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Abstract - In this paper, we will describe an analytical solution
to a problem of pricing financial assets with autocorrelations in
returns. We will develop a continuous diffusion model for the
case of autocorrelation in stock returns, obtain the European call
option pricing formula written on a stock with autocorrelation in
returns and show that even small levels of predictability due to
autocorrelation can give a substantial deviation from the results
obtained by Black-Sholes formula. Also, we will calculate the
modified sensitivities of the value of European call option and
show how in risk management widely used option hedging
parameters depend on assumptions made about correlation in
underlying asset returns. Finally, we will show convergence time
for the stationary solution of the derived continuous diffusion
model and test its distribution.
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I. INTRODUCTION

In recent years, a lot of papers have been dedicated to the
problem of autocorrelation in asset returns and its
predictability. Autocorrelation in short-term stock index
returns has been analyzed by Lo and MacKinlay in [1],
Jokivuolle in [2] and Stoll and Whaley in [3]. They argue that
positive autocorrelation shows up in index returns due to
presence of stale prices of stocks included in the index. The
above-mentioned situation happens when the increase in the
number of stocks comes from inclusion of small capitalization
stocks, which are known to trade less frequently than large
ones. Due to infrequent trading in small capitalization stocks,
the observed index value does not reflect the true market value
of the underlying stock portfolio as the index value is
calculated using the last observed stock transaction prices. For
such process modelling purpose, econometricians have been
very active in developing models of conditional
heteroskedasticity. But when your discrete model contains
unobservable state variables (like conditional variance) in the
system, the likelihood of a nonlinear stochastic equation
system observed at discrete intervals can be very difficult to
derive. Nelson [4] was one of the first to partially bridge the
gap by developing conditions under which ARCH stochastic
difference equation systems converge in distribution to Ito
processes as the length of the discrete time intervals goes to
zero. This solution was performed for the models without
autocorrelation in returns. Thus, the problem of
autocorellation during the life of the financial asset can
broadly change the value of asset and its derivative.
Undervalued derivatives as we know from the past can lead to
a huge bankruptcy chain of financial institutions.

The paper is structured as follows. Section 2 gives a brief
review of the autocorrelation problem in asset returns and the
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idea of diffusion approximation. Section 3 describes Black—
Scholes European Call option price formula and market risk
sensitivity modification. In Section 4, we report our test results
for the distribution of the stationary solution and convergence
time to stationary solution based on fixed parameters, but
Section 5 concludes and discusses several possible avenues for
future research.

II. THE PROBLEM OF AUTOCORRELATION IN ASSET RETURNS

Mezin [5] found a relationship among asset price volatility,
asset return volatility and asset return autocorrelation
coefficient. The obtained analytical solution reduces to the
well-known Black—Scholes option pricing formula for the
special case of autocorrelation in asset returns. Mezin created
a framework of a lognormally distributed asset price S with
serially correlated returns and derived an analytic option
pricing model, capable of providing an exact solution for a
value of derivatives on such an asset. He developed
framework of random, normally distributed, process x, such
that InS = X, with autocorrelated increments & that have
volatility o’ and autocorrelation coefficient p. Both
parameters can be estimated using historical data. Instead of
heuristically based approach it is possible to assume limit
theorems proposed by Carkovs [6] and get the continuous time
approximation of stochastic difference equation in a form of
diffusion approximation.

The simplest mathematical model describing development
of stock price St and involving assumption of autocorrelation
in stock returns under commonly used condition on risk
neutrality of probabilistic measure P may be written in the
following way:

S... =S,(1+ & u+eoy,,,) (1

where Y, is a Gaussian random sequence with zero mean and
unit variance. When it is considered that these random
numbers are independent, we may write that Y, follows

AR(1):
You =Y +1-p° & @)

where {&}, , ES, =0, ES tz =1 isiid. Gaussian
sequence. To be able use results derived by Carkovs in [6], we
denote X; = St and rewrite equation (1) in the following
form:

X1 = X + EOYy, X + & 1K, 3)
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These results state that for small &, equation (3) can be
approximated by distribution of vector

X(tl),X(tz),...,X(tn)} defined by solution of Ito
stochastic differential equation:

dX (s)=a(X(s))ds + a(X(s))dw(s) 4)

Thus, we derive continuous time approximation of
stochastic difference equation (1) in a form of diffusion
process satisfying Ito stochastic differential equation:

dS(t) = S(t)(u + o2k)dt + S(t)1+ 2koda(t) ©

k ::ZCorr{yHm,yt}:L

m=1 1_p

After substitution we get the final equation

dS(t) = St)(u + 0> —Lydt + (1), | L odo(t)
- p 1—p ©)

