fﬂ%:ﬁ’h VERSITA

—

Information Technology and Management Science

doi: 10.2478/v10313-012-0010-y

2012 /15

A Method for the Effective Configuration of Reuse-
Oriented Software Release and Its Application 1n the
Field of Insurance

Arturs Bartusevics', Vladimirs Kotovs”, Leonids Novickis®, '*Riga Technical University

Abstract — The paper presents the results of the research
related to the improvement of software configuration and release
management processes for software maintenance projects. The
study describes a simple, effective and reusable solution to build
high-quality releases that include not all, but only tested changes.
The proposed method produces the list of components to be
included into the release build based on the list of changes
planned for the upcoming release and information from the
project code version control and issue tracking systems.

Keywords — software configuration management, reuse-

oriented process, insurance business processes

I. INTRODUCTION

Nowadays with the growing demand for rapid software
system development, researchers are continuously looking for
new software engineering methodologies and techniques in
order to improve software development processes, to ensure
high quality of software products and to make its maintenance
and support easier.

The need for systematic reusable approaches and effective
software process methods, which allow addressing recurring
problems successfully, is obvious and important. A process in
software engineering could be defined as a set of activities that
lead to the production of a software product [1], and it is
important in order to ensure efficiency, reproducibility,
homogeneity, and predictable time and effort constraints.

The study concerns improvements in software configuration
and release management processes that address the tasks of
tracking and controlling changes in the software and preparing
the product for deployment to its users. Being fine-grained
parts of the process dimension within the reuse-oriented
framework described by us in [2], the effective reuse-oriented
release and configuration management processes assume
proper development of

e managerial infrastructure in the form of a set of

functions, responsibilities, reporting requirements, and
reward, required to ensure proper operation of the
processes, and

e technological infrastructure to support operations and

enforcement of testing, verification and other
standards.

The main objective of the study is to identify and
implement a simple, effective and reusable solution to build
high-quality releases that include not all, but only tested
changes. The topic is of particular significance since the
proposed approach may provide some economic and

organizational benefits a) by increasing the quality of product
releases, b) by reducing development and operating costs, and
c) by efficient utilization of development knowledge and
corporate expertise.

The following section identifies the general prerequisites
for the application of the proposed method that is followed by
the detailed review of the proposed release building method
and discussion of its proof-of-concept implementation, current
limitations and application in the field of insurance. Finally,
the conclusions are made and future work is outlined in the
last section.

II. GENERAL PREREQUISITES FOR THE METHOD

The paper discusses the method that aims to improve
software configuration and release management processes for
software maintenance projects, where the product is a large
information system being maintained using one of the iterative
development methodologies. The maintenance phase of a
large project often assumes the existence of issue tracking
system, so that the project management could effectively plan
which defects to be resolved and change requests implemented
for the particular system release. Unfortunately, it is a rather
common situation in practice, when there are multiple
unsolved or not tested changes on the planned release date that
could not be delivered with the release. As a result, the
developers may face the challenge to prepare a product release
that includes not all, but only the components with all tested
changes.

The following general prerequisites considered important
for the application of the proposed method are described in
Table I. It should be noted that all these requirements are
usually covered by the configuration management or quality
assurance standards adapted by the organization, and there are
many commercial and non-commercial tools available to help
resolving these prerequisites efficiently.

However, for the purpose of our research is not enough just
to introduce the defect tracking and source version control
systems. There is a need to link these two systems together.
Namely, the change identifier from the issue tracking system
should be defined for any modification in the source code and
propagated to the version control system. It is important to
guarantee the control for this action, so that it would be
impossible to commit modifications to the version control
system without specifying the change identifier.

111

Information Technology and Management Science

2012 /15

TABLEI
GENERAL PREREQUISITES FOR THE METHOD

Prerequisite

Description

Defect and change request

tracking process .
gp over time.

Every problem or change request should be registered and assigned a unique identifier using the
centralized issue tracking system that makes it possible to manage and monitor the status of every change

Source code version control

It is necessary to effectively manage changes in the product source code using version control systems.
There should be information available about all changes ever made in every unit of source code.

Continuous integration process

It is advisable to adapt a continuous integration process to automatically build a product from certain
source code changes, to make sure that the build is successful and meets certain quality control criteria by
successful execution of integration and unit test suites.

