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Abstract — This article focuses on cluster stability evaluation to
assess the characteristics of the dataset and the subclasses found
in class decomposition. The evaluation is an iterative process,
making small changes to the dataset in every step and reapplying
the cluster analysis. These small changes (removing one object
from the dataset is repeated for 20 iterations in this case) should
not have any impact on clusters if they are stable (meaning that
other objects that were not removed stay in the same clusters as
in the full clustering).
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I. INTRODUCTION

When working with biomedical microarray data, it is often
useful to learn the inner structure of the data to improve the
efficiency of classification models. This article deals with one
of the methods that can be used to learn the inner structure of
the data called the class decomposition. This method allows
learning the structure of data inside a class by analyzing high
density areas in the attribute space. These high density areas
can be interpreted as disease subtypes in the analysis of this
specific data. They can exist in the real diseases but can still
be unidentified, and therefore the subclasses can provide also
other significant information that is relevant to the medical
experts that interpret the results of data analysis.

To use the class decomposition, the data belonging to each
class should be clustered. Thus, this article focuses on the
clustering quality by analyzing stability of separate clusters.

II. DATASETS

The datasets used in experiments are provided by the
Latvian Biomedical Research and Study Centre (BMC) and
obtained from the Broad Institute website [1]. The ones
provided by BMC hold the antibody display data consisting of
1229 antibodies and the class label — a cancer patient (gastric
cancer (GaCa), gastrointestinal inflammatory disease (GIS),
prostate cancer (PrCa) or breast cancer (BrCa)) or healthy
donor. The datasets obtained from the Broad Institute
comprise cancer patient and healthy donor gene microarray
data; cancers include: breast cancer (hereinafter called BC1
and BC2), carcinoma (carc) and prostate cancer (Pr).
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III. CLUSTER ANALYSIS

Cluster analysis is performed in order to find subclasses
(subtypes) of a disease. In this article, clustering is
implemented by using the hierarchical agglomerative analysis
and Ward’s distance [2], which measures the change in
variance if two clusters (objects) are merged.

Hierarchical agglomerative clustering merges the closest
objects/clusters (using the Ward’s distance metric) into
clusters iteratively until all objects belong to one cluster. This
forms the hierarchy of clusters that can be visualized as a tree
(dendrogram), where the distance (Ward’s distance in this
case) in each merge is shown by the distance between merges
in the dendrogram. This can be used to find the most distant
clusters (distance between merges in the dendrogram is longer
than that of the others). Therefore, in this study the number of
clusters is determined using dendrogram and the largest
distance between two merges in it. The minimum number of
clusters is set to three.

IV. CLUSTER TESTING

When objects are split into groups (clusters), this division is
viewed as representing the characteristics of the whole set and
should not show major changes if minor changes are made in
the dataset. If there are no changes or adequately small
changes are present, the clusters are believed to be stable;
otherwise, these clusters are not stable and do not represent the
features of the whole group. This article analyzes the stability
of clusters induced in bioinformatics datasets for the reason of
class decomposition using the hierarchical agglomerative
clustering and Ward’s linkage. The minor changes mentioned
above are considered to be subtraction of one object of the
dataset — after removing one random object of the set, the
division of other objects into clusters should remain the same,
meaning that the other objects still belong to the same groups
(clusters) as before the removal of the object. However, if
there are small changes in the data, there will be changes in
the clusters. These changes can be divided into two groups:

e changes in the distance at which the clusters are
merged (Fig. 1a),
e changes of object allocation to clusters (Fig. 1b).
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Fig. 1. Changes in cluster and object allocation; at the top — before changes in
the record set, at the bottom — after changes

Although the sum of squares changes if one object is
missing, the first type of changes is logical and not so
important in this study. The second type of changes is crucial
to determine cluster stability; in this case the objects are
viewed as subclasses based on their membership to a cluster.
Small changes in the dataset should not cause serious effect
(object reallocation to different clusters) on the cluster
structure.
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V.CLASSIFICATION

After assigning a subclass to all objects, the classification
process is carried out as usual. The tested algorithms are C4.5
[3] (J48 implementation in Weka), Random Forest [4],
Support Vector Machines [5] and Naive Bayes [6] (also, they
all are implemented in Weka library). Classification is
performed using both — the initial classes (benchmark results
for comparison) and the subclasses found in the cluster
analysis. For all algorithms and datasets, 10-fold cross-
validation is also applied to evaluate the results.

