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Abstract- Many pathfinding problems in real-world
applications require real-time computation of the shortest path
between two points in a grid-based environment. It is not a trivial
task. While some shortest path finding algorithms may perform
admissibly in one condition, they may prove inadmissible in other
conditions. HPA* pathfinding algorithm is faster and more
memory efficient than the A*algorithm in relatively large two-
dimensional grids, but this advantage may not apply to very
small or very large grids. The paper deals with the efficiency of
A* and HPA*in two-dimensional grids of different sizes. For the
sake of completeness of the analysis, HPA* efficiency is measured
taking into consideration the number of hierarchy levels and
different cluster sizes. Both algorithms have been implemented
and tests conducted. Experimental evidence is proposed to
demonstrate the algorithm efficiency in various conditions.
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I. INTRODUCTION

The finding of the shortest route between two points in the
smallest amount of time is an important issue in various
industries, starting from navigation systems, artificial
intelligence and robotics and ending with video games. There
are many different pathfinding algorithms and approaches
intended for various needs. A* is a universal algorithm used in
graph traversal and pathfinding. HPA* (Hierarchical
Pathfinding A*) is a version of A* that uses hierarchical
approach to reduce the complexity of a problem. Reduced
search effort using HPA*, compared to A*, results in shorter
execution time even in the worst-case scenarios.

Within the framework of the present research, pathfinding
algorithms A* and HPA* are implemented, and the analysis of
their efficiency is conducted in the environment based on a
two-dimensional grid. Such factors as cluster size, the number
of hierarchy levels and grid size are taken into consideration
while performing experiments.

The main reason for performing the efficiency analysis of
pathfinding algorithms A* and HPA* is determined by the fact
that there is still not enough information about HPA* because
HPA* is a relatively new algorithm [7] and is considerable
improvement over A*.

II. METHODOLOGY

Within the framework of the research, experiments have
been conducted to find the shortest path, using A* and HPA*,
as well as compare the elapsed time and the number of
traversed nodes. Each experiment has been conducted 100
times to reduce the number of random errors.
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To prepare a two-dimensional grid for HPA*, the initial
grid was split into clusters. All grids used in experiments
contained two types of nodes: blocked and passable. 20% of
grid was randomly filled with blocked nodes. Path start and
goal nodes were chosen randomly.

All experiments were conducted using a computer with
CPU running at 2.8 GHz.

Manhattan distance was chosen as a heuristic function,
because it is strictly grid-based distance:

H = lxg - 2zl + by — 2%l (1

Algorithms were implemented assuming that pathfinding
might occur only horizontally or vertically, with no diagonal
movement.

III. ALGORITHM A*

A* is a pathfinding algorithm used for finding an optimal
path between two points called nodes. A* uses best-first
search to find the lowest cost path between start and goal
nodes. The algorithm uses a heuristic function to determine
the order in which to traverse nodes. The heuristic is sum of
two functions:

e G — the exact cost of the path from the initial node to

the current node;

e H — the admissible (not overestimated) cost of reaching

the goal from the current node;

o £ =G +H _ the cost to reach the goal if the

current node is chosen as a next node in the path.

The estimated heuristic cost is considered admissible, if it
does not overestimate the cost to reach the goal [10].

The selection of heuristic function plays an important role
in ensuring the best performance of A*. Ideally H is equal to
the cost necessary to reach the goal node. In this case, A*
would always follow a perfect path and would not waste time
traversing unnecessary nodes. If the overestimated value of H
is chosen, the goal node is found faster, but at the expense of
optimality. In some cases, it may lead to situations, where the
algorithm fails to find a path at all, despite the fact, that the
path exists. If the underestimated value of H is chosen, A* will
always find the best possible path. The smaller H is chosen,
the longer it will take for the algorithm to find a path. In the
worst-case scenario, A* provides the same performance as
Dijkstra’s algorithm [9].

A¥* starts its work by creating two node lists — a closed list
containing all traversed nodes and a list of nodes that are being
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considered for inclusion in the path. Every node contains three
values: F, G and H. In addition to these three values, every
node needs to contain information about the node, which
precedes it, to determine a path, by which this node can be
reached.