For example, Subversion VCS (version control system)
allows you to create a trigger that commits changes to a
centralized server and verifies if the description contains at
least one identifier and whether it actually exists in the issue
tracking system.

Additional requirement for the application of the proposed
approach concerns the technologies adhered to a particular
product. In general, the technology stack wused for
development might either allow building single product
elements independently, or require building a complete
product from all its elements. As examples of these two
product types, one might consider the database application of
Oracle Forms, where it is usually sufficient to perform one or
more scripts for changes to be implemented, and Ruby on
Rails project, where a change requires rebuilding the entire
system from all source code files. The proposed method is
supposed to be applied to the projects of the first type, where it
is possible to construct single product elements independently.

III. THE METHOD FOR EFFECTIVE SOFTWARE RELEASE
CONFIGURATION

To apply the method for building high-quality releases that
include only tested changes, two conceptual tools are defined:
a) Analyzer — performs the analysis of the product source

code in the version control system in order to classify its

elements by issues related to committed changes

b) ReleaseBuilder — performs the project build from a

defined set of source elements and generates installation

package or script based on the Analyzer results. The

following structural elements constitute the core of

ReleaseBuilder:

e Description of the project source code file types (e.g.
database scripts, Oracle Forms files, XML files, etc)

e Definition of installation functions for each type of
source code file

e Metadata about the repository structure used to
analyze project source code files and to determine
proper installation functions.

Figure 1 outlines the following major steps of the method
proposed to be scheduled as tasks on a continuous integration
server:

1. Receive a list of issues planned for inclusion in the
product release

2. Launch Analyzer to determine the related change
identifiers in the version control system

112

3. Launch ReleaseBuilder to generate an installation
script or package

4. [Install the build to test the instance

5. Run automatic integration and unit tests and prepare
deployment artifacts for delivery.

getTestedIssues

v

| getSourceCodeElements |

true false

assignDepMessage buildProduct

isDependencies

v

installProduct

A 4

isInstallationOk assignErrorMessage <
—
executeTests
: ~—_false
isTestok
A 4
assignArtifacts

Fig. 1. The major steps of the method

- getTestedIssues — connects to the issue tracking system and selects
issues according to the supplied criteria

- getSourceCodeElements — searches for the source code elements
related to the selected issues

- isDependencies — verifies if the selected source code elements have
dependencies on other parts related to issues not tested yet

- buildProduct — produces an installation script from the provided list of
VCS element identifiers

- installProduct — deploys the product build to test, runs the prepared
installation script on a test instance

Information Technology and Management Science

2012 /15

- isInstallationOk — verifies if the installation on continuous integration
server is successful

- executeTests — runs integration and unit test suites on the test instance
to make sure the build is successful and meets certain quality control
criteria

- isTestOk — verifies whether the execution of integration and unit test
suites on a continuous integration server is successful

- assignArtifacts — prepares product deployment artifacts

IV. METHOD IMPLEMENTATION DETAILS

The Analyzer and ReleaseBuilder tools have been developed
as Java utility applications for the proof-of-concept
implementation of the defined release configuration method.
The applications are designed to be integrated with Subversion
code repository and are easily adaptable to practically any
continuous integration server.

A. Analyzer

The application is an executable JAR file that relies on the
functionality provided by SVNKIT library [3] that is specially
designed to expand opportunities for administration of
Subversion repositories. The application receives the
following input parameters:

e Repository connection details

o List of issues planned for inclusion to the release.

As mentioned previously, Subversion VCS assigns a unique
revision identifier for each commit of modifications in the
source code tree, and it is possible to describe the revision by
referencing issue numbers from the defect and issue tracking
system in the description of commit.

The algorithm performs the search for the revisions related
to the issues planned for inclusion into the release by
analyzing descriptions of commits. Based on this data, the list
of modified and added files is derived, and the revision
number of previous modification is found for each file from
the list. If the previous revision of the file is not included into
any of previous project releases, the following information is
persisted into a special data structure:

A. VCS revision number;
B. Files added, modified or deleted in the revision;
C. Identifier of the issue related to the revision.