VI. RESULTS AND DISCUSSION

After determining the number of clusters for each dataset
using clustering in the full dataset, each set of clusters was
tested for stability. The test included dismissing 20 records
one by one and comparing the object memberships to clusters
every time (see Fig.2 — the gastrointestinal inflammatory
disease dataset is clustered without record 84 and the
clustering result using full dataset is given below; it is a good
example of stable clustering where small changes do not affect
the object membership allocation clusters).
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b) Clustering of GIS dataset with one record removed from the full set
Fig. 2. GIS clustering with (a) and without (b) record 84

Then each number was divided by 20 showing the fraction  greater than 5%, the clustering result was deemed as unstable.
of all records that were moved between clusters (see Table I).  As can be seen from Table I, in 7 out of 8 cases the instability
The average number then was chosen to describe the stability  of the clusters is below this threshold.
of each cluster group in each dataset. If the changes were

TABLE I
FRACTIONS OF MISPLACED OBIJECTS
Number of Number of iterations
Dataset records Average 1 2 3 4 5 6 7 8 9
BrCa 13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00
GaCa 165 0.04 0.00 022 0.13 0.00 0.00 001 007 0.11 0.01
GIS 126 0.01 0.00 0.00 0.00 0.00 0.00 0.14 000 0.00 0.00
PrCa 51 033 045 045 006 002 0.02 075 057 071 071
BCl1 17 0.01 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00
BC2 41 0.02 0.08 0.00 0.00 0.00 0.00 000 0.00 000 0.00
Carc 18 0.00 0.00 0.00 0.00 0.00 0.00 000 006 0.00 0.00
Pr 52 0.03 0.00 0.00 0.00 0.08 0.00 000 0.10 0.10 0.00
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TABLE I (CONTINUED)
FRACTIONS OF MISPLACED OBJECTS

Number of iterations

Dataset 10 11 12 13 14
BrCa 0.00 0.00 0.00 0.00 0.00
GaCa 0.00 0.00 0.00 0.01 0.00
GIS 0.00 0.00 0.00 0.00 0.00
PrCa 0.71 0.62 0.63 024 0.06
BCl1 0.00 0.00 0.00 0.00 0.00
BC2 0.00 0.00 0.00 0.00 0.00
Carc 0.00 0.00 0.00 0.00 0.00
Pr 0.08 0.08 0.12 0.00 0.00

15 16 17 18 19 20
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.16 0.00 0.00 0.02 0.00
0.00 0.00 0.00 0.00 0.00 0.03
0.02 0.02 029 002 0.02 022
0.00 0.19 0.00 0.00 0.00 0.00
0.00 0.00 033 0.03 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
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The results show that the clustering results of prostate
cancer dataset are clearly unstable — in some cases more than
half of the records change the cluster they belonged to. Other
datasets are below the acceptable margin of 5%. Nevertheless,
all datasets are investigated further to see the impact of
unstable clustering on the results of classification using
subclasses.

The first classification is applied to the initial datasets
without class decomposition. The results are shown in
Table II. In the original data, the most accurate classification
algorithm is SVM, which has the highest results in seven
datasets out of eight (surprisingly it shows the worst accuracy

in breast cancer gene expression (BC1) dataset. Both C 4.5
and RF show both the worst results and the best results
depending on the dataset.

