAHCHl HACTYIUIGHHS CITyd9alHBIX COOBITHI
(BEpOSTHOCTHBIE HEOIpEeAENEHHOCTH). TeopHs BEpOATHOCTEH mpouuia OONBIIOW IyTh pa3BUTHS. B Hacrosiiee BpeMsi OHa OOECIIEUMBAET MOIIHBIH
MaTeMaTHYeCKHI ammapar Uil yIpaBlICHHsS HEONPENeNEHHOCTH B Pa3IMYHBIX OONACTSAX 4YenoBeuecKod aesTenbHOCTH. OIHAKO TEOpHUs BeposTHOCTEH u
CTaTHCTUKA HE MOTYT ITOMOYb OTOOPA3HTh CMYTHEIE CyOBEKTHBHBIE TIPEJICTABICHNS] OTHOCHTENBHO JISHCTBUTENBHBIX 3HAUCHH PENIEBAHTHBIX HEOTPENENEHHBIX
BENMYMH (Heu€TKasi HeONpeaenéHHOCTh). JIist obparenns ¢ Takoro pojia HEONpeAeNEHHOCTSIMH YCIIEIITHO MCIIONB3YETCsl TeOpHsl HeUETKMX MHOXKeCTB. OHaKo
3HAUUTENbHBII MPAKTUUECKUI MHTEPEC NPEICTABIACT KOMOMHMPOBAHHE BEPOSTHOCTHBIX M HEYETKUX HeonpenenéHHocTed. JlaHHas CTaThs paccMaTpuBaeT
HEKOTOphle Hanbonee PpacrlpoCTpaHEHHBIE MOJXOJBI K TaKoMy KOMOWHHPOBaHHIO. l3nokeHHMe MaTepmana MHPOHM3BOAWTCA B paMKax oOmeif Teopuu
Heonpezenénnocterd JI. 3ane. CormacHo 3Toif TeopuH yTBEpXKJICHHE O TOM, 4YTO MH(OpManus sBIAETCS CTATUCTHYECKOH MO CBOEH MpHpoje, 3aMeHseTcs
YIBEpIKACHHEM O TOM, YTO HH(OPMAIUS ABIsICTCS 0000MEHHBIM OrpaHHYeHHEM. BO-BTOPBIX, TEOPHS OTKAa3bIBACTCS OT UCHONIB30BAHMS MOHATHS OMBAICHTHOCTH
U HCIONB3YeT HEYETKYIO JIOTHKY. B-TpeThux, 3Ta Teopus HOIpa3yMeBaeT HCIIONb30BaHHE TaKHX METOIOB, C MOMOIIBIO KOTOPBIX MOXHO 00pabaThIBaTh
H(POPMAIHIO, BEIPAKEHHYIO Ha €CTECTBEHHOM s3bIKe. B cTaThe Mpe/icTaBlIeHbl HEKOTOPBIE PACIIPOCTPAHEHHBIE OTPAHNYEHHS, KOTOPBIE ONPEIEISIOT pa3IndHbIe
BHJIbI KOMOMHUPOBaHMs HeonpenenéHHocTel. [IpuBeeHbl MILTIOCTPATHBHBIE NPUMEPhl KOHCTPYUPOBAHMS HEYETKOW (YHKIIMH DPACTIPEACNICHUS U HEYETKOM
(QyHKIMM TIJIOTHOCTH PpACIIpE/ICNiCHUs] YCIOBHOM CIyd4ailHOW NepeMeHHOH. PaccMOTpeH WILIIOCTPAaTHBHBI NpUMEp peanu3alid HEYETKOH CiiydaitHOM
HIEPEMEHHO. AHANM3UPYIOTCS TPaKTHYECKHE NPUMEPhl KOMOWHMPOBAHHS HEONPEIeTEHHOCTEH: KOHCTPYHPOBAaHNE HEUETKMX KIIAacCU(UKATOPOB, HEUETKas
IIpOBEpKA THIIOTE3, HEUETKNI PErpecCHOHHbIN aHaIN3 M HEeYETKHE BPEMEHHBIE psjbl. B 3aKiroueHne moka3aHa HEOOXOMMMOCT JAIbHEHIIINX UCCIEIOBAHUH B
JaHHOH 00JIaCTH.
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