When the processing of each file is completed, the
information about the found dependencies is persisted for
further analysis. If no dependency is found, the product can be
built successfully from only the tested changes. In this case,
the revisions found are saved in a file for processing by
ReleaseBuilder to prepare an installation package or script.
Figure 2 outlines the major steps of Analyzer workflow.

B. ReleaseBuilder

The application is an executable JAR file that accepts the
list of VCS revisions pointing to the source code elements to
be included into an installation package or script. The main
components of the application are the following:

e The data structure with source file types recognizable by
ReleaseBuilder (e.g., SQL script, XML file, Oracle
Forms, etc).

e The technology specific library of installation functions.
It should provide installation functions for each type of
the source file in a project, e.g., to install SQL file
“INSTALLSQLFILE” function can be used.

o Interface for the generation of an installation package or
script. Implementations of the interface are supposed to
know a) the logic to determine the file type based on its
name and location, b) the assignment of installation
function, and c) the details of the generation of an
installation script or package. For the purpose of the
proof-of-concept implementation of the defined release
building algorithm, the interface for the installation
script generation is implemented for Oracle E-Business
Suite projects.

Figure 3 outlines the major steps in ReleaseBuilder
workflow. Repository connection details, the revision list from
Analyzer and implementation of the interface for generation of
installation package or script are provided as input parameters
to ReleaseBuilder. As the first step, the tool performs the
analysis of supplied revision list and prepares the list of
affected files. Iterating over the file list the application
identifies a necessary installation function and parameters and
prepares an installation script or package.

getRevisionList

v

getFileList

true false

isDependencies

assignErrorMessage

makeFileWithRevisio

Fig. 2. The major steps of Analyzer

- getRevisionList — finds VCS revisions related to each issue

- getFileList — derives the modified and added files for each revision

- isDependencies — using VCS specific attribute it checks if the previous
version of each file from the list is included into any of previous
releases. If the previous revision of the file is not included into any of
previous releases, the following information is persisted in a special
data structure: filename, revision number, issue number

- makeFileWithRevisions — prepares the file with the list of VCS
revisions

113

Information Technology and Management Science

2012 /15

C. Limitations and Risks of the Method

The following limitations and potential risks related to the
application of the proposed approach to building high quality
releases from only tested changes should be taken into
consideration.

1. The final installation package is produced from
certain source code elements, leaving some changes
not being included. However, during release testing
the project quality assurance team usually works with
configurations that include all changes. Moreover,
the proposed method might produce the final
installation package with untested configuration that
was never installed to test. Thus, it is important to
perform automatic unit and integration tests for final
configuration in order to minimize the risk of broken
deployment artifacts.

2. The mechanism used to determine relations of source
code change is not reliable enough in current
implementation of Analyzer tool. The situation, when
the change in source code element “ComponentB”
made to resolve issue “FeatureB” relies on the
change in element “ComponentA” for issue
“FeatureA”, may lead to broken deployment artifacts,
if “FeatureA” is excluded from release. The
improvement of Analyzer tool is expected to
minimize the aforementioned risks, but it might be
reasonable to consider the additional check for this
type of problem in a final code review depending on
the project specifics and technologies.

receiveRevisions

v

getFileList

—|

getFileType

—]

getInstallFunction

-

assignInstallationString

l—

makeScriptFromAllString

Fig. 3. The major steps of ReleaseBuilder

- receiveRevisions — receives VCS revision list as input

- getFileList — prepares the list of files related to each revision from the
list

- getFileType — deduces the file type

- getInstallFunction — determines the installation function for the file

- assignlnstallationString — prepares and saves the call of installation
function for the file

114

- makeScriptFromAllString — completes the installation script
generation routine that includes the call of installation functions for
all files related to revisions supplied as an input parameter

D. Application of the Method in the Field of Insurance

Insurance Information Systems (IIS) should provide the
opportunities for fast and easy modification and extension of
its functions in order to support new products and changes in
legislation. ISS supports the following main function of
insurance business processes [4]:

e Insurance policy forming

e Claim proceedings

e Communication with re-insurance companies

e Data exchange between a central office and regional
departments
Insured risk monitoring
Interconnection with accounting and other financial
systems.