In general, the results point to the most and less complex
datasets to classify — there are datasets where all classifiers
show good results (like carcinoma (carc) and prostate cancer
auto-antibody display (PrCa) datasets) and there are datasets
with obviously more intricate structure, where all classifiers
show mediocre classification accuracy (like gastro-intestinal
inflammatory disease auto-antibody display (GIS) dataset,
where all methods show results close to 50% accuracy).

TABLE II
BENCHMARK CLASSIFICATION ACCURACY

Classification algorithm

Dataset
J48 RF SVM
BrCa 57.69 84.62 88.46
GaCa 59.38 58.75 66.88
GIS 49.64 55.00 58.57
PrCa 83.50 85.00 90.00
BCl1 64.29 69.05 59.52
BC2 64.58 67.71 79.17
Carc 91.67 91.67 97.22
Pr 85.29 79.41 91.18

Then the same classification algorithms were applied to the
datasets with decomposed classes. The results are given in
Table III. The shaded cells show results that are the same or
higher than those without using class decomposition. The
results for gastro-intestinal inflammatory disease auto-
antibody display (GIS) dataset shows that class decomposition
can give a great boost to classification accuracy in complex
datasets because it has the increase in accuracy of 14% for
C4.5 classification algorithm. Also data sets classified very

well in their original form can gain from class decomposition
as it can be seen in the case of carcinoma gene expression
(carc) dataset — the Random Forest classification algorithm
achieves perfect classification (100% accuracy).

As can be seen from Table III, the unstable clustering
subclasses provide in the increase in accuracy but it is just one
percent for SVM algorithm and no increase for other methods.
In fact, the accuracy of C4.5 and of Random Forest algorithms
decreased by 8.5% and 3.5%, respectively.
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TABLE III
CLASSIFICATION ACCURACY USING CLASS DECOMPOSITION

Classification algorithm

Data set J48 RF SVM

BrCa 73.08 57.69 88.46
GaCa 61.88 55.94 67.19
GIS 63.57 55.87 63.93
PrCa 75.00 81.50 91.00
BC1 69.05 66.67 64.29
BC2 66.67 70.83 75.00
Carc 91.67 100 97.22
Pr 72.57 75.49 90.20

In other cases, J48 algorithm has a more significant gain in  datasets. Table IV provides a summary of maximum

accuracy (up to 16% increase), when class decomposition is
applied. Random Forest has the smallest gain in accuracy from
class decomposition — the results improved only in three cases
out of eight. SVM has also a significant gain in one of the
datasets (GIS) and smaller gains (within one percent) in other

classification gain in a dataset and the average number of
misplaced objects over 20 iterations (i.e. our measure of
instability).

The overall trend can be seen in Table IV — many misplaced

TABLE IV
GAIN IN CLASSIFICATION ACCURACY AND THE CORRESPONDING
CLUSTER INSTABILITY (AVERAGE FRACTION OF MISPLACED OBJECTS)

Max gain in Average number of

Data set | accuracy misplaced objects

BrCa 15.39 0.00
GaCa 2.5 0.04
GIS 13.93 0.01
PrCa 1.0 0.33
BClI 4.77 0.01
BC2 3.12 0.02
Carc 8.33 0.00
Pr - 0.03

objects in the performed cluster stability test mean lower
maximum gains in accuracy in the corresponding datasets.
This means that more stable and ‘clean’ clusters lead to better
classification accuracy using class decomposition and the
found clusters. If PrCa dataset is removed (it has significantly
higher average number of object misplacement), the
correlation is -0.76 at p<0,05, which is statistically significant
negative correlation — one of the variables grows, while the
other decreases. This means that there is a statistically
significant connection between the stability of a cluster group
and the efficiency of classification using these clusters as
subclusters (sub-diseases).

