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Abstract – Given an initial set of planar nodes, the problem is to 
build a minimum spanning tree connecting the maximum possible 
number of nodes by not exceeding the maximum edge length. To 
obtain a set of edges, a Delaunay triangulation is performed over 
the initial set of nodes. Distances between every pair of the nodes 
in respective edges are calculated used as graph weights. The edges 
whose length exceeds the maximum edge length are removed. A 
minimum spanning tree is built over every disconnected graph. 
The minimum spanning trees covering a maximum of nodes are 
selected, among which the tree whose length is minimal is the 
solution. It is 1.17 % shorter on average for 10 to 80 nodes 
compared to a nonselected tree. 
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I. MINIMUM SPANNING TREES UNDER CONSTRAINTS 
The task of building minimum spanning trees arises when 

complex networks are designed in order to connect a set of 
nodes [1], [2]. Usually these are supply networks which should 
cover its nodes by paying the least possible cost of the coverage 
[1], [3], [4]. To the contrary, the number of covered nodes is 
naturally desired to be maximum possible. 

The coverage cost is mainly determined by distances 
between every pair of nodes directly linked in the network [5], 
[6]. The sum of these distances is to be minimized. Built over a 
set of nodes connected with edges, a minimum spanning tree is 
a subset of the edges of an undirected graph that connects all 
the nodes without any cycles and with the minimum possible 
total edge length [5], [7], [8]. In other words, the minimum 
spanning tree algorithm connects all the nodes by minimizing 
the cost of the connection [1], [5], [9], [10].  

In many practical problems, building minimum spanning 
trees is constrained to using a limited number of connections 
(edges). Besides, the maximum edge length cannot be 
unlimited. For instance, while building a network of electrical 
power converters supplying the desired voltage to industrial and 
individual customers from electrical power stations, the length 
of any direct connection between two nodes is limited in order 
to minimize electrical loss and leak [1], [11], [12]. A similar 
constraint is imposed on wired tree circuits [4], [6], computer 
[13], [14], measurement [15], broadcasting [16], 
telecommunication [17], and transportation networks [18].  
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II. RELATED WORKS AND MOTIVATION 
Borůvka was the first who solved the minimum spanning tree 

problem dealing with a task of efficient electrical coverage [19]. 
The Borůvka’s algorithm repeats finding the shortest-length 
edge incident to each node of the graph, and adding all of those 
edges to the forest. Each repetition reduces the number of trees, 
within each connected component of the graph, to at most half 
of this former value. Another two commonly used algorithms 
for finding a minimum spanning tree are the Prim’s algorithm 
and Kruskal’s algorithm. Step by step, the Prim’s algorithm 
builds a tree by adding the cheapest possible connection from 
the currently built tree to another node [20], [21]. The starting 
node is arbitrary. The Kruskal’s algorithm builds a tree by 
adding at each step the next shortest-length edge that will not 
form a cycle to the minimum spanning forest [6], [22], [23]. At 
the termination of the algorithm, the forest forms a minimum 
spanning forest of the connected graph, for which the forest has 
a single component and forms a minimum spanning tree. The 
algorithms have nearly the same asymptotic time complexity 
varying from linear to polynomial [24], but the Prim’s 
algorithm is claimed to perform better on dense graphs [25], 
whereas the Kruskal’s algorithm is believed to perform 
acceptably on sparser graphs [1], [23], [26]. However, building 
minimum spanning trees under maximum edge length 
constraint has not been studied yet. Moreover, the algorithms 
perform on a given set of edges (connections), which in real-
world scenarios are yet to be determined for an initial set of 
nodes (locations) [27]. 

III. THE GOAL AND OBJECTIVES 
Given a set of N planar nodes (points whose locations are 

two-component vectors), the problem is to build a minimum 
spanning tree connecting the maximum possible number of 
nodes by not exceeding the maximum edge length. The root 
node, which is to be unconditionally included into the tree, is 
assigned at the start. This is, for instance, the starting node in 
the Prim’s algorithm. The root node can be used as an identifier 
of a minimum spanning tree, if there are a few such trees. 
Although such an identifier will be not unique for a tree, 
disconnected trees will be identified uniquely. To achieve this 
goal, the following eight objectives are to be fulfilled: 
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1. To define an initial set of planar nodes and describe how 
its topology is specified. 