Taking into account that all these functions must be adapted
to the requirements of selected insurance company and local
conditions, the proposed algorithm can significantly improve
the effectiveness of ISS release configuration. Currently the
application of the proposed method is under testing within the
framework of ERDF project (N0.2011/0008/2DP/2.1.1.1.0/10/
APIA/VIAA/018) “Insurance Distributed Software
Development Based on Intelligent Agents, Modelling, and
Web Technologies”.

V. RELATED STUDIES

There are a few related studies that have influenced the
proposed method for building high-quality releases. The
current study completes the proposal described by us in [5],
where the motivation and the basis of the approach to effective
release configuration process aimed at supporting and
ensuring effective maintenance of information technology
products are discussed.

At the same time, this study presents some results of the
ongoing joint research activities related to the improvement of
systematic software processes that facilitate collaboration and
allow reusing experience to address recurring problems
successfully. The ideas discussed in the study are related and
influenced by our work in [2] and [6] that describes the
foundation of the framework for organizations that are moving
towards a systematic reuse program and web-based
information technology solutions.

VI. CONCLUSIONS

The paper discusses the method that aims to improve
software configuration and release management processes for
the maintenance projects, where the product is a large
information system being maintained using one of the iterative
development methodologies. The proposed concept relies on
the possibility to prepare a release build that includes only
tested changes. The release-building method proposed within
the framework of this study receives a list of issues planned to
be included in the release and produces the list of components
to be included into the release build based on the information
from the project code version control and issue tracking

Information Technology and Management Science

2012 /15
systems. The provided proof-of-concept implementation of the Technologies (AICT 2012). ISBN 978-9984-48-065-7), Jelgava, Latvia,
. . . , pp.99-104, 2012.
method .ln Java can be easily ad_apted to any project that uses [6] V. Kotov, Reuse In Software Development Organizations In Latvia. In:
Subversion VCS, and the specifics of development process Scientific Journal of RTU. 5. Series. Computer Science. vol. 43, pp. 90-

conforms to defined prerequisites. 96. RTU, Riga, 2010.

The fl.lture resear(fh is related tO. a) improvements in _the Arturs Bartusevics is currently a doctoral student at Riga Technical
method implementation to work with other popular version yniversity, the Faculty of Computer Science and Information Technology,
control systems, b) verification and instructions for Analyser Institute of Applied Computer Systems. He obtained BSc (2008) and MSc
and ReleaseBuilder integration with popular issue tracking (2011) degrees in Computer Science and Information Technology from Riga

d . . Anal hi Technical University. His research areas are software configuration
systems, an ¢) improvements in nalyser —searching management, release building and management process and its optimization.

capabilities to allow deducing relations between different He currently works at Ltd. Tieto Latvia as a Software Configuration Manager.
source files. Contact information: arturik16@inbox.lv

Vladimirs Kotovs is a doctoral student at Riga Technical University, the
ACKNOWLEDGEMENT Faculty of Computer Science and Information Technology, Institute of

. . . Applied Computer Systems. Vladimir Kotovs obtained his BSc (2004) and
This research is p artly funded by the ERDF (ERAF) project MSc (2007) degrees in Computer Science and Information Technology from

(No0.2011/0008/2DP/2.1.1.1.0/10/APIA/VIAA/018) Riga Technical University. His research areas are software reuse, software
“Insurance Distributed Software Development Based on processes, information system configuration. He currently works at JSC

: : ESRh) Citadele Banka as a Java Developer.
Intelligent Agents, Modelling, and Web Technologies”. Contact information: vladimir kotov@gmail.com

REFERENCES Leonids Novickis is a Head of Division of Applied Systems Software. He

[1] I Sommerville, Software engineering. 6th. Addison-Wesley (2001) obtai-ned Dr.Sc.ing. degre}e in 1980 a.nd Dr.Habil.Sc.ing. degree‘: in.1990 f‘rom

[2] V. Kotov, A. Lesovskis and L. Novickis. Towards Reuse-Oriented and Latvian Academy of Sc1en?es. He is th‘e author of 180 publlf:atlons. Since

Web-Based Collaborative Framework for e-Business Providers. In: IFIP (119]3(‘;(})16 élgspréig{li\llal.g){jgeerll;ggoll gg(;)m dlge}ferllt %U—fuscrlslirco_] (;:It’sz (?pl;/é%él

. . o s - - eader; - s

égﬁ;ﬁ s Ollnlf"ma“"n and Communication Technology, 2011, 1998-2000), BALTPORTS-IT (FPS, 2001-2003), eLOGMAR-M (FP6, 2004-

[3] Subversioning for Java: http://svnkit.com/. [Accessed September, 2012] §8822260Z()ne;;éﬁ(ggﬁlrgglat&r\’wlsg}i}gaét (212)1:)%-2200102‘;_ZE)OIZ%UUI(\:IJOTEHI(}&:::)?"

