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Abstract —This paper describes an approach that is able to fix
difference in multifractal behaviour of various World Stock
Indexes. The approach is beneficial for the forecasting and
simulations of the most European and Asian stock indexes.
Multifractal analysis is provided using the so-called Wavelet
Transform Modulus Maxima approach, which involves two basic
aspects: Wavelet aspect (Direct Continuous Wavelet Transform,
Skeleton construction) and Multifractal formalism (Fractal
Partition Function calculation, Moment Generating Function
calculation, Multifractal Spectrum estimation).

Keywords — Wavelet Transform Modulus Maxima approach,
Direct Continuous Wavelet Transform, Skeleton, Multifractal
formalism, Fractal Partition Function, Moment Generating
Function, Multifractal Spectrum, Stock indexes

I. INTRODUCTION

Complex patterns and signals can be efficiently represented
by decomposing them in different frequencies. The
conventional method for this approach is the Fourier analysis.
However, a certain instance may vary in time and space over
the frequencies. In such cases, it is more appropriate to
decompose the signal using another approach, which allows
for spatial variation in the spectral composition of the signal.
Examples of such approaches are the Windowed Fourier
Approach and the multiresolution analysis approach, based on
the so-called wavelets. Wavelet analysis provides important
information about the mathematical morphology of a signal.
An important method based on wavelet analysis is the Wavelet
Transform Modulus Maxima (hereinafter WTMM). Using this
method it is possible to describe the characteristic elements of
a complex quasi-periodic signal. This description can then be
used to recognize these elements in new signals.

Most of the information in a signal is carried by its irregular
structures and its transient phenomena, called singularities. A
method that excels in finding and identifying these
singularities is the Wavelet Transform, because of its
capability of decomposing a signal into elementary building
blocks that are well localized in both time and frequency.
Because of this capability, the Wavelet Transform is capable
of defining the local regularity of a signal [1].

WTMM approach is a method for detecting the fractal
dimension of a signal. More than this, the WTMM is capable
of partitioning the time and scale domain of a signal into
fractal dimension regions, and the method is sometimes
referred to as a "mathematical microscope" due to its ability to
inspect the multi-scale dimensional characteristics of a signal
and possibly inform about the sources of these characteristics.
The WTMM method uses continuous wavelet transform rather
than Fourier transforms to detect singularities — that is
discontinuities, areas in the signal that are not continuous at a
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particular derivative. This method is useful, when analyzing
multifractal signals, that is, signals having multiple fractal
dimensions [2].

WTMM consist of the following steps:

1) Data Mining and pre-processing, (stock index data
should be minded, stock index prices should be represented in
log-scale);

2) Wavelet analysis, (Direct Continuous Wavelet Transform
procedure should be done, after that Skeleton should be
constructed);

3) Multifractal Formalism, (Thermodynamic partition
function estimation (Fractal Partition Function calculation);
Scaling exponential function estimation (Moment Generating
Function calculation); Multifractal spectrum estimation).

The rest of the paper is organized as follows: first of all,
roots of stock index multifractality (the Multifractal Model of
Asset Returns) are explored, after that WTMM approach pre-
processing is illuminated, then both aspects of WTMM
(Wavelet analysis and Multifractal Formalism) are narrated.
After that WTMM approach is illustrated in respect to stock
index multifractal analysis exemplified by German DAX30
stock index data. At the end of the paper, stock index
multifractal analysis is performed.

II. MULTIFRACTAL MODEL OF ASSET RETURNS

There is one general assumption about stock price
behaviour. Expect the price of a stock or any other asset
trading on the stock market is a multifractal process with fat
tails and long-term dependency. Assumption about
multifractal behaviour of stock indexes goes to the late 1990s
and is based on Multifractal Model of Asset Return (MMAR),
which was maintained by B. Mandelbrot, L. Calvet and A.
Fisher. The Multifractal Model of Asset Returns (MMAR)
provides the price of the asset by compounding a Fractional
Brownian Model with a Trading Time. The Trading Time is a
multifractal deformation of the time.

In accordance with MMAR stochastic process X(t) is called
multifractal, if it has stationary increments and it satisfies:

E[(s(t))?] = c(q) - 79", @)

where: t — the time;

q — some non negative number, qe[0,1];

T — the local scaling exponent;

s — the stochastic process, (signal);

¢ — the moment coefficient, independent of't. [3]
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In order to satisfy equation and estimate the local scaling
exponent of financial time series data t Wavelet Transform
Modulus Maxima (WTMM) approach is used. WTMM is a
very advantageous approach for local scaling exponent
estimation that allows building of the local scaling exponential
function t(q) for both: positive and negative ¢ values.

III. DATA MINING AND PRE-PROCESSING

For local scaling exponent estimation in case of financial
time series, first of all, time series or the so-called signal
should be represented in log-scale, e.g. in natural logarithmic
scale in accordance with a formula:

s(@0)=In(P,y, (). @
where:  s(t) — the (pre-processed) signal;

t — the time at which the signal is recorded;
P.1ose — the market closing price.

There is one question under discussion, which price in the
market bears more information in it. The authors consider
closing prices to be suitable for local scaling exponent
estimation.

IV. WAVELET ANALYSIS

Direct Continuous Wavelet Transform (Direct CWT)
procedure is implemented by a formula:

o )
W(a,b) = ﬁ 3 (y/(%) - s(t)jdt

W — the wavelet coefficient(s);

a — the scaling parameter;

b — the shift parameter;

s — the signal;

t — the time at which the signal is recorded;

T — maximal time value;

v (a,b,t) — the mother wavelet (mother wavelet
function).

where:

A. Scaling Parameter

Scaling parameter a is representative for ae[1,T/2) , but
there is an opinion, that scaling parameter a used in WITMM
approach is limited: @ <128 [4]. The authors consider the
most informative scaling parameters should be in interval
a €[1,T/2], but in order to reduce calculation time, scaling
parameters can be in interval @ €[1,7'/4]. Consider that it is
not advisable to calculate wavelet coefficients for large scales,
which do not hold local maxima lines, because maximal scales
are dependent on local maxima lines. However, local maxima
lines are calculated using wavelet coefficients. To detect
maximal scales, the authors propose “spy” local maxima lines
for some scales.