2. To suggest a way of obtaining a set of edges based on the 
given initial set of planar nodes. 

3. To define the metric, by which the edge length is 
calculated. The lengths are to be used as weights of a graph, for 
which a minimum spanning tree will be built. 

4. To impose a maximum edge length constraint on the 
problem solution. To suggest a way, by which the constraint is 
applied to the set of edges obtained from the given initial set of 
planar nodes. 

5. To suggest a method of solving the problem under the 
maximum edge length constraint. 

6. To compare the suggested method performance to solving 
the problem straightforwardly, without considering the root 
node (tree identifier) change. 

7. To discuss the scientific and practical importance of the 
suggested method. Its drawbacks are to be described as well. 

8. To conclude the study and outline what can be advanced 
in further research on building minimum spanning trees under 
constraints. 

IV. INITIAL SET OF PLANAR NODES 
Initially, as it is common in practice, no edges are given, but 

a set of N planar nodes 

  (1) 

is given, on which a minimum spanning tree is to be built by 
not exceeding the maximum edge length denoted by lmax. 
Components xi and yi are horizontal and vertical coordinates of 
node . Although the topology of set (1) is not generally 
specified, the distance between the pair of any two nodes is 
calculated using the common Euclidean metric in [28], [29]. 

V. MAXIMUM EDGE LENGTH CONSTRAINT 
To obtain a set of edges, over which a minimum spanning 

tree can be built, set (1) is triangulated. The triangulation is 
performed by the Delaunay approach [30], [31], mostly 
excluding sliver triangles [32]. Besides, the Delaunay 
triangulation does not maximize the edge-length of the triangles 
[33] that fits the constraint of not exceeding the maximum edge 
length. Instead, the Delaunay triangulation maximizes the 
minimum of all the angles of the triangles [34], [35]. This 
property usually shows up (Fig. 1), but sometimes the slivering 
is not avoidable (Fig. 2). 

Upon the nodes of set (1) are triangulated, a set of Q edges 

 { } { }1 1

Q Q
q q qq q

E j k
= =

= =   E  (2) 

emerges, where edge qE  is determined by nodes 
qj

P  and 
qkP  

connected by this edge for  

 { }1,qj N∈  and { }1,qk N∈  by q qj k≠  1,q Q∀ = . (3) 

The number of edges connecting planar nodes after they are 
triangulated is not necessarily the same for a given N. For 
 

 
Fig. 1. A triangulated set of 36 nodes. The Delaunay triangulation “prefers” 
non-sliver triangles, although here are a few triangles with pretty sharp angles. 

 
Fig. 2. An example of triangulating another set of 36 nodes, where the slivering 
is not avoidable. Here are (at least) four extremely sliver triangles (the arrows 
point at them), which visually almost stretched into their edges. 

 
Fig. 3. A set of 115 edges (2) is a result of triangulating 44 nodes (Q = 115).  
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Fig. 4. A set of 125 edges (2) is a result of triangulating another set of 44 nodes 
(Q = 125). Unlike that in Fig. 3, a few sliver triangles are noticeable here. It is 
also noticeable that the set of these 44 nodes is kind of inscribed into a 
quadrangle being close to a rectangle. The quadrangle is the convex hull of the 
node set. In general, as the convex hull of the node set becomes more rectangle-
shaped, the number of edges in set (2) tends to increase. 

 
instance, there are 115 edges upon 44 nodes are triangulated 
(Fig. 3), but triangulating other 44 nodes results in 125 edges 
(Fig. 4). It would be generally correct to claim that set (2) 
depends on the shape of planar data. 

By the Euclidean metric in , the length of edge qE   
is 

 

 ( ) ( )2 2

q q q qj k j kx x y y= − + −  for 1,q Q= . (4) 

If there was no maximum edge length constraint, a minimum 
spanning tree would be built for a graph with edges (2) and their 
respective weights 

 . (5) 

In this case, the constraint still can exist, but only lmax is set 
either to a sufficiently great value (intentionally or not) or, more 
formally (intentionally), at infinity (Fig. 5). In a general case, 
those nodes whose distances between exceed lmax cannot be 
connected. Thus, the respective edges should be removed. 
Therefore, a subset of edges 

{ } [ ]{ } 11

U U
u u u uu

E j k ==
= = =E  

  (6) 

is formed. Subset (6) contains only edges not exceeding lmax, 

and then a minimum spanning tree is built over this  
subset. 

 

Fig. 5. A minimum spanning tree (highlighted bold) built over