[4] M. Uhanova and L. Novickis, Application of Modelling and Internet LOGIS. LOGIS-Mobile and SocSimNet ’(Leonardo da Vinci) — partner Hé

Technologies in Marine Insurance Business. In: Proceedings of the f d dent expert of IST and Research for SMEs in FP6 and FP7' He
International Conference COMPIT”2005, Hamburg, Germany, pp. 8-12, was an meepend P - . ’

2005 isa correspondlng rgember of Lat\.llan Academy of Smenpes and an elected

’ expert of Latvian Scientific Council. His research fields include Web-based

[5] A. Bartusevics and_ V. Kotovs, Towards the Effective Reuse—OrieTnted applied software system development, business process modelling, e-learning
Release Configuration Process. In: Proceedings of the 5th International and e-logistics ’ ?

Scientific Conference in Applied Information and Communication Contact information: Leonids.Novickis@rtu.lv

Arturs Bartusevics, Vladimirs Kotovs, Leonids Novickis. Metode efektivai, uz atkartotu lietoSanu balstitai, programmatiiras konfiguracijai un tas
pielietojums apdrosinasanas joma

Darba ir atspoguloti p&tijuma rezultati par sistematisku programmatiiras konfiguracijas un versiju parvaldibas procesu uzlabosanu. Tiek piedavats risinajums
problémai, kas var rasties, pielietojot iterativu metodologiju programmatiiras projektu parvaldibai, kad iteracijas beigas, kartgja produkta versijas relizes laika, ne
visi labojumi, kas ir veikti izejas koda, ir notestéti. Tada gadijuma var rasties nepiecieSamiba atlasit tikai tos produkta komponentus, kuros visas veiktas izmainas
ir notestétas esosas iteracijas gaita. Darba aprakstita metode lauj programmatiiras uzturéSanas projektos veidot relizes tikai no notestétiem labojumiem, pasargajot
relizes veidotdju no ilgstoSam manualam darbibam. Piedavata metode ir balstita uz produkta izejas koda analizi. Tas veiksmigai pielietoSanai ir nepiecieSams, lai
izstrades organizacija butu ieviesta pieteikumu apstrades sist€éma, versiju kontroles sist€éma un nepartrauktas integracijas process. Metode paredz produkta izejas
koda elementu klasificéSanu atkariba no izmainam, un nosaka, vai izmainas ir notestétas un var but ieklautas gala produkta. Nakamaja soli no identific€tiem
elementiem tiek buivéts produkts un instaléts testa instanc€. Veiksmes gadijuma tiek izpilditi automatiski integracijas un vienibu testi, lai parliecinatos, ka
savaktas konfiguracijas atbilst piepemtajiem kvalitates krit€rijiem. Darba tiek analiz&ti arT riski, kas saistiti ar metodes ievieSanu praktiskd izmanto$ana un
aprakstiti to mazinaSanas pasakumi. P&tfjuma ietvaros ar JAVA programmeéSanas valodas palidzibu ir izstradati riki, kuri tiek izmantoti ar relizes veidoSanas
metodi darbam ar versiju kontroles sistému Subversion. Attistot turpmak $o metodi, ir planota rTku uzlabo$ana, to iesp&jamai izmantoSanai arf ar citam versiju
kontroles sistemam, ka arT metodes pilnveidosana atkarTbu meklésanas konteksta.