The aim of “spy” algorithm is to detect number of local
maxima lines at selective scales. Scale number is increased
(using some step) until the number of local maxima lines at
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current scale reaches some minimal limit (default minimal
number of local maxima lines, or percent of local maxima
lines at the first scale (a = 1).

Nlemx . =Y LCMX , 4)
min a ,b
b max
(1-P)-In(SLCMX, ;)

— b
Nlcmxmin =sup({truncatde ), N def H,

NlemXpi, — the minimal limit (minimal number) of
local maxima lines;

Nger — the default minimal number of local maxima
lines;

LcMx — the wavelet skeleton function;

a — the scaling parameter;

Amax — the maximal scaling parameter;

b — the shift parameter;

P — the percentage of local maxima lines considered.

where:

In the current algorithm, a minimal limit number is found,
using exponential interpolation. Consider, the percentage of
used local maxima lines at the first scale (@ = 1) is equal to 0,
but the percentage of used local maxima lines at the last scale
(first such scale, when a number of local maxima lines reaches
1) is equal to 100; consequently, minimal limit number, at
certain percent of used local maxima lines, is found using
exponential interpolation (by increasing scale, the number of
local maxima lines decreases exponentially).

B. Shift Parameter b and Mother Wavelet Function v

Shift parameter b is limited b<T , because shifting
parameter b cannot be greater than time 7, at which the signal
is recorded. For detailed exploration of Direct CWT with
numerical examples in MathCad, see resource [5].

Typical mother wavelet functions used for WTMM
approach are MHAT (Mexican Hat) and Wave (first order
Gauss wavelet).

Wave mother wavelet function is considered in a formula:

R (5)
y(t)y=-t-e 2,
where:  y — the Wave mother wavelet function;
t — the time at which the signal is recorded.[6]

MHAT mother wavelet function is as follows:

s (6)
p()=(1-1")-e 2,
where:  y — the Wave mother wavelet function;
t — the time at which the signal is recorded.[7]

There are many other mother wavelet functions, which are
not described here because of complexity of exploration.
Many authors consider better results of WTMM approach to
be afforded using Wave mother wavelet function [8, 9]. The
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authors consider Daubechies and Morlet mother wavelet
function also to be appropriate for WTMM approach.

Direct CWT provides wavelet coefficients W(a,b), which
can be written in a matrix form:

w @

wp =W(a,b)|(a,be N)A(ae[l,an, ) A (be[LT]),
W(a,b) — the wavelet coefficients;
a — the scaling parameter;
amax — the maximal scaling parameter;
b — the shift parameter;
T — the signal length.

where:

Also the absolute wavelet coefficient matrix is used, which
can be calculated using a formula:

w4 b= W@b)? |(@beN)A(aella_ DAbELT]. ®)

Squared wavelet coefficient matrix also has sense in the
context of wavelet skeleton. This matrix is calculated by a
formula:

W, =W(a,b))* |(a,be N)A(ae [Lapa DA B e[L,T]), ©)

where:  W*! — the squared wavelet coefficients matrix;
W(a,b) — the wavelet coefficients;

a — the scaling parameter;

Amax — the maximal scaling parameter;

b — the shift parameter;

T — the signal length.

Wavelet coefficient (usually absolute wavelet coefficient)
matrix is displayed as 3D graph projection on ¢ ®45 space.
Also, in generated output plot wavelet coefficients are
coloured by their absolute values.

C. Skeleton Construction

Wavelet Skeleton is an aggregate of all Local Maxima
Lines (LML) on each scale of Wavelet coefficient matrix. The
idea of Skeleton matrix construction is to remove all wavelet
coefficients in absolute wavelet coefficients matrix that are not
maximal. In this way, in Skeleton matrix there are only those
absolute wavelet coefficients that belong to local maxima
lines.

Next skeleton function (LcMx) is considered:

| oW @by _, (10)
LeMx ;= ob
a,b 2
0] ﬁ(w _0)

Under the conditions:

(a,beN)a(aellan, DAbe[LT]
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LcMx — the wavelet skeleton function;
W(a,b) — the wavelet coefficients;

a — the scaling parameter;

amax — the maximal scaling parameter;
b — the shift parameter;

T — the signal length.[10]

where:

Wavelet Skeleton function can be written in a matrix form
by an equation:

LeMx,, = LeMx(a,b) | ...
w(a,beN)A(ae[l,a

(11)
max DA (D €[L,T]),
LcMx — the wavelet skeleton function;

a — the scaling parameter;

amax — the maximal scaling parameter;

b — the shift parameter;

T — the signal length.

where:

Usually Skeleton function in a matrix form is calculated
from squared wavelet coefficients matrix by a formula:

12
1 | (qua,b+l - qua,b) <& (12)

LCMX p = 5
@ O|(W¥ qpu1 =W p) > &

Under the conditions:
(aab € N) A ({1 € [laamax]) N (b € [LT _1]

LcMx — the wavelet skeleton function;
a — the scaling parameter;

amax — the maximal scaling parameter;
b — the shift parameter;

T — the signal length.

where:

Skeleton matrix is a scope of all local maxima points that
exist on each scale a. In fact, skeleton function is a logical
function, that has only two variables {0,1}. One is used if
Skeleton matrix element is local maximum, zero — otherwise.
Skeleton matrix 3D graph projection on @ ®b space
resembles the map, where Local Maxima Lines (LML) are
notched.

For skeleton function construction in Matlab environment,
build-in function localmax is used, which is improved in
Matlab code. Full code is available in the article [11].

LML Matrix “corners” LeMx, ,, | (T —a <b)v (b<a) need
to be cleared (ignored) in skeleton. Consider, wavelet
coefficients on corners provide little information;
consequently, local maxima lines on corners should be
removed, see formula:

oW (a, b))’ (13)
1 Q@D o) (a<b<T-a)
LCM)C b: ab 5
a’ b
0BT r iz
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Under the conditions:
(a,be N)A(ae [l,amaX])/\(b e[1,T]

where:  LcMx — the wavelet skeleton function;
a — the scaling parameter;

amax — the maximal scaling parameter;
b — the shift parameter;

T — the signal length.