IV. ALGORITHM HPA*

Hierarchical pathfinding A* was developed by Adi Botea
and his colleagues in 2004. HPA* is a near-optimal
pathfinding algorithm; it finds paths that are within 1% of
optimal [7]. It is the combination of pathfinding and clustering
algorithms, which works by creating an abstract graph on the
basis of two dimensional grids. Main HPA* principle is based
on dividing the problem into several smaller subtasks, and
caching results for each segment of the path.

Clusterization, used in this algorithm, is relatively simple: a
low resolution two-dimensional grid # % & is created, where s
is a new grid size. New grid is placed directly above the initial
grid. Each node in a new grid becomes a cluster, all initial grid
nodes that are located under a corresponding cluster are
considered to be members of this cluster. Each cluster is
considered a separate graph. An abstract graph is then created
to connect all separate graphs. To achieve that border nodes
are found between neighbouring clusters, nodes that are on the
outer side of the cluster are checked. If the node has a passable
neighbour in an adjacent cluster, it is considered connected,
and connection between two graphs representing clusters are
added to an abstract graph. In cases, where there are many
adjacent connections between two clusters, they are combined
into one entrance. Entrances are then added to an abstract
graph and connected. Abstract graph still lacks internal edges
(paths between entrances inside one cluster). These edges are
created by running A* algorithm through each node in a
separate cluster. If A* finds a path, its cost becomes the costs
of the found abstract edge, otherwise the edge is not added to
the abstract graph. Inter-cluster edges inherit their costs from
the initial graph edge cost. Finally, the abstract graph is ready
for pathfinding using A*.

HPA* pathfinding consists of two stages called pre-
processing and online search. During pre-processing, the start
and goal nodes are inserted into the abstract graph, and inter-
cluster edges are added. Then A* is used in the abstract graph
to find the shortest route. During online search, the shortest
route found in the abstract graph is refined to a full path in the
initial graph using A*. To find a full path from the start to goal
node, A* is used in each cluster on nodes that connect clusters.
Finally, the partial results from each cluster are combined into
a full path.

V. PATHFINDING RESULTS

Comparison of algorithm efficiency was determined by
applying them to static two-dimensional grids of various
sizes.. Grid sizes (64x64, 128x128, 256x256, 512x512 and
1024x1024) were chosen to assess the efficiency of
pathfinding algorithm in small grids and in large grids.

Various cluster sizes (16, 32 and 64) were used with HPA*
to determine cluster size impact on the efficiency of the

algorithm. The smallest cluster size was 1/4 of the smallest
grid size.

Experimental results have shown that under the given
searching conditions, HPA* is faster than A* for each grid of
various sizes. In smaller grids (64x64), difference in the
elapsed time is small; advantage of HPA* increases when
sizes of the grid grow larger. HPA* performance also
increases adding more hierarchy levels from one to three.
Again, the greatest performance advantage is achieved with
large-size grids.

HPA* cluster size impact on overall performance, in the
conducted experiments, is relatively small.
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Fig. 1. A* pathfinding result in a 64x64 node grid

Figure 1 shows the end result of pathfinding in a 64x64
node two-dimensional grid using A* algorithm. The found
path is depicted by a black line; light gray areas indicate the
visited nodes.
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Fig. 2. HPA* pathfinding result in a 64x64 node grid

Figure 2 shows the end result of pathfinding in a 64x64
node two-dimensional grid using HPA* algorithm. The found
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path is depicted by a black line; light gray areas indicate the
visited nodes. Dark gray areas represent clusters that were
disregarded for final search.

VI. EXECUTION TIME

Table I shows the execution time results for finding the
shortest route. Since A* uses no abstraction, it contains zero
levels of abstraction (L0). HPA* uses one to three levels of
abstraction (L1 — L3). Only HPA* wuses -clusterization;
therefore, A* does not have a cluster size associated with it.