VII. CONCLUSIONS

The experimental work has shown that cluster stability has
a great impact on classifier accuracy when working with
subclasses found by clustering the data. Therefore, more stable
clusters lead to better data division into clusters, i.e., when the
clusters are used in classification as subclasses, the ability of a
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classification algorithm to discriminate between classes and
subclasses grows. The most significant cluster instability
results in the smallest gain in accuracy among the datasets that
had accuracy growth after class decomposition (in 7 cases out
of 8 — prostate cancer dataset consisting of gene microarray
readings did not show any increase in classification accuracy
after applying class decomposition). Also the most significant
gains in accuracy have been observed in the datasets with the
clustering instability being equal to 0.01 and a few misplaced
objects in 20 iterations.
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Inese Polaka, Arkadijs Borisovs. Klasteru stabilitates ietekme uz klasu dekompoziciju antivielu mikrorezga datos

Raksta apskatita klasterizacijas rezultatu novertéSanas probléma. Par klasterizacijas kvalitates meéru Seit tiek pienemts klasterizacijas robustums jeb stabilitate —
noturiba pret izmainam. Tas ir, nedaudz izmainot klasteriz&jamo datu kopu, klasterizacijas rezultatos zimigam izmaipam nevajadzstu biat. Saja gadijuma
nenozimigas izmainas ir viena ieraksta likvidéSana pamatdatu kopa. Veicot klasterizaciju 20 reizes ar §adam izmainam, tiek iegiits vid€jais izmainu apjoms (cik
ieraksti procentudli ir mainijusi piederibu sakotn&jiem klasteriem), kas arl ir stabilitates novertgjums. Klasterizacija apskatita un stabilitates mérs parbaudits
bioinformatikas datu kopas — génu ekspresijas vai antivielu mikrorezgu datos. Tiem ir Tpatniba, ka dimensionalitate ir |oti augsta — tikstoSos atribiitu, bet ierakstu
skaits ir salidzinosi neliels — dazi simti. Klasterizacija izmantota, veicot klasu dekompoziciju, tas ir, meklgjot iesp&jamos slimibas paveidus (ka, piem&ram,
leik€mija pastav leikoze, mieloleikoze un limfoleikoze; bet, iesp&jams, citdm slimibam, kas apskatitas, apakstipi vél nav atklati) ar atSkirigam biomediciniskam
izpausme&m. Lai noteiktu slimibu paveidus, tiek veikta klasterizacija slimo pacientu datos, pienemot klasterus par slimibu paveidiem. Tad tiek veikta klasifikacija,
nosakot veselos un slimos individus, procesa nemot véra klases iek§€jo blivuma struktiiru jeb slimibu paveidus. Dati, kas izmantoti eksperimentos, icklauj kunga
v€za, gremosSanas sistémas iekaisuma slimibu un melanomas antivielu datus, kriits véza un prostatas véza gé€nu ekspresijas un autoantivielu datus, ka ar1
visparigus karcinomas gé€nu ekspresijas datus. Rezultati uzrada, ka pastav negativa korelacija starp klasteru stabilitati un klasifikacijas precizitates pieaugumu
klasu dekompozicijas rezultata, tatad, lai izmantotu klasu ieks€jas blivuma struktiiras, klasterizacijas rezultatiem ir jabit stabiliem.

Hnece Monsika, Apkaauii bopucos. Biansinue cTaGuJILHOCTH KJIACTEPOB HA IEKOMIIO3ULHIO KJIACCOB B JAHHBIX MUKPOYHIIOB AHTHTEJI