Skeleton matrix points generate ‘broken LML’. In order to
obtain quick results for “dirty” wavelet modulus maxima
coefficients, use the following formula:

WIMM™ oy =Wy - LMy, ,,

Under the conditions:

(a,be N)n(ae]l DA e[, T-1]

> amax
WTMM™! — the “dirty” wavelet modulus maxima
coefficients (fast algorithm);

LcMx — the wavelet skeleton function;

where:

W _ the absolute wavelet coefficients matrix;
a — the scaling parameter;

amax — the maximal scaling parameter;

b — the shift parameter;

T — the signal length.

Fast algorithm of WTMM approach has one disadvantage,
LML is broken that impacts Fractal Partition Function
construction.

The latest methods in WTMM approach expect that
Wavelet coefficients grow consequently on LML: by
increasing the scaling parameter a Vb,al <a2<a,,, almost
everywhere wavelet coefficients increase
W (a1,b)| < [ (a2,b)| < [ (a,,, )| - However, in some points of
broken LML, LeMx = 0, consequently  WTMM™!'- = 0.

In order to prevent this case, in WTMM approach the
following procedures are used:

1) remove all “gaps” in LcMx matrix;

2)trace whether wavelet modulus coefficients on LML

X

grow  consequently  with  scaling  parameter a:
Vb,al < a2 < a,, almost everywhere
W (al,b)| < [ (a2,b)| <|W (@) -

In fact, the last two procedures are the darkest sides of
WTMM approach in literature. There is supremum formula for
fractal partition function calculation.

(15)
Zya= Y. (sup|W(a.p)’.

leL(a) ?2;1

Under the conditions:

(a,beN)yA(aelan DA Be[l,T-1]

where:  Z — the fractal partition function;

W(a,b) — the wavelet coefficients;

a — the scaling parameter;

amax — the maximal scaling parameter;

b — the shift parameter;

T — the signal length;

1 — the local maxima line (LML);

L(a) — the scope of all local maxima lines that exist
on scale a;

q — the power indicator — a certain number, e.g.

g €[-5,5]- See [12].

This formula suggests that for fractal partition function
calculation those absolute wavelet coefficients should be
taken, which:

1) lie on LML (LML / exists on g'e[l,4] ), and

2)are maximum, which exist on LML (LML exist on
a'e[l,al)

3) exist on decent LML (LML exists on a'e[l,a] ), if a
decent absolute wavelet coefficient is not maximal on this
LML.

In general, this formula is not described analytically in
literature. Most programming codes used for exploration of
WTMM do not use “supremum algorithm” at all. Most of
them use fast algorithm with “dirty” wavelet modulus maxima
coefficients [13].

Supremum algorithms in practice are very sophisticated,
because skeleton does not contain local maxima lines in the
true sense of the word: it has disconnected broken lines and
single points. Actually it is difficult to assume how one
skeleton point or broken line is related to another broken line
or point. This is a very hard programming task, which is
arduous for narration in mathematical language. Instead,
Matlab code is represented [11].

When “dirty” wavelet modulus maxima coefficients are
found, one more additional procedure should be established —
probability normalization condition. This condition is directly
concerned with Multifractal formalism procedure. Absolute
wavelet coefficient normalization formulas are the following:

T-1 (16)
AC(a): Y (Cla)-WTMM,, ;) =1,
b=1
r-1 (17)
C(a)- Y WTMM ,, =1,
b=1
(18)
1 T-1
Cl@)=77—= (z WTMM ;)"
wIiMM,, "
b=1

Under the conditions

(a,be N)a(ae]l DAe[l,T-1]

4 amax
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where:  WTMM - the wavelet modulus maxima
coefficients;
C(a) — the constant depending on scaling parameter
a,

a — the scaling parameter;

Amax — the maximal scaling parameter;
b — the shift parameter;

T — the signal length.

Absolute wavelet coefficient normalization procedure
usually is not implemented in WTMM approach, but the
authors consider it should be implemented in order to provide
analyzable results from the point of view of Multifractal
formalism.

Next, the supremum algorithm should be preceded. It
consists of seven main steps:

1) Define matches (relations between single local maxima

points)

2) Define match conflicting (one cell to more) and non-

conflicting cases;

3) Create chains from pairs;

4) Chain interpolation (to fill

coefficients on WTMM line);

5) Add points to LCMX map (on line gaps);

6) Add single points to LCMX map;

7) Change variables (in the end).

Supremum algorithm (code) is represented in the scientific
journal [14], but here only main steps are indicated.

After this step, Multifractal formalism (MfF) should be
applied to WTMM approach implementation.

missing wavelet

V.MULTIFRACTAL FORMALISM PART

Multifractal Formalism (MfF) procedure is part of WTMM
approach and consists of the following steps:

1. Thermodynamic partition function estimation (Fractal
Partition Function calculation);

2. Scaling exponential function
Generating Function calculation);

3. Multifractal spectrum estimation.

Here and further the MfF algorithm is considered:

estimation (Moment

D. Thermodynamic Partition Function Estimation

Thermodynamic partition function is based on ‘generalized’
partition function consideration. Wavelet modulus maxima
coefficients are akin to probability measure in the so-called
‘generalized’ partition function.

Thermodynamic partition function is the following:

r-1 (19)
Z(q,a)= Z(C(a) WIMM, )" | ~(WTMM,, =0),
b=1

where:  Z (q,a) — the thermodynamic partition function

WTMM - the wavelet modulus maxima

coefficients;
C(a) — the constant depending on scaling parameter
a,

a — the scaling parameter;
q — the exponential number, for example, ¢ <[-5,5].
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Thermodynamic partition function is a function of two
arguments - scaling parameter a and power argument g. Power
argument ¢ is the set of zero-mean numbers (exponential
number, for example in interval g€[-55]) that indicate
presence of wavelet modulus maxima coefficients of different
values: the presence of relatively small wavelet modulus
maxima coefficients WTMM — 0 is detectable with large Z
values in case of negative g values ¢ < 0 ; and the presence
of relatively large wavelet modulus maxima coefficients is
detectable with large Z values Z — o« in case of positive g
values g > 0.