TABLE 1
PATHFINDING LENGTH, MS
Algorithm | Abstraction | Cluster | Grid size
levels size 64 | 128 | 256 | 512 | 1024
A* 0 - 6 38 281 | 2940 | 36737
HPA* 1 16 6 14 58 434 4127
2 16 6 20 52 216 1367
3 16 6 20 98 204 809
1 32 3 14 55 386 4401
2 32 3 14 52 217 1276
3 32 3 15 52 190 775
1 64 2 10 48 287 4094
64 2 10 50 201 1228
3 64 2 10 51 205 756
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Fig. 3. Pathfinding results in a 64x64 node grid

Figure 3 graphically shows the algorithm execution times in
a 64x64 node grid. A* and HPA* with one abstraction level
find the path in 6 ms. Increasing the number of HPA*
abstraction levels results in faster execution times; it takes less
time to execute both online search and pre-processing phases.
In a 64x64 grid, HPA* cluster size does not impact executions
times.
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Fig. 4.Pathfinding results in a 128x128 node grid

Figure 4 graphically shows the algorithm execution times in
a 128x128 node grid. For this grid size, HPA* is faster than
A¥* in all cases. The diagram shows that in this particular case
HPA* takes less time to find the shortest route, when using a
larger cluster size.
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Fig. 5. Pathfinding results in a 256x256 node grid

Figure 5 graphically shows the algorithm execution times in
a 256x256 node grid. HPA*, in all cases, finds the shortest
route considerably faster than A*. The diagram shows that
HPA* pre-processing phase takes more time than online
search. In a 256x256 grid, the cluster size changes have no
noticeable impact on overall performance.
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Fig. 6. Pathfinding results in a 512x512 node grid

Figure 6 graphically shows the algorithm execution times in
a 512x512 node grid. HPA*, in all cases, finds the shortest
route considerably faster than A*. The diagram shows that
HPA* pre-processing phase length increases with the number
of abstraction levels, but online search length decreases
noticeably.

40000 4
35000 A
30000
25000 A
20000

15000 Online search

Execution titne (s}

10000 ™ Freprocessing

5000 A

[an)
A*LO I

HEA*11 18
HEA*12 18
HEA*13 18
HEA*11 32
HEPA*12 32
HEPA*1.3 32
HEA* 11 64
HEA* 12 64
HEA*13 64

Fig. 7. Pathfinding results in a 1024x1024 node grid

Figure 7 graphically shows the algorithm execution times in
a 1024x1024 node grid. HPA*, in all cases, finds the shortest
route considerably faster than A*.The diagram shows that
HPA* pre-processing phase length increases with the number
of abstraction levels, but online search length decreases
noticeably.

VII. THE NUMBER OF TRAVERSED NODES

Table II shows the number of nodes traversed in the
experiment. With the increase in size of two-dimensional grid,
the number of traversed nodes increases considerably.

Experimental data shows that HPA* traverses fewer nodes
than A* in all cases to find a path between the start and goal
nodes. The number of traversed nodes decreases with the
increased number of HPA* abstraction levels.

TABLE IT

TRAVERSED NODES

Algorithm | Abstraction | Cluster | Grid size
fevels size 764 [ 128 | 256 | 512 | 1024
A* 0 - 905 | 3575 | 8533 | 40333 | 104109
HPA* 1 16 492 | 1684 | 4678 | 16610 | 75085
2 16 463 | 1046 | 3819 | 11842 | 38822
3 16 425 | 1014 | 2513 | 7016 | 24245
1 32 466 | 1343 | 4514 | 12863 | 63523
2 32 454 | 1334 | 3551 | 10629 | 41491
3 32 432 | 1062 | 2910 | 8319 | 24620
1 64 349 | 1009 | 4371 | 15791 | 59221
64 307 | 840 | 3709 | 10356 | 35844
3 64 303 | 683 | 3473 | 9463 | 22007
When using larger cluster sizes, HPA* traverses fewer

nodes than using smaller clusters. It can be explained by a
larger number of inter-cluster entrance creation operations,
when using smaller cluster sizes.
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Fig. 8. The number of traversed nodes while using cluster size 16x16

Figure 8 graphically shows the number of traversed nodes
for two-dimensional grids of various sizes using cluster size
16x16.
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Fig. 9. The number of traversed nodes while using cluster size 32x32

Figure 9 graphically shows the number of traversed nodes
for two-dimensional grids of various sizes using cluster size
32x32.
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Fig. 10. The number of traversed nodes while using cluster size 64x64

Figure 10 graphically shows the number of traversed nodes
for two-dimensional grids of various sizes using cluster size
64x64.