III. EUROPEAN CALL OPTION PRICING ON STOCKS WITH
AUTOCORRELATION IN RETURNS AND MARKET RISK
SENSITIVITY MODIFICATIONS

Now let us derive European call option pricing formulas
if underlying stock price process S(t) satisfies the stochastic
differential equation (6). The boundary conditions for the
European call option are given ~ C(S(T),T) = maxS(t) - K;0)
and C(0,t) =0 . Using well-known techniques, we get the
following results

C(S(®),)=SMON(d) —KexpHu+a k)T )N, (7)
where
log(S(t)/K) + (u+ 0o’k + %02(1 +2K)(T —1t)

&= o J(1+2K)(T —t)
and
d, =d, —o/(1+ 2k)(T —1t)

where N() is the standard normal cumulative distribution
function.
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Fig. 1. Value of call option for different correlation coefficients

Now we are ready to derive formulas used to calculate
sensitivities of call option price to changes in underlying
parameters. There are a lot of risk measures, which are mostly
defined with Greek letters, but to illustrate the autocorrelation
problem let us take a look at the most common Greek letters
used in risk measurement — Delta and Gamma.

Delta, A, is the first derivative of the value C (European call
option price) of the option with respect to the underlying
instrument price S:

oC
A, =—-=N(d)
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Fig. 2. Value of call option delta for different correlation coefficients

Gamma, I', measures the rate of change in the delta with
respect to changes in the underlying asset price:

(st =28 = N()

0S  S(t)o/(1+2k)(T —t)
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Fig. 3. Value of call option gamma for different correlation coefficients

As shown in Fig. 2 and 3, option price sensitivities depend
on the autocorrelation in underlying asset returns. If there is
autocorrelation, then depending on its sign, an option seller
can overweight or underweight a market risk, and as a result
this could lead to unpredictable losses or even to institution’s
default.

IV. TESTING DISTRIBUTION OF STATIONARY SOLUTION AND
FINDING CONVERGENCE TIME BASED ON FIXED
PARAMETERS

The next step, which we cannot exclude from our research,
is stability of the solution of the equation (4) and the derived
equation (5). If we cannot find a stationary solution to the
equation (5) and show that it is independent on the level of the
correlation coefficient then the above-mentioned formulas for
the European call option price and Greeks are not sustainable
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and describe only a local timely solution, which is useless in
risk management.

Let us take into consideration the stochastic differential
equation, which is similar to equation (5):

dx(t) = y(p) —a(p)xdt+ o(p)xda(t) ®)
X(t) —stationary
We know the distribution of stationary solution )A((t) from
Nelson [4] research (it is inverse Gamma distribution). If we
intend to find the speed of convergence to the stationary

solution for equation (8) with an initial condition x(0) = X it
should be rewritten in the different form:

2(t) = X(t) - X(t)

dz(t) = a(p)z(t)dt + o (p)z(t)dw(t)
Ef 2(t) \}2 - E{ | 2(0) [ Jo "
Ef 2(0) j p(2)(x - 2)*dz

where P(2)is I'- distribution.

2(0) = x—X(0)

Andif A,(p)=2a(p)+0c’(p) <0 , then the second
order moment is super martingale

c(&):=P <sup | z(t) > g} <

T<t

<2 B{supl 207 | < 2E( 2T ) -

& T<t

4
= ZE{|2(0) 1=

Second order moment Eﬁ Z(O)|2} with known TI-

distribution (this distribution depends on p) is -easily
evaluable. If the inequality mentioned below were in force

T<t
it should take convergence time:

P{sup|z(t) < 5} >1-6

In(8e) - In 4(E{| 2(0) '}
4(p) )

T,(p)=

Formula (9) describes convergence time to stationary
solution X(t) . Thus, using (9) depending on © it is possible

to find convergence time, and from that moment of time
stationary solution should have I'- distribution. In our studies
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we have fixed parameters in (8) and I'- distribution. After that
we have made simulations by changing 0 values from 0 to 1
and as a result we obtained different convergence time. Taking
into account Nelson [4] results of stationary solutions, we
have made Kolmogorov tests for I'- distribution. From our
point of view, these tests should be empirical proving (9). For
most cases, we have not rejected the hypothesis of the I'-
distribution.
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Fig. 4. Convergence time to gamma distribution for different correlation
coefficients

As we see from Fig. 4, for given precise £ <0,1 ,
| Z(t) |* converge faster to the stationary solution with
correlation coefficient 0.5 than 0.9. However, convergences
have been achieved for all p values. It means that equation
(8) can be used for the price evaluation of financial assets with
autocorrelation in returns and the determination of risk
measures.