Scaling parameter @ is an argument of thermodynamic
partition function that, by its nature, is the scaling “etalon” for
thermodynamic partition function value. Interdependence
between thermodynamic partition function value and scaling
parameter a discovers the scalability of signal. That is a key
moment in the WTMM approach.

Thermodynamic partition function is finite if wavelet
modulus maxima coefficients are not equal to zero:
—(WTM%,;, =0) . In order to satisfy condition all zero
coefficients should be neglected in wavelet modulus maxima
matrix WTMM. The origin of zero coefficients in wavelet
modulus maxima matrix is in LcMx wavelet skeleton function
— all elements in Skeleton matrix that are not local maxima are
zero valued elements. Taking into account the previous
statement, thermodynamic partition function can be written as
follows:

T-1 (20)
Z(g.a)= Y (Ca)-WIMM ;)" | (LeMx, , = 1),

b=l
where:  Z(g,a) — the thermodynamic partition function
WTMM — the wavelet modulus maxima
coefficients;
LcMx — the wavelet skeleton function;
C(a) — the constant depending on scaling parameter;
a — the scaling parameter;
q — the exponential number, for example 4 [-5,5].

In order to discover the scalability of signal, scaling
exponential function will be considered in the next section.

E. Scaling Exponential Function Estimation

Scaling exponential function is one argument function, that
indicate interdependence between thermodynamic partition
function Z and scaling parameter a. Scaling exponential
function is calculated as the slope between thermodynamic
partition function Z and scaling parameter a by formula:

In(Z(q.a) @D

7(q) = lim In(a)

a—0

b

where:  Z(g,a) — the thermodynamic partition function
T — the local scaling exponent;
a — the scaling parameter;

q — the exponential number, e.g. g € [-5,5] . See [15]
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The previous formula can be expanded to: then:
2 (x(a)- y(q,a)) (22) @7)
(q) = “max D logi(a) D In(Z(g,a)
wa= Se@? > (loge (@) == In(Z(g,a)) = =)
“max = D log; () ;
, D (log (a)— 22—y’
wnere. Aa max
> In(Z(g.a) (23) Or:
J’(Qa a) = hl(Z(q’a)) - a=l—a
28
> (x(a)- ¥(q.a)) 28)
amax
i (24) w(q)= 3
2 nta) 3 (x(@)
x(a) =In(a) - ”’a , G
under the conditions: where:
(aeN)A(ae[l,am,]) Zln(Z(q,a)
— 1 Z _ Amax .
see: 1 - the local scaling exponent; (g,a) = In(Z(q,a)) A ax ’ (29)
Z (q,a) — the thermodynamic partition function i
a — the scaling parameter; Z In(a™)
amax — the maximal scaling parameter; x(a) = In( ak) _ Ymax .
g — the exponential number, e.g. 4 [-5,5]. max ’

Scaling exponential function is non-decreasing function that
indicates the scalability of signal. There are two main cases:
mono- and multifractal. In monofractal case, the scaling
exponential function is linear. In multifractal case, the scaling
exponential function is everywhere convex.

There is one interesting property to be considered with
Scaling exponential function:

7(0)+1=0 (25)

where:  t — the local scaling exponent.

This condition is essential for Multifractal spectrum
estimation. In fact, this condition is satisfied not in all cases,
for example, in case of financial time series analysis. For this
reason, the authors offer the following formula:

(26)
Jk,7(0)+1=0,
Z log, (a) Z In(Z(0,a)
D (og (@)= = ———In(Z(0,a)) - ™)
amax amax
7(0) = = =-1

> " logy(a)

D (log (a) = “==—)?
“ a

max

Let:

k=-7(0)

under the conditions:

(aeN)n(aell,any])

see: T — the local scaling exponent;
Z(q,a) — the thermodynamic partition function
a — the scaling parameter;
amax — the maximal scaling parameter;

g — the exponential number, e.g. g € [-5,5].

This transformation is beneficial for scaling exponential
function estimation in case if —(z(0)+1=0) . After
transformation, this essential condition is satisfied.

Estimated scaling exponential function is used for MMAR
stochastic process simulation that satisfies equation (1).

F. Multifractal Spectrum Function Estimation

Multifractal formalism uses multifractal spectrum for the
detailed fractal analysis of the signal. Multifractal spectrum
function shows the scope of all fractal measures. Multifractal
spectrum function is calculated from scaling exponential
function via Legendre transformation by formula:

(30)
0
h=h(q)= —g(qq) ,

D(h) = iI;f(q h=1(q)),
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where: D — the multifractal spectrum; Hang Seng Index HSI 1986.XI1 | 2012.VI [27]
h —the Holder exponent; NIKKEI225 Index Nikkei225 | 19841 | 2012.VI | [28]
T — the local scqlmg exponent; Straits Times Index o
g — the exponential number, e.g. g € [-5,5] . [16] {Singapore} STI 1988.1 2012.VI (291
Philippine Stock Exchange PSEI [30]
In case of monofractal signal, the multifractal spectrum | Index 2000.1 2012.VI
function transforms to a single point (4, 1), but in case of | BSE India Sensex 30
: : - on Ind BSESN | 1997.vir | 2012v1 | Bl
multifractal signal, the multifractal spectrum function is bell- | 11deX : :

shaped function, whose branches are directed downwards.
Multifractal spectrum function maximum point is (b, /). In
both cases: mono- and multifractal h is Holder exponent,
which indicates the most typical measure of fractal.

Multifractal spectrum can be approximated by a
polynomial. Multifractal spectrum is approximated with 4th
degree polynomial:

4 31
D(hy=">> k;- I,
i=0
where: D — the multifractal spectrum;
h — the Holder exponent;
k — the polynomial coefficients;

i — the polynomial coefficient index i = 0.1,...4
[17].

For all algorithms mentioned here, Matlab codes are
provided, see [18, 19].

VI. STOCK INDEX MULTIFRACTAL ANALYSIS

Here and further, the stock index multifractal analysis is
performed using WTMM.