Aptyp Baprycesuu, Baagumup Koros, Jleonun Hounkwuii. Merox mist 3¢gpdexTnBHOll KOH(PUIypanuu pesiusa NporpaMMHOIo obecriedyeHue U ero
NpHMeHeHHe B 00/1aCTH CTPaXOBaAHHUS

B pabore npencTaBlieH pe3ysbTaT HCCIIENOBAHUS, CBSI3aHHOTO C CHCTEMATHYECKUM YIY4IICHHEM IIPOLECcCOB KOH(UIypamuy MPOrpaMMHOr0 OOeCIeueHus U
YIIPABJICHHS BBIITYCKOM PEIIM30B MPOrPaMMHBIX IPOyKTOB. [Ipe/araercs perenne npooiaeMbl, BO3HUKAOIIEH PH HCHOIb30BAHUH UTEPATHBHOIN METOI0JIOTHH
JUISL YIPABIICHUs NIPOEKTaMHU, €CIIH Ha MOMEHT 3aIllTaHMPOBAaHHOTO BBIMYCKA IPOAYKTa HE HMPOTECTHPOBAHBI BCE HCIPABICHUS, KOTOPbIE OBUIM BKIIOYECHBI B
UCXOJHBIH KOJ. B TakoM cirydae BO3MOXHO BHEJIPEHHE HOBOW BEPCHM C MCIIOJIB30BAHUEM TOJBKO IMOJHOCTBIO NPOTECTUPOBAHHBIX KOMIIOHEHTOB IPOAYKTA.
IpennoxeHHBIH METOA 1aeT BO3MOXKHOCTb OBBICUTH KaUECTBO BHEAPSEMBIX PEIU30B JUIS MPOCKTOB 110 COMPOBOXK/ICHHUIO IIPOrPaMMHOTO 00ECHICUCHHS, a TAKKE
CHIDKAET HEOOXOIUMOCTh B PyTHHHON PY4HOH paboTe MO CO3JaHUI0 MHCTAUIUMi. [IpencTaBieHHbIl METO] OCHOBAH Ha aHAJIN3€ UCXOJHOTO KOZAA MPOAYKTA.
Ji1s ero ycHemHOTO NPUMEHEHHsS B OPTaHU3AlMU HEOOXOJMMO HCIONB30BAHHE CHUCTEMBI DPETHCTPAIMU Ae(EKTOB, CHCTEMbl YIpaBIEHHS BEPCHSIMH U
HETIPePBIBHBII IpoLiecC MHTErpaluy IporpaMMHOro obecredenus. [IpeiaraeMelii MoaXox moJpasyMeBaeT KIAacCH(HUKAIMIO DIEMEHTOB HCXOIHOrO KoIa, B
3aBHCHMOCTH OT BHECEHHBIX B HUX M3MEHEHHH, a TalkoKe OIpeelIeHre TOro, ObLIN JIM IPOTECTHPOBAHBI U3MEHEHUS X BO3MOXKHO JIU HX BKJIIOUCHHE B KOHEUHBIN
npoxykt. Ha ciexyiomem sTame MpOUCXOJUT CO3JAaHUE MHCTAULIIUU W3 HACHTHOHIMPOBAHHBIX DJIEMEHTOB U YCTAHOBKA B CpeAy MU TECTHPOBAHHSA, IIe
BBITIOJIHSACTCST HAOOp MHTETPAlJHOHHBIX M IOHUT TECTOB JUI IPOBEPKH KPUTEPHEB KadecTBa COOpaHHOW KoH(urypauus. B craTbe Taroke aHaIM3UPYIOTCS
BO3MOXKHBIE PUCKH, CBSI3aHHBIE C IPAKTHMYECKUM HPHMEHEHHEM METOJa, M ONMCHIBAIOTCS MEPHI 10 MX NpeJOTBpalleHnIo. B pamkax mccrnenoBaHus CO3/1aHbI
HECKOJIbKO MHCTPYMEHTOB Ha sI3bIKE Java ISl MCIOJIBb30BaHUs IpEUlaraeMoro MeTojla ¢ CHCTEMOW KOHTpois Bepcuii Subversion. JlanmbHeiiee Bo3MOXXHOE
pa3BUTHE METO/Aa U MHCTPYMEHTOB CBS3aHO C YJIYUIIEHHUEM UX UCIIOJIb30BAHUS C JPYTMMHU CUCTEMAaMU KOHTPOJIS BEPCHUI.

115