V.CONCLUSIONS AND FURTHER WORK

We have developed a continuous diffusion model for the
case of autocorellation in stock returns. Further, we have
obtained the European call option pricing formula written on
the stock with autocorrelation in returns and shown that even
small levels of predictability due to autocorrelation can give a
substantial deviation from the results obtained by Black—
Sholes formula. Also, we have derived formulas for
sensitivities of the value of European call option and shown
how in risk management the widely used option hedging
parameters depend on assumptions made about correlation in
underlying asset returns. The approach can be applied to
discrete time stochastic difference equation systems, where
volatility is stochastic or it is modelled by generalized
autoregressive conditional heteroscedasticity process.

Another uncovered topic is how the convergence of discrete
time stochastic difference equation to its continuous time
approximation depends on the autocorrelation coefficient.
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Andrej s Matvejevs, Jegors Fjodorovs. Finansu aktivu novértéSana ar autokoreléto ienesigumu

Saja raksta tiek aprakstits analitiskais risinajums finansu akfivu cenu noteik3anas problémai ar autokoreléto ienesigumu. Par darba pamatu kalpo dazadu
zinatnieku petjjumu rezultati [1], [2] un [3], kas tika veltiti akciju indeksa autokorelacijai, kad Saja indeksa tika ieklautas mazas kapitalizacijas kompanijas.
Rezultati parada, ka eksisté pozitiva korelacija, kad ir iek]auts indeksa liels mazlikvido akciju skaits. Dazreiz indeksa patiesa cena ir deforméta tapéc, ka akciju
cenas biezi nemainas. Tadgjadi, lai modelétu tadas akciju tirgus paradibas, ekonometristi attistijusi ARCH tipa modelus, kuros nosacita dispersija varétu
mainities laika. Bet, kad diskrétais modelis satur nenovérojamo mainigo (piem., nosacito dispersiju), var€tu bt gruti atrast ticamibas funkciju nelinedrai
stohastisko vienadojumu sist€émai, definétai diskrétos intervalos. Nelsons [4] bija pirmais, kas attistTja nosacijumus, pie kuriem diferencu tipa ARCH modelis
konvergg p&c varbitibas uz Ito procesu, kad diskréto laika intervalu garums samazinas 1idz nullei. Savukart visa iepriekSminéta ideja tika izstradata gadijuma, ja
aktivu ienesigums nav autokoreléts, bet realaja situacija §1 korelacija pastav, kas bitiski varétu izmainit noveért€§jumu. Lidz ar to $aja darba tiek izstradats
nepartraukts diftizijas modelis (kura pamata ir J.Carkova darbi par diferencu vienadoju aproksimaciju ar stohastisko diferencialvienadojumu skat. [6]) gadijuma,
kad akciju ienesigums ir s€rijveida autokorel@ts, iegiits Eiropas tipa opcijas cenu noteikSanas vienadojums, kur§ nem vera autokorelaciju, ka ar1 tiek paradits, ka
nelielas sérijveida autokoreldcijas limena izmaipas varétu novirzit opcijas cenu no rezultata, iegiita ar Black-Sholse formulas palidzibu. Saja darba tiek
izskait]otas Eiropas tipa opcijas cenu jutiguma izmainas un paradits, ka opciju cenu noteikSanas risku vadiba plasi izmantotie hedz&$anas parametri (Greeks) ir
atkarigi no aktivu korelacijas. Tadgjadi, izmantojot plasi pazistamos opciju cenu svarstibas riska ierobezojoSos raditajus — Greeks, varétu but gadijumi, kad
opciju izrakstitajs nenoverta iesp&jamas izmainas bazes aktiva, ka rezultata $1 nepareiza riciba varétu noverst pie zaud&jumiem vai pat lidz finansu institlicijas
bankrotam. Bez tam brivi izvélétam nepartrauktam diftizijas modelim atrisinajuma konvergences laiks tiek noteikts uz stacionaru un izveidoti statistiskie testi uz
stacionara atrisindjuma sadalfjumu.