For current research, decent stock market closing prices
have been taken. It is assumed that closing prices are the most
representative, because most of deals are done by institutional
investors at the end of trading day. However, there are also
opinions expressed in some studies that intraday prices are
more representative for time series research. Most of indexes
are considered for the whole available period of time; see the
table data (the Dow Jones Industrial Index has been taken into
account only since 1980 because of large computations.)

TABLE I
DATA ON RESEARCH OBJECTS

Data available -
Index name Code Refe
from to rence
IBEX35 Index IBEX35 1993.VII | 2012.VI [20]
DAX30 Index DAX30 1990.X1 2012.VI [21]
Swiss Market Index SMI 1990.X1 2012.VI [22]
CAC40 Index CAC40 1990.111 2012.VI [23]
FTSE100 Index FTSE 1984.1V 2012.V1I [24]
Dow Jones Industrial DIIA 19801 2012.VI [25]
Index
Amsterdam Exchange AEX 1992.X 2012.V1 [26]
Index
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Here and further, the stock index multifractal analysis
algorithm is exemplified by DAX30 Index. The first index
data are represented in log-scale, see Fig. 1.

DAX30 index
Signal data

Index value (in lg scale)

I I i
021999 102001 06.2004 10.2009

Time, mm.yyyy

3.1
111990 08.1993  05.1996 02.2007 06.2012

Fig. 1. DAX30 index data (represented in log-scale)

Direct Continuous Wavelet transform is illustrated in Fig. 2.

DAX30 index

Continuous Wavelet Transform
641

601
561
521
481
441
401
361
31

Scales, a

281
241
201
161

121
10

41

1 683 1365 2047 2729 34n 4093 4778 5457

Time shifting, b

Fig. 2. DAX30 index continuous wavelet transform

DAX30 index continuous wavelet transform shows wavelet
coefficients in decent shifting and scale parameters. Wavelet
coefficients matrix can be represented in a three-dimensional
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graph, but it can also be represented as wavelet coefficient DAX30 index
T . . Thermodinamics partition function
projection onto the plane formed by the shift and scaling iy
parameters as it is implemented here. Wavelet coefficients are e =] ],\ *\\
shown in their absolute values and coloured in accordance T “"”:-A,jw bt N
with colour bar. Dark colours correspond to lower absolute R ‘. ﬁ.‘ M o - ?‘\.\\
. . . . . ™ H It [
wavelet coefficient values. Light colours indicate higher g o N " T
absolute wavelet coefficient values. Wavelet coefficient 27 A EE
matrix allows LML selection or Skeleton function £ i |H.r‘\
. . 10 ;
construction, see Fig. 3. 2 L m"[
5 k\\lﬂiﬂw-v f
£ il S
£ WW I : .
DAX30 index £ ) 7 o e
Wavelet Transform Modulus Maxima lines = AlL i i e e "“\_
641 ‘ ‘ .5 » - o,
.5P i H 4 P I gl EN
{ i { e T ) ; ey
561 r \‘ ; -1 U\X\ D™ j e iy - 81
N P e
481 }Q f b 3 \\\ " e ‘(431 o
! i 4 S s
i f I Seal
i ; y Scales, a
f q values
i
f
{

TR IR
|r it
2047
Time shifting, b

Fig. 3. DAX30 index skeleton function

Local maxima lines are constructed using Wavelet
coefficient matrix, selecting local maxima points on each scale
parameter. The scope of all local maxima lines builds the so-
called Skeleton function. This function illuminates periodicity
of the signal on decent scales. Naturally, stock indexes show
periodicity affected by population cycles, economic cycles,
moon cycles, stock exchange cycles and events. In general, the
skeleton function shows the scalability of the signal. Local
maxima lines are designed to select the skeleton (basics of
wavelet coefficient matrix) in order to simplify multifractal
analysis in the whole wavelet coefficient matrix to multifractal
analysis within wavelet coefficients on the skeleton.

Since DAX30 index skeleton is  constructed,
thermodynamic partition function is estimated (see Fig. 4).

DAX30 index thermodynamic partition function is a three-
dimensional graph — function of two arguments — scaling
parameter a and power argument g. Power argument ¢ is the
set of zero-mean numbers (in interval g €[-5,5] ).
Thermodynamic partition function is designed to eliminate the
presence of wavelet modulus maxima coefficients of different
values. The presence of relatively small wavelet modulus
maxima coefficients WTMM — 0 are detectable with large Z
values Z — oo in case of negative g values ¢ <0 ; and the
presence of relatively large wavelet modulus maxima
coefficients are detectable with large Z values Z —» o0 in
case of positive ¢ valuesg > 0 .

Fig. 4. DAX30 index thermodynamic partition function

Interdependence between thermodynamic partition function
value and scaling parameter a discovers the scalability of
signal. In order to discover the scalability of DAX30 index,
local scaling exponential function is represented in Fig. 5.

DAX30 index scaling exponential function is everywhere
convex that indicates multifractal behaviour of the index.
Multifractal behaviour of stock index assumes that the index
does not have some decent fractal measure, but is
characterized by the scope of fractal measures. In case of
monofractal behaviour, the scaling exponential function is
line.

DAX30 index
Scaling exponent (tau)
T T T T
s |
ik =
ok ]
= -1 E
g
£
g 2t
-3
-
v
o 30 1
=
- |
8 4 -
@
sk b
6}
Ak 4
i | i i L i | . i
-5 -4 3 -2 -1 0 1 2 3 4 s
q values

Fig. 5. DAX30 index local scaling exponential function

For detailed DAX30 index multifractal analysis, its
multifractal spectrum is presented in Fig. 6.
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DAX30 index
Multifractal spectrum estimation
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Fig. 6. DAX30 index multifractal
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spectrum estimation (polynomial

DAX30 index multifractal spectrum is bell-shaped function,
whose branches are directed downwards, with high
correlation; multifractal spectrum function is approximated
with a 4th degree polynomial.

All steps of WTMM approach are performed for all objects
of experiment. Multifractal spectra are approximated with a
4th degree polynomial, using (31).

Estimated multifractal spectra are analyzed in cross-
correlation matrix using Pearson correlation coefficients.