VIIL

In this paper, A* and HPA* efficiency dependence on grid
size has been analyzed: algorithm execution times and the
number of traversed nodes have been measured.

HPA* performance has been the same only in a 64x64 node
grid using cluster size 16; in all other cases HPA* execution
has been faster than A*. Several abstraction levels with HPA*

CONCLUSIONS

have produced faster execution times. This is especially
noticeable with grids of larger sizes.

Increasing cluster size from 16 to 64 yields fewer traversed
nodes during the pathfinding process. As a result, memory
usage is reduced.

HPA* advantage over A* would increase even more in case
the grid was static, and repeated pathfinding was provided. It
would be enough to carry out pre-processing phase only once,
and then use these results for every online search, while A*
would have to re-search the grid from the beginning every
time.
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Imants Zarembo, Olegs UZga-Rebrovs. Isaka cela meklgSanas algoritmu A* un HPA* efektivitates atkaribas no reZga izméra analize

Daudzas realas pasaules cela mekléSanas problémas prasa isaka cela atraSanu starp diviem punktiem divdimensiju rezg1 realaja laika. Kamér dazi 1saka cela
mekl&Sanas algoritmi var darboties pienemami vienos apstak]os, citos tie var biit nepienemami. A* ir universals algoritms, ko izmanto gan cela mekl&Sana, gan
grafu apieSana. HPA* ir relativi jauns algoritms, kas ir atraks un atminu efektivak izmantojo$s neka A* relativi lielos divdimensiju rezgos, bet §1 prieksrociba var
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neattiekties uz loti maziem vai loti lieliem statiskiem divdimensiju rezgiem. Raksta tiek skaitlota A* un HPA* efektivitate dazadu izméru divdimensiju rezgiem,
nemot vera tadus parametrus ka dazadu hierarhijas limenu skaitu un dazadus klasteru izm&rus. Algoritmi tiek realiz&ti un izpilditi eksperimentali. Lai
demonstrétu algoritmu efektivitati dazados apstaklos, tika realizéta eksperimentu s€rija, kas arT paradija HPA* priekSrocibas salidzinajuma ar A*.Izvéléto izméru
divdimensiju rezgos, kas ir aizpilditi ar nejausa kartiba izvietotiem $kér§liem, HPA* atrdarbiba vienada ar A* atrdarbibu tikai 64x64 mezglu divdimensiju rezgi,
izmantojot klastera izméru 16.Visos citos gadijumos HPA* izpildes laiks bija Tsaks neka A*. Vairaku hierarhijas limenu izmanto$ana samazinaja HPA* cela
mekl&$anas ilgumu, kas Tpasi labi bija redzams lielako izméru rezgos. Picaugot izmantojamo hierarhijas limenu skaitam, HPA* reala laika cela mekléSanas fazes
ilgums samazinajas, kamer priekSapstrades laiks pieauga, rezultata sniedzot 1sakus summaros algoritma izpildes laikus. Klasteru izméra palielinaSana samazina
cela meklesanas laika apieto mezglu skaitu visiem apskatitajiem divdimensiju rezgu izmériem, tada veida samazinot algoritma izpildei nepiecieSamas atminas
apjomu. HPA* algoritma priekSrociba par A* butu vél lielaka situacijas, kad statiska divdimensiju rezgl ir nepiecieS8ama atkartota cela meklé$ana. HPA*
prieksapstrades fazi butu pietickami veikt tikai vienu reizi un visas vélakas reala laika meklésanas balstit uz prieksapstrades rezultatiem. Kamér A* katru reizi
naktos sakt mekl€Sanas procesu no jauna.