Aﬂupeﬁ MarseeB, Erop ®énopos. Ouenka GuHAHCOBBIX AKTHBOB ¢ AaBTOKOPPEJIHPOBAHHBIMH 10X0IHOCTIMHU

B 3Toil cTaTbe ONMMCAHBI HCCIEAOBAHMS U aHAIUTHYECKOTO PEIICHHs NpoOJieMbl IEHO0Opa30BaHMS (DHHAHCOBBIX AKTHBOB C aBTOKOPPEIHPOBAHHBIMU
JOXOMHOCTSIMU. B OCHOBe paGoOTEHI JiexaT TPyAbl PasIMYHOTO NEpHOAa O MOBeAeHHH (UHAHCOBBIX PBHIHKOB [1], [2] u [3], KOTOpBIE B OCHOBHOM IOCBSILCHBI
aBTOKOPPEIAIMY HHIEKCa akKiuil. Pe3ynabTaTsl TPyJOB NMOKAa3bIBAIOT, YTO CYIIECTBYET IO3UTUBHAS AaBTOKOPPENAIMS, KOIJa B HMHAEKC BKIIOUEHO OOJBIIOE
KOJIMYECTBO MAaJOJNMKBUIHBEIX akiuid. Takum obOpa3oM, HacTosmas IeHa HHAeKca Ae(opMUpOBaHa, IIOTOMY YTO LICHBI aKIMil pefko MeHstoTcs. [loatomy, mms
MOJIEJIMPOBAHUS TAKUX IPOLIECCOB 3KOHOMETPUCTHI ucnoib3ytoT ARCH Mojenu, B KOTOPBIX YCIIOBHasl JUCIEPCHS MOXET MEHATbCS BO BPEMEHH, HO Korja
JUCKpETHAsi MOJeIb COAEPKUT HEHAaOMIOAaeMyIo IEPEMEHHYIO, MOT'YT IOSBHTBCS CIOXKHOCTH C OLICHKOH IapaMeTpoB HeluHelHol Momenu. Hembcon [4] Obut
MIePBEIi, KTO MPEUIOKUI YCIOBUS cXxoquMocTH 1o BeposTHocTd ARCH monenu Ha mponecc MTo, korna nHTepBal IUCKPETHOTO BPEMEHH CTPEMHUTCS K HYIIIO.
Bes BhImeymomsHyTas TeopHsl pazpaboTaHa Ha CIy4ail OTCYTCTBHS aBTOKOPPEISIMH, YTO HE BCErJa COIacyercs C pealbHOCThI0. MBI paspaboranm
HeTpephIBHbIC MoenH U dy3u Il CiIydasi CepHHHON KOppesIiuy JOXOAHOCTelH akiuil (6oaee moapoOHO ¢ IPUHIUNAMH ANNPOKCHMALUU H €€ CXOIUMOCTH
MOXKHO O3HAaKOMHTHCS B pabote E.llappkosa [6]), modyunnn ypaBHEHHE U LEHBI €BPONEHCKOTO ONIMOHA, KOTOPOE YUHUTHIBACT aBTOKOPPEILALHUIO, a TaKikKe
MOKa3aId, 4TO Jake HeOOJbIIME YPOBHU CEPUITHON aBTOKOPPEILILIMM MOTYT JaTh CYLIECTBEHHOE OTKIOHEHHE OT PEe3YJIbTAaTOB, MONYYEHHBIX IPU MOMOLIH
¢dopmynsr Bika- Illoysica. B pabore BBIYHCICHO H3MEHEHHE YYBCTBUTEIBHOCTH CTOMMOCTH eBporeiickoro omumona call u mokasano, 4to B obaactu
YIIPaBJICHHS PUCKAMH LIEHOOOPA30BaHMsI OMIMOHOB, [IKPOKO HCIIOIB3YEMbIC TapaMeTPhI JOMYCTUMOCTH XekupoBaHust (Greeks) 3aBHCST OT IPeoNoKeHH It 0
KOpPpEJSILIHH, JISKALINX B OCHOBE JJOXOJHOCTH aKTHBOB. Takum 00pa3oM, HCIIOJIB3Ysl IIOKA3aTe/IM PHIHOYHOTO PHCKa OIMOHOB (TaK Ha3biBaeMble — Greeks) kak
OCHOBY YIIPaBJICHHS IO3UIKAMH B OpTderne akTUBOB TuO0 0043aTeNIbCTB, AN YCTPAaHEHHUs KOJIeOaHUH IeHbI ONMIMOHA OT U3MEHEHHUS PHIHOYHOI KOHBIOHKTYDBI
OCHOBHOT'O aKTHBA, HEOOXOAUMO y4eCTh aBTOKOPPEIIINIO JOXOIHOCTEH, 4TO yMEHBIIAET BEPOATHOCTh NOTEPh MIPHU MIPOJaXke ONMIMOHOB. HakoHemn, MbI mokasamu
BpeMsl CXOAWMOCTH IS CTAI[HOHAPHOTO PEIICHUs INPOU3BOAHOH HeNpephBHOH MH((GY3HOHHOH MOJENM M CHeNald CTAaTUCTHYECKHE TECTHl Ha ero
pacnpesiesieHue.
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