VII. RESULTS

1. According to the multifractal analysis, all research
objects demonstrate strong multifractal behaviour. Polynomial
coefficients of multifractal spectrum approximations are
shown in Table II.

2. Most typical fractal measures are discovered by hy value.
This value shows the typical fractal measure of signal — higher
hy values, which indicate anti-persistent properties, but lower
values indicate the presence of fractal properties of time
series, consequently, indicate persistent or trend sustained
properties of time series. Spectrum maxima (h, indicator) for
all indexes are about 0.77, 0.63</,<0.89 that indicate the
presence of fractal properties of time series consequently that
shows persistent or trend sustainable properties of indexes.

3. Fuzziness of the multifractal spectrum implies how
regular a fractal is; if fuzziness of multifractal spectrum is low,
fractal is quite regular. Fuzziness of the multifractal spectrum
is indicated with Ah indicator; higher Ah indicators (A% >1)

are demonstrated by IBEX35 index, Hang Seng index, Straits
Times Index {Singapore}. Lower Ah indicators are
demonstrated by FTSE100 index and NIKKEI225 index.
FTSE100 index and NIKKEI225 have more regular fractal
properties, but IBEX35 index, Hang Seng index, Straits Times
Index {Singapore} contain a wide scope of fractal measures.
4. Fuzziness of the multifractal spectrum is indicated also
with higher k4 polynomial coefficient. Higher k4 polynomial
coefficients k&, <—-2.5 are demonstrated by Straits Times
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TABLE I

MULTIFRACTAL SPECTRUM APPROXIMATION WITH QUADRATIC FUNCTION,
COEFFICIENTS AND SPECTRUM MAXIMA

Index Polynomial coefficients
code K ks K K K
IBEX35 -2.17 10.83 | -20.89 17.48 | -4.29
DAX30 -6.52 29.83 | -51.79 39.42 | -10.00
SMI -5.42 24.17 | -42.42 33.25 | -8.64
CAC40 -6.21 28.52 | -49.70 38.19 | -9.83
FTSE100 -16.52 | 67.11 | -103.02 | 69.49 | -16.26
DIIA -7.75 32.89 | -52.18 35.65 | -7.80
AEX 2.68 | 11.33 | -19.53 | 15.12 | -3.31
HSI -2.54 10.59 | -17.52 12.78 | -2.40
NIKKEI225 | -16.41 | 62.61 | -88.39 53.69 | -10.76
STI -2.10 8.03 -12.65 9.00 -1.37
PSEI -2.08 10.78 | -21.93 17.45 | -3.70
BSESN 0.34 1.14 -1.72 8.31 -1.53
Index {Singapore}, Philippines Stock Exchange Index,

IBEX35 index and Hang Seng index. In fact, it is difficult to
make any conclusion about fuzziness of the multifractal
spectrum by k4 polynomial coefficient because correlation
between multifractal spectrum and its approximation should
be taken into account. In lower approximation correlation
case, Ah indicator should be helpful. However, the presence of
both higher polynomial coefficient k4 and higher Ah indicator
clearly proves the fuzziness of multifractal spectrum, e.g. for
Straits Times Index {Singapore}, IBEX35 index and Hang
Seng index.

TABLE III
MULTIFRACTAL SPECTRUM FUZINESS AND MAXIMA

Index Holder exponent

code ho Binin B Ah
IBEX35 0.89 0.46 1.80 1.34
DAX30 0.85 0.58 1.53 0.95
SMI 0.88 0.57 1.46 0.89
CAC40 0.89 0.61 1.60 0.99
FTSE100 0.74 0.55 1.32 0.77
DIIA 0.70 0.49 1.49 1.01
AEX 0.85 0.44 1.52 1.08
HSI 0.80 0.34 1.60 1.26
NIKKEI225 0.59 0.50 1.35 0.85
STI 0.75 0.25 1.52 1.27
PSEI 0.64 0.39 1.15 0.76
BSESN 0.63 0.27 1.10 0.83
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Analogically’ the presence of both lower polynomial [2] Wavelet transform modulus maxima method. [Online]. Available:

coefficient k, and lower Ah at the same time indicate regularity Egg/[/:lcxsks?;iif rji/lv;%/g ?Velet*tmmform*modulusfmamma*met

of fractal properties, e.g. for FTSE100 index and NIKKEI225. [3] B. Mandelbrot. A Multifractal Model of Asset Returns. [Online]

Cross-correlation research results are shown in Table I'V. Available:
http://users.math.yale.edu/mandelbrot/web_pdfs/Cowles1164.pdf.
TABLE IV [Accessed on 1 July 2012.]
MULTIFRACTAL SPECTRA CROSS-CORRELATION MATRIX (IN PERCENTAGE) [4] A. Ilasnos, C. Amnmmenko. MynbTu(pakTaibHBIi aHAIM3 CIOKHBIX
- CUTHAJIOB. [Online] Available:
“ o - = N http://chaos.sgu.ru/~pavlov/papers/r078c.pdf. [Accessed on 1 July
¥ < S ) = =< é 2 a‘ 2012.]
g <QC %) 5 @ a < = v, [5] A. fIxoBnes. Benenue B BeliBner-npeodpasoBanus. [Online] Available:
- = Z http://window.edu.ru/resource/328/29328/files/nstu68.pdf. [Accessed on
1 July 2012.]
DAX30 [6] A Tutorial of the Wavelet Transform. [Online] Available:
SMI (212)5{)2.e]e.ntu.edu.tw/tutorial/WaveletTutorial.pdf.[Accessed on 1 April
CAC40 [77 A Tutorial of the Wavelet Transform. [Online] Available:
FTSE100 93.5 disp.ee.ntu.edu.tw/tutorial/ WaveletTutorial.pdf.[Accessed on 1 April
2012.]
DJIA 94.7 92.3 [8] A. IlaBnoB, C. Axmmenko. MynbTH(paKTaTbHBIA aHAIH3 CIOMKHBIX
AEX 91.3 | 893 | 944 | 86.2 CHUTHAJIOB. [Online] Available:
HSI 837 | 814 | 88.0 | 773 | 942 | 945 }213;1):2//]chaos.sgu.ru/~pavlov/papers/r078c.pdf. [Accessed on 1 July

NIKKEI | 793 | 77.7 | 84.3 | 73.5 | 92.8 | 92.8 [9] Multifractal formalism for fractal signals: The structure-function

approach versus the wavelet-transform modulus-maxima method.