Hmant 3apembo, Oner Yikra-PeOpos. AHanu3 3aBHCHMOCTH 3(¢eKTHBHOCTH aJropuTMOB NoMcka KpaTyaiimero mytu A* m HPA* or pa3mepa
JABYMEPHOIi peleTkn

B peambHOM Mupe MHOTHE 3a/audl IIOUCKA KpaTdaiflmero myT TpeOyIOT HAaXOXICHHS IyTH MeXIy ABYMs TOUYKAMU B pealbHOM BpeMeHU. B To Bpems kak
HEKOTOpbIE AJITOPUTMBI MOMCKA KpaTYaiIiero IMyTH B OJHHX OOCTOSATENBCTBAX PabOTAIOT NpHEMIIEMO, B APYTHX OHM HENpHeMIeMBbl. A* - yHUBepCaJIbHBIH
ITOPUTM, KOTOPBIN MPUMEHSETCS KaK JUIsl HAXOXKJICHUS KpaTYaiIlero myTH, TaK v s 00xoxkaeHus rpados. HPA* - oTHOCHTENBbHO HOBBIIT alNropuT™, KOTOPBII
ObIcTpee U ynmoTpeOsieT MeHbIIe MaMATH, YeM A* B CpaBHHTENHHO OOIBIINX CTATHYHBIX PEIIETKAaX, HO 3TO NMPEHMYIIECTBO MOXKET HEe IPUMEHATHCS K OUeHb
MaJIeHBKUM HJIM OYeHb OOJIBIINM pemeTkaM. B cratbe onpenensercs apdexTuBHOCTs anroputMoB A* 1 HPA*, npuMeHEeHHBIX K IByMEPHBIM peIleTKaM pa3HbIX
Pa3sMepoB, YUHTHIBAsl TAKUE MapaMeTphl, KaKk KOIUYECTBO YPOBHEH HepapXUM M pa3Mepbl KIAcTepoB. AJITOPHTMEI OBUIH peanu30BaHbl U HaJ HUMHU HPOBEICHBI
9KCHepUMEeHTH. UTOOB! MpOJEeMOHCTPHPOBATh 3()(PEKTUBHOCTE aITOPUTMOB B PA3HBIX OOCTOSTENLCTBAX, OBbLIA IPOBEJECHA CEPHs DKCIIEPHMEHTOB, KOTOpas
nokaszana npeumymectBo aimropurma HPA* max A*. B HCHONB30BaHHBIX JBYMEpHBEIX pEIIETKax, 3allOJHEHHBIX NPEISTCTBHSAMHU CIydallHBIM 00pasoMm,
npousBouTesnibHOCTE HPA* Obuta paBHa A* Toibko B pelieTke ¢ pasmepom 64x64 y3inoB mpu pasMepe kiaactepa 16. Bo Bcex npyrux ciiydasx CKOPOCTh
pemonHennss HPA* Gbira Beime A*. lcmonp3oBaHWe HECKONBKHX YpoBHeH Hepapxuu B anroputMe HPA* cHmkano moTtpeGmsemMoe BpeMs IS IIOHMCKa
KpaT4arIero ImyTH, 4To 0COOEHHO XOPOMIO OBUIO 3aMETHO B PelIeTKax OONBIIOro pa3Mepa. YBeIMYeHHE pa3sMepa KIIaCTepOB CHIDKAET KOJIMYECTBO NPOIIEHHbIX
y3II0B, TAKUM 00pa3oM, CHI>Kas KOJIMYECTBO HUCHONb3yeMoil maMmaTu. C yBeanueHueM KOIUYecTBa UCIONb3YeMbIX ypoBHel nepapxun HPA* cHmsunocs Bpems
BBINIOJIHEHUS (pa3bl IIOUCKA IyTU B pealbHOM BPEMEHH H BO3POCIIO BPeMs BHIIOIHEHUS IIPeIBAPUTEIHHON 00paOOTKH, CHIDKASL B pe3ylbTaTe CyMMapHOe BpeMs
BEINIONIHEHUs anroput™a. IIpenmymectso HPA* mo cpaBHeHHio ¢ A* Oputo OBI emie GoJblue B ciiydae, KOTJa B CTAaTHYHON pelIeTKe HyXKEH MHOTOKPATHBIN
MOHCK IMyTH. JloctaTouHO ObLTO OBl IpoBecTU a3y MpeABapHTENIbHON 00pabOTKU TOIBKO OAUH Pa3, H 3TH Pe3yIbTaThl B JAaJbHEHIIEM HCIOIB30BATh UL BCEX
MIOMCKOB ITyTH B PeaTbHOM BpeMeHH. B To Bpems kak st A* moHa00UI0Ch Ob HAUMHATH IIOUCKH 3aHOBO KaXKABIH pas.
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