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Abstract — The paper deals with path planning software for a
mobile robotic platform. The aim of the research paper is to
analyse path planning algorithms that comprise the design of
simulation software. The software is necessary as an environment
model to obtain the simulation data. The simulation application
is based on the Rapidly-Exploring Random Tree (RRT)
algorithm and Simulated Annealing (SA). The results of the
thorough analysis have been used to achieve optimal path
planning algorithms.
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I. INTRODUCTION

It is necessary to provide iterative motions among points of
the goals in order to reach the wide range of the robotic
application. For instance, in industry a mobile robotic platform
can replace any components between a storechouse and an
assembly department. Ammunition replacement is widely used
in military forces. It can be used in ports, airports, recycling
sites and etc. Mobile robots can be used in monitoring if it is
necessary to observe control points in a secret place. There are
a lot of scenarios where the iterative motion is applied [2].

The environment used for such mobile robots is
complicated, various, non-structural and dynamic by nature.
Robots must get rid of the obstacles which are different in
size, form, location and can appear or disappear at any time.
When avoiding the obstacles, the possible collision risk,
sensor information and movement planning imprecision, error
location and uneven surface are always foreseen. Robots can
be damaged, trapped or embedded in any construction, etc.
Environmental imprecision is always very hazardous for
mobile robots [2].

At the same time, the effective utilization is required from
robots. Robots should work as much as possible and fast and
safely [2], [4], [5], [10], [12], [13]. However, the safety of
people and the place of their living are primary, and the same
can be said about the safety of robots.

Algorithms for motion planning have proved themselves as
optimal methods in this planning. The best conditions are
normally measured with a distance. However, it is possible to
measure the conditions mentioned differently. For instance, in
order to find safe ways, space robots take into consideration
surface, roughness and slope. However, the efficiency of
complex, dynamic and partly unknown spaces has not been
investigated for a long time. Nowadays, there has been little
research conducted on the choice of motion planning in
dynamic conditions. Approaches [3], [9], [11], [14], [15]
admit that the environmental structure is known a priori.
Admittedly, the unknown environment is static and
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unchangeable during some period of time in a source [15],
[11]. Sources [6] - [8], [16] reflect uncertainty except for the
two previous statements.

Commonly, in order to work out any motion planning
system, which is used in a mobile robotic platform, it is
necessary to perform the following tasks:

* to familiarize with the essence of motion planning task,
i.e., to observe the algorithm of classical and modern
planning;

+ to identify the advantages and disadvantages of the
algorithm;

* to select the most relevant algorithm;

* to work out the system design.

The representation of working area for the robot can vary
from continuous geometrical behaviour to the approved
decomposition of topological maps. The first step for any
motion planning system is permanent environmental model
transformation in the map relevant to the motion planning
algorithm chosen if it is possible. The motion planning is
distinguished due to the influence on the discrete
decomposition. The three basic decomposition strategies can
be mentioned [2]:

* motion maps: to show the package of motion in free

space;

* unit decomposition: to distinguish empty from occupied
units;

+ potential field: the robot reaches the target unit if it
follows the least resistance direction. This function is
sometimes called a navigation function if additional
conditions are added.

Then some motion planning algorithms can be briefly

envisaged, i.e., Rapidly-Exploring Random Tree (RRT) and
Simulated Annealing (SA).

IT. GOALS

According to the above-mentioned statement, it is becoming
rather interesting to compare RRT and SA algorithms by
means of simulation.

The aim of the research paper is to analyse motion planning
algorithms that contain the design of simulation software. The
software is necessary as an environment model to obtain the
simulation data. The software is based on RRT algorithm. The
simulation data provide the opportunity to conduct thorough
analyses for a selected algorithm. The analysis involves the
simulation data interpretation and comparison with other data
obtained using the SA algorithms for motion planning.

RRT - in the last decade the motion planning algorithms
were proved to be efficient ones on the basis of step sample
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and they were worked out theoretically as probable
definiteness (see Fig. 1). The theoretical limits of these
algorithms have not been solved so far. It is proved that RRT
algorithms always converge but do not insure the optimal
magnitude. The storage of the search graph starts to become
impractical at high dimensions, and the need to use
probabilistically complete algorithms such as RRT increases.

The SA method [17], [18] is widely used in applied science
(Fig. 1). The well-known traveling salesman problem has
effectively been solved by means of this method. For instance,
the arrangement of many circuit elements on a silicon
substrate is considerably improved to reduce interference
among the elements [1], [19].