STI 63.6 | 60.2 | 70.0 | 549 | 80.1 | 80.4 | 89.6 94.6 ; . :
[Online] Available: www.wstein.org. [Accessed on 1 July 2012.]
PSEI 42.4 | 39.1 | 492 | 32.7 | 623 | 653 | 74.1 | 84.2 | 83.2 |[10] A Comparison of Continuous Wavelet Transform and Modulus Maxima
BSESN 176 | 139 | 251 | 7.1 397 | 433 | 545 | 675 | 66.6 Analysis of Characteristic ECG Features. [Online] Available:
http://www.cinc.org/archives/2005/pdf/0755.pdf. [Accessed on 1 July
. . . . 2012.]
According to multifractal spectrum cross-correlation matrix,  [11] A. Puckovs. Wavelet analysis in Wavelet Transform Modulus Maxima
almost all research objects prove very strong correlation in Approac}:i. Availablg: http://jurnal.org/articles/2012/ekon52.html.
: H : . : . [Accessed on 1 September 2012.]
multlfraCta,ll spectra (ASIan ex small H,lqe%(es‘ Straits Tlmés [12] Wavelet-based multifractal analysis. [Online] Available:
Index {Slngapore}, PSEI Index {Phlhplnes}, BSE India http://www.scholarpedia.org/article/Waveletbased_multifractal analysis.
Sensex 30 Index). All indexes can be roughly divided into [Accessed on 1 July 2012.]

three main groups: European indexes (D AX30 Index. Swiss [13] Mallat's fast wavelet algorithm: recursive computation ofcontinuous-
. b

time wavelet coefficients. [Online] Available:
Market Index, CAC40 Index, FTSE100 Index), Global group http://web.eecs.umich.edu/~aey/eecs551/lectures/mallat.pdf. [Accessed

including European indexes and Dow Jones Industrial Index, on 1 July 2012.]
Amsterdam Exchange Index, Hang Seng Index, NIKKEI225 [14] A.Puckovs. Wavelet analysis in Wavelet Transform Modulus Maxima

. . . Approach. Availabel: http://jurnal.org/articles/2012/ekon52.html.
Index, and Asian indexes (BSE India Sensex 30 Index, PSEI [Accessed on 1 September 2012.]

Index {Philipines}, Straits Times Index {Singapore}, Hang [15] TI.B.Koponenko, M.C.MaranoBa, A.B.MecusukuH. Hosayuonmule
Seng Index, NIKKEI225 Index). Some of these indexes are Memoobl aHAIU3A CMOXACMUYECKUX NPOYECcos U CIPYKMyp 6 OnmuKe.

: . : @Dpakmaneuvle U MYIbMUGpPAKmManbhble  Memoovl,  Geusien-
included in various groups. npeobpaszosanus. — M.: 2004 - 81 ctp. —41. cTp.

Although all indexes are represented for various periods of  [16] O.1.IlIenyxun. Mynomugppaxmani. Hngpoxomynuxayuoni
time, multifractal spectrum cross-correlation matrix can npunodicenusi. — M.: Topsauas yunusa Tenexom, 2011.r. 576 crp. — 24.
. . . . oD,
classify .stock indexes by tl.lelr fra(.:tal pr.opertles..Suppose, (7] Porl)ynomial. [(Online] Available:
related indexes are very similar in their behaviour: that http://en.wikipedia.org/wiki/Polynomial. [Accessed on 1 July 2012.]
assumes an ‘ability’ to fix, hold and maintain market [18] A.Puckovs. Wavelet analysis in Wavelet Transform Modulus Maxima
information in a ‘certain way’. Practically, it means that all Approach. Available: http://jurnal.org/articles/2012/ekon52.html.

ind interd dent. olobal d " inel [Accessed on 1 September 2012.]
Indexes are interdependent, global and operale as a single [19] A.Puckovs. Multifractal formalism in Wavelet Transform Modulus

organism. Maxima Approach. Available:
http://jurnal.org/articles/2012/ekon53.html. [Accessed on 1 September
2012.]
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Andrejs Pu¢kovs, Andrejs Matvejevs. Veivlet parveidojumu modulu maksimumu pieeja pasaules akciju indeksu multifraktalu analizei

Si raksta mérkis ir nodrosinat pieeju, kas spgj izpétit atSkiribas pasaules akciju indeksu multifraktalu spektros. ST pieeja ir spgjiga noteikt at3kiribas multifraktalu
uzvediba dazadiem pasaules akciju indeksiem. ST pieeja ir piemérota Eiropas un Azijas akciju indeksu prognozé$anai un imitacijas modelésanai. Multifraktala
analize ir istenota, izmantojot ta saucamo veivlet parveidojumu modulu maksimumu pieeju, kas ietver sevi divus galvenos aspektus: veivlet analizi un
multifraktalu algoritmu. Veivlet parveidojumu moduju maksimumu pieeja ir metode, kas atklaj signala fraktalu méru. ST raksta seciba ir sekojoSa: vispirms ir
apliikotas pasaules akciju indeksu multifraktalitates pamati un konstruéts aktivu ienesiguma multifraktalu modelis, otraja soli ir izklastita sakotngjo datu
apstrades procediira, péc tam tiek aplikoti divi veivlet parveidojumu modulu maksimumu pieejas aspekti (veivlet analize un multifraktalu algoritms). Péc tam
veivlet parveidojumu modulu maksimumu pieeja ir izklastita saistiba ar pasaules akciju indeksiem uz Vacijas DAX30 akciju indeksa piemeéra. Par eksperimenta
objektiem ir kluvusi 12 pasaules akciju indeksi: IBEX35 index, DAX30 index, Swiss Market Index, CAC40 index, FTSE100 index, Dow Jones Industrial index,
Amsterdam Exchange index, Hang Seng index, NIKKEI225 index, Straits Times Index {Singapore}, Philippines Stock Exchange Index, BSE India Sensex 30
Index. Indeksi ir analizéti par pédgjiem 20 gadiem. P&c akciju indeksu multifraktalu analizes rezultatiem, visi p&tamie objekti demonstré stingri izteiktu
multifraktalu uzvedibu, kas norada uz dazadu fraktalu méru esamibu. P&tfjuma tika atklati tipiskie fraktalu meri, ka arT multifraktalu spektru nobides. Tapat ir
izpétita akciju indeksu multifraktalu spektru korelacija. Pétama metode lauj atklat indeksu lidzigu uzvedibu, kas nozimé spgju fiksét, turét un glabat tirgus
informaciju "noteikta veida".