B cratbe paccmoTpeHa mpoOiieMa OLIEHKH pPe3yJIbTaToB KiacTepu3anuu. Mepoi KauecTBa KIacTepH3allMd 3/IeCh MPHHITAa YCTOWYHMBOCTh WM CTAOMIIBHOCTH
KJIaCTepPU3aLMU — CONPOTHUBIEHHE W3MEHEHUSM. TO eCTh, IpH HEOOJIBIIOM HU3MEHEHUH KJIACTEPU3YyeMOro Habopa JaHHBIX B pe3yjbTaTax KJIacTepH3allu He
JIOJDKHO OBITh 3HAUUTENBHBIX U3MEHEHHH. B 3TOM cllydae HecylIeCTBEHHBIM M3MEHEHHEM SIBIISETCS YCTPAHEHHE OJIHOM 3alliCH B OCHOBHOW BBIOOPKE JTaHHBIX.
TToBTopuB mpouecc kiaactepuszanuu 20 pa3 co CICAYIOUMMH H3MEHEHHSIMH, MMOJYYAIOTCs CPEJHHE W3MEHEHHUsS (CKOJIBKO 3aluceil MPOIEHTYaIbHO M3MEHUIIN
CBOIO IPHHAICKHOCTh HCXOAHOMY KJIACTepy), KOTOPBIE TAKKe SIBISIOTCS OLEHKOH cTabmibHOCTH. PaccMOTpeH mpolece KiIacTepH3alui; Mepa CTabHIbHOCTH
MpoBEpeHa Ha BHIOOPKAX JaHHBIX OHOMH(OPMATUKH - MUKPOUHUIIOB SKCIIPECCHI T€HOB WIIM aHTUTEN, OCOOEHHOCTh KOTOPBIX COCTOMT B TOM, YTO UX Pa3MEPHOCTh
OUYCHb BBICOKA - THICSYU aTPUOYTOB, a KOJNMYECTBO 3alMCell OTHOCHTEIHHO HEBEIIMKO - HECKOJIBKO coTeH. Kiactepu3auus MCHONb3yeTcs, YTOObI BBIIOIHHUTH
JICKOMITO3UIIMIO KJIACCOB, TO €CTh HPH MOMCKE BO3MOXKHBIX BapHAHTOB 3a00JIeBaHus (TaKHX Kak JICHKO3, MUCIOHIHBIHA JeHKo3 U TUM(ONIeHKo3 B JISHKeMHH, H,
BO3MOJKHO, B IPyTHX PACCMOTPEHHBIX 3a00JICBAHUSX MOATHIIBI 10 CHX MOP HE OOHAPYKEHbI) C pa3HBIMU OMOMEMIIMHCKUMHU NPOsiBIeHUAMH. 115 onpeneneHus
nmoATuna 3a00eBaHusl KIacTepu3alus IPOBOAMUTCS B JaHHBIX OOJBHBIX, MpEAIOJaras, 4ro KJIACTEpbl - 3TO THUIBI 3a00JeBaHMN. 3aTeM OCYIIECTBISETCS
kiaccuukanus, pasjinyasi 3J0pOBbIX U OOJIbHBIX WHIMBHAOB, C YYE€TOM BHYTPEHHEH CTPYKTYpPbI IUIOTHOCTH KJacca, KOTOpas ONpPEICNseTCs MOATHIIAMHU
3aboseBanuil. [laHHBIE, HCIIONB30BAHHBIC B OKCIEPUMEHTAX, BKJIIOYAIOT JaHHbIE AHTHTEN paKa JKeNy/AKa, KUIICYHBIX BOCHAIHMTEIBHBIX 3a00JIeBaHUH U
MEJIaHOMBI, JIaHHBIC 3KCIPECCUM T'€HOB M aHTUTEJ paKa MOJIOYHOM KeJe3bl U paka MpOCTaThl, U OOIIUE AaHHBIC HKCIIPECCUU T€HOB KapLUHOMBL Pe3ynbTaThl
MMOKAa3bIBAIOT, YTO CYLIECTBYET OTPHILATENbHAS KOPPEJSALUsS MEXIy CTaOWIBHOCTBIO KIACTEPOB M YBEIMUYCHHEM TOYHOCTH KIacCH(DUKALUK B pe3ysbTare
JIEKOMITO3UIIMH KJIACCOB, TO €CTh, YTOOBI HCIIOIb30BAaTh BHYTPEHHIOIO CTPYKTYPY IIOTHOCTH KJIACCOB, PE3yJIbTAaThl KIACTEPH3ALNH TODKHBI ObITh CTAOHIIbHBIL.
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