The use in practice is related to autonomous robots that
move in the space and are able to plan a route on their own.
One of such robots exiting in our everyday life is autonomous

Require: tree Tand Iterations K

1. fori=1.. Kdo

2. Yyand = random configuration

3. Ynear = Nearest neighbor in tree 710 X404

4. Yo = eXtend ¥,e. toward X,..4 for step length

3. if (xuo0 can connect to .. along valid edge) then
6. T AddVertex(x..). T AddEd ge(Xuar, Xusar)

7. end if

8. end for

9. return T
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vacuum cleaner. Autonomous vacuum cleaners do not usually
use the motion planning algorithm. They are based on
different simple algorithms, for example spiral cleaning,
crossing the premises by avoiding the walls, and their moving
is casual after touching the walls. The philosophy of this
design was proposed by the scientists of Massachusetts
Institute of Technology. Robots must be like insects having
primitive controlling devices aimed at the environment. As a
result, an autonomous vacuum cleaner is very effective in
cleaning premises, but much more time is required for them as
compared with work made by a person. There is a drawback,
the autonomous vacuum cleaning robot cleans one and the
same place many times, but other places are cleaned only
once. The use of motion planning algorithms can raise the
efficiency of an autonomous vacuum cleaner.

Input: ProblemSize, iferationSas [€MPmax

Output: ;..

1. S.upmen — CreateInitialSolution(ProblemSize)
20 Shex — Seument

3. fori=1 to iterationsy.. do

4. §;+— CreateNeighborSolution(S.yyen)

5. temp.y +— Calculate Temperature(i, femp )
6. if Cost(S;) = Cost(S.,0en:) then

_' S:ul'rsll.' — S."

8. if Cost(5;) < Cost(5;..,) then

9. Stz + 5i

10. end

11, else if Exp((Cost(S.umen:)-Cost(5:))/temp yy) > Rand() then
12, S curvens < St

13. end

14. end

15, return S;.

b.)

Fig. 1. Pseudocodes: a.) — for RRT; b.) — for SA

III. ASSUMPTIONS

In order to fulfil the aim of the research paper, the following
conditions are introduced:

+ the premises, where an object moves;

* the robot (or object) moves around the premises;

+ the path, along which the robot moves in the premises.

The premises are presented as a two-dimensional plane. The
plane of premises is equally divided into cells. The cell
dimensions are equal to the size of the robot that moves in the
premises. The robot moves only one cell forward and back.
During one motion, the object can move to one cell out of
eight empty ones (eight cells around one cell) taking into
consideration that a cell is not occupied by the obstacle.

RRT algorithm is introduced to the software as the only
one, which calculates the motion planning task (fully covers
all empty space). The results have been compared with the SA
algorithm data.

In this research paper, both algorithms have been compared
practically using and combining different locations of
obstacles in the unchangeable two-dimensional space. All the
results have been obtained using one and the same computer
(2.66 GHz processor and 2GB RAM), operating systems
(Ubuntu 12.04.1 LST Linux) have been used. The following
information has been collected:

» the coverage density for each cell;

» the time, which was necessary for both algorithms to plan

the route.

The given illustrations show coverage density (see Fig. 3).
The density scale (see Fig. 2) is the same for all coverage
densities. Coverage density shows how often the robot covers
each cell.
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Fig. 3. Coverage density for the space without obstacles: a.) — for SA; b.) — for RRT
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Fig. 4. Coverage density with the obstacle consisting of 64 cells (the obstacle is in the middle of the premises): a.) — for SA; b.) — for RRT
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Fig. 5. Coverage density with the obstacle consisting of 144 cells (the obstacle is in the middle of the premises): a.) — for SA; b.) — for RRT
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Fig. 6. Coverage density with the 12 random obstacles: a.) — for SA; b.) — for RRT
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Fig. 7. Coverage density with another set of the 12 random obstacles: a.) — for SA; b.) — for RRT
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Fig. 8. Coverage density with the obstacle consisting of 12 cells (the obstacle is in the middle of the premises): a.) — for SA; b.) — for RRT
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Fig. 9. Coverage density with the obstacle consisting of 12 cells: a.) — for SA; b.) — for RRT

Iv.

Different coverage areas of the premises using RRT and SA
algorithms in the identical conditions are shown in the
research paper. The size of the premises during simulation has
not been changed (20 x 20 cells), but the dimensions,
placement and number of obstacles in the premises have been
changed. The simplest case is when the premises do not
contain any obstacles, i.e., they are completely empty. Thus,
the simulation has been performed in the empty premises
using the both algorithms. This process has been repeated
several times. It is very important to stress that the principle of
previously mentioned process has been used for the placement
of any obstacles in the premises, i.e., not only in the case of
completely empty premises. The simulation data has been
calculated as a mean ratio of the number of simulation
iterations. During each simulation, the following
characteristics have been calculated:

 the number of initial empty cells;

+ the time necessary to plan the route in order to cover the

whole premises;

RESULTS

+ the total number of steps, taking into account the facts
that the robot can clean one and the same cell several
times.

Time periods of motion planning for the RRT and SA
algorithms have been compared (i.e., the RRT periods of time
has been divided by the SA intervals of time). The ratio of the
RRT time periods to the SA time intervals is between 1.26 and
1.88 for different placements of obstacles. It means that
motion planning for the SA algorithm is at least 1.26 times
faster. It is very important to stress that periods of time of
motion planning are between 1 and 3 minutes (3 minutes
applies to RRT). Better route planning has been performed by
means of the SA algorithm, as well as the premises have been
covered more regularly that may be observed from the surface
diagram. The SA algorithm shows better results than RRT in
case the number of occupied cells decreases. Fewer steps are
necessary in the case of SA, i.e., by 27.11% to 92.77% less. It
is very important to stress that the number of steps has been
changing between 542 and 1361. The total period of time for
the route can be between 542 and 1361 s (9 and 22.7 minutes)
if considering that a real robot performs 1 step per second (see
Table I).

TABLE |
SOME TYPICAL COMPARISON VALUES BETWEEN RRT AND SA
See Fig. Number tmp rrT (Where Ngrr tmp sa (Where Nsa (where tomp RRT/tmp_sA N, (%) (where
of empty tmp — the time (where N— | ty, — the time N —the N, - less
cells period of the number period of number of number of steps
motion of steps) motion steps) for the SA)
planning) planning)

3 400 188 1092 114 796 1.65 27.11
4 336 163 1078 95 655 1.72 39.24
5 256 93 1021 74 542 1.26 46.91
6 388 239 1361 107 723 1.88 92.77
7 388 164 1142 99 752 1.52 53.47
8 388 162 1293 102 747 1.73 71.38
9 388 162 1236 100 798 1.55 55.68

V.CONCLUSIONS

The period of time for the route is larger than the period of
time for motion planning, and it restricts all the process. The
period of time for route planning can decrease if
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computational power increases. That is why the efficiency of
robot depends on efficiency of route planning, i.e., on the
number of steps. If we admit that the robot covers a cell per
second, we can say the following: the number of steps is equal
to the time in seconds and we can get the sum of both numbers
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stress that the efficiency of the process is strongly related to Press and McGraw-Hill, 2001, pp. 595-601.
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Edvards Valbahs, Péteris Grabusts. Autonoma robota Kustibas plano$ana slégta telpa ar $kérsliem

Darba mérkis bija marSruta planosanas algoritmu izpé&te, kas ietver arT modeléSanas programmas sist€émas izstradi. Programmas sistéma ir nepiecieSama ka
modelé$anas vide simulacijas datu iegliSanai. Programmas produkts ietver sevi SA un RRT algoritmus. Simulacijas dati dod iesp&ju veikt izv€leto algoritmu
daudzpusigu analizi. Analize paredz simulacijas datu interpretaciju un salidzinasanu ar citiem datiem, kas ir iegati, pielietojot marsruta planosanas algoritmus. Ir
iegiiti dazadi telpas parklajumi, pielietojot RRT un SA algoritmus identiskos apstaklos. Telpas izmérs (dimensija) simulacijas gaita netika mainits (20 x 20
ratinas), bet mainijas fiksétu §k&rslu izvietojums telpa un to skaits. Vienkarsakaja gadijuma telpa nesatur nevienu $k&rsli, t.i., ir pilnigi tuk$a. Pilnigi tuksai telpai
tika veikta vairakkartiga simulacija ar abu izvél&to algoritmu palidzibu. IepriekSmin&to darbibu princips tika pielietos arT pie fiks€tu $kér§lu izvietojuma telpa, t.i.,
telpa ar skérsliem. legitie simulacijas dati tika aprékinati, ka vidg&ja vertiba attieciba pret simulaciju atkartosanas skaitu. Katra simulacija tika izskaitlots
sakotngjais tukSo riatinu skaits, marSruta planoSanas laiks un nepiecieSamais solu skaits uzdotas telpas apieSanai abu algoritmu darbibas laika. MarSruta
planoganas laiki abos algoritmos tika salidzinati, un eksperimenti paradija, ka marsruta plano$ana uzdotajai telpai SA algoritms ir efektivaks par RRT. Sadus
algoritmus var veiksmigi pielietot, pieméram, autonoma virszemes transporta celu ierobezojumu model€Sana vai autonomo robotu kustibas ar $kér§liem
planosana. Apliukotos algoritmus var izmantot ari spélu risinajumos, kad marsruta planoSana notiek dinamiska vidé. Tadgjadi So algoritmu pielietoSanas joma var
bt Joti plasa.

Jnsapa Banbax, Ilerepuc I'padycr. IlnianupoBanue 1BUAKEHHS] ABTOHOMHOTO Po60Ta B 3aMKHYTOM NPOCTPAHCTBE € NPENSITCTBUSIMHU

Ilens 3aaun COCTOUT B MCCIEAOBAHUM AITOPUTMOB INIAaHUPOBAHMS MaplLIpyTa, YTO BKIIOYAET TAKXKEe pa3paboTKy NPOrpaMMHOI0 0OecHeYeHUs] MOIEIUPOBAHHS
paboTsl 3THX anropuTMoB. [IporpaMMuas cuctema HeoOXoAUMA UL OTyYEHHS JAHHBIX CHMYIIUH U noanepxusaeT anroputMsl SA u RRT. MozaenupoBanue
NI03BOJISIET TIPOBECTH MHOI'OCTOPOHHUI aHAIM3 CpaBHEHHs pabOTHI BHIOPAHHBIX aITOPHTMOB. AHAIN3 II0JPa3yMeBacT MHTEPIPETAMIO U CPaBHEHHE JaHHEBIX,
KOTOpbIe OBLIH MOTyYEHBI C PA3NUYHBIMU alropuTMaMu. IlomydeHs! pasIHdHble IIIOTHOCTU IEPEKPHITUSI IPOCTPAHCTBA C HCIONb30BaHUEM anroputMoB RRT u
SA. B mporecce MomeIpoOBaHUs IUIOIIAb IPOCTpaHCTBA ObUIa Hem3MeHHOH (20 X 20 KJIETOK), HO YHCJIO NMPEISTCTBUH M MX pa3MelIeHHe MEHSIOCHh 10 XOLy
cHUMymsnuH. B mpocreiimem cirydae HpOCTPaHCTBO HE COAEP)KHUT MPEMATCTBUH, TO €CTh SBJIACTCS HE3alONHEHHBIM. JIJI MyCTOro mpoCTpaHCTBA HPOBOAMIOCH
MHOTOKpaTHOEe MOJEIHPOBaHUE JUIi OOOMX BEIOPAHHBIX AaITOPUTMOB. IIpHMBEIEHHBIH BBINIE IPHHIMI TaKke OBLT HCHOJB30BaH JUISI HPOCTPAHCTBA C
(HKCHPOBAaHHBIM YHCIIOM H pa3MelIeHHeM MpenaTcTBhil. [loqydeHHbIe JaHHBIE MOACIHPOBAHHUS YCPEIHANUCH 10 OTHOMICHUIO K YHCITy KOINYECTBA IOBTOPEHHI
cuMysiun. [t KaXk10i CHMyJISIUH OBUIO BEIYHUCICHO KOJMYECTBO H3HAYAIBHO IyCTHIX KIETOK, BPEMsI INIAHMPOBAHMS MaplIpyTa U KOJIMYECTBO [IaroB 00xona
MPOCTPAHCTBA JJIsI 00OMX AITOPUTMOB. DKCIEPHUMEHTHI IOKa3ajM, YTO ISl JaHHOTO HPOCTPAHCTBA AITOPUTM SA IIaHUpyeT MapupyT 3(GeKTUBHEH, yeM
anroput™ RRT. PaccMOTpeHHbIE alrOpUTMBI MOTYT OBITH YCIEIIHO NPHMEHEHBI, HAaIpUMep, [UISI MOACIMPOBAHMS IPEISTCTBHI JUISI aBTOHOMHBIX Ha3eMHBIX
TPAHCIIOPTHBIX CPEICTB MM B aBTOHOMHBIX POOOTH3MPOBAHHBIX CHCTEMAaX, a TAaKXKe Ul PEIICHHs 3aJad UTPOBBIX CHUCTEM, IIe IUIAHUPOBAHHE MapIIpyTa
MPOBOAUTCSI B IMHAMHUYHOM cpeze. TakuM 00pa3oM, pacCMOTpEHHBIE aITOPUTMBEI MOTYT OBITh HPHMEHEHBI HE TOJBKO B POOOTH3UPOBAHHBIX CHCTEMax IS
IUIAHUPOBAHMS MapIIPyTa.
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