Amnpapeii ITyukos, Anapeii MaTeeeB. MeTo Moy /1eii MAKCHMYMOB BeiiBjieT KO3 (PUIMEHTOB 1Jisl My IbTH(PAKTAILHOI0 aHAIN32 (POHIOBBIX HHIEKCOB
JlaHHAsI cTaThs MPU3BAaHA ONPEAEIHUTH JIyUIINH MOAXO0J, KOTOPBIH OyIeT CIocOOeH BBIABUTH PAa3HUILy B MyIbTH()PAKTAIBHBIX CIEKTPAX PA3IMYHBIX OUPIKEBBIX
HHJIEKCOB. J{aHHBIM MOAXOJ IOJDKEH OBITh NPUMEHHM JUI MYJIbTH(PAKTaJbHOTO aHAIN3a U MMHTALOHHOTO MOJEIHMPOBAHUS a3MATCKUX M EBPONEHCKUX
OMPIKEBBIX MHAEKCOB. MynbTH(pPAKTANBHBIA aHAIN3 OCYIIECTBIEH C KCIOJNB30BAHUEM TaK HA3bIBAGMOIO METOJa MOJyJeil MaKCHUMyMOB BEHBIET
ko3 ¢puumentoB (Wavelet Transform Modulus Maxima), KOTOpbIi BKIIo4aeT B ce0s JIBa OCHOBHBIX ACIEKTa: BEHUBJIET aHANU3 (IIPSMOE HENPEPHIBHOE BEUBIIET
npeobpa3oBaHUe U NOCTPOCHUE CKEJIETOHA) M MyJIbTH(PAKTAIBHBIH anroput™ (QyHKIuss 0600MEHHON CTaTUHCTHYECKOH CyMMBI, (DYHKIVS MacIITaOMPOBAHUS,
dyHKUIMS MyIbTH(pPAKTAIBHOrO cHekTpa). MeToq Moayneil MakCHMyMOB BeHBIET KOI(D(UIHEHTOB SIBISIETCS METOJOM Ui ompenesieHus (pakTaibHOU
Pa3MepHOCTH curHana. B cTaTbe H37I0XKeHHE Pe3yIbTaTOB OCYIIECTBIACTCS CIELYIONMM 00pa3oM: MPEXkK/e BCET0, OCBELIAIOTCS OCHOBBI MyIbTH(HPAKTATbHOCTH
OHMpPIKEBBIX HHIEKCOB, CTPOUTCS MOJENb MyJIbTH()PAKTAIbHOI TOXOMHOCTH aKTHBOB, IOCIE Yero H3jaraercs Ipoleaypa HadalbHOW 0OpabOTKHM OHpPIKEBBIX
HHJIEKCOB, 3aTEM OCBEILAIOTCs 00a acleKkTa MeTo/1a MOyJIeil MaKCHMYMOB BeHBIIET KOO(D(GUIMEHTOB: BEUBIIET aHATIN3 U MyJIbTH(paKTanbHblil anroput™. [Tocie
9TOTO YNOMSHYTBIH METOJ HILTIOCTPUPYETCS IPHMEHUTEIBHO K MyIbTH(GPAKTaIbHOMY aHANIU3y OHpKeBBIX HHAEKCOB Ha IMpHMepe HeMelkoro uuuekca DAX30.
3aTeM ONMCHIBACTCSI CaMO HCCIIEJOBAHHE MYJIBTU()PAKTAIFHOIO aHAIN3a OHPXKEBBIX MHIEKCOB U €ro pe3yiabraThl. OOBEKTaMH HCCIECIOBAaHUS SBISIIOTCS 12
MHpOBBIX OuprkeBbIXx HHAekcoB: IBEX35 index, DAX30 index, Swiss Market Index, CAC40 index, FTSE100 index, Dow Jones Industrial index, Amsterdam
Exchange index, Hang Seng index, NIKKEI225 index, Straits Times Index {Singapore}, Philippines Stock Exchange Index, BSE India Sensex 30 Index.
WHpexcsl npoaHanu3upoBaHsl 3a nociuennue 20 ser. CoracHo pesyibrataM MyJIbTH()PAKTIBHOTO aHANIN3a, BCE aHAINM3UPYyEeMble OUpIKEBbIE HHICKCHI
JIEMOHCTPUPYIOT MYJIbTU(PAKTaIbHOE IOBEICHUE, YTO O3HA4YaeT HAIMYUE PA3IMYHBIX ()PAKTANBHBIX Pa3MEPHOCTEH OJHOBpeMEHHO. B mccienoBaHuu ObLIn
BBIBIICHBI KaK THIHYHBIC 3HAUCHHUs MyIbTH(PAKTAIBHOTO CIIEKTPa, TaK U €ro pa3MBITOCTh. Takke MPOBEICH KOPPETALMOHHBIN aHAH3 MyIbTH()PAKTaIbHBIX
CIIEKTPOB; C NOMOIIBIO Pa3pabdOTaHHOIO METOJAa MOXKHO OOHApYKHTh OUp)KEBBIE MHJIEKCH C IIOXOXKHM IOBEJCHHEM, YTO HOJAPa3yMeBaeT UX CHOCOOHOCTH
HOJTy4aTh, 00pabaThIBATh 1 XPAHUTh HH(POPMALIMIO CTPOTO OIPEACICHHBIM 00Pa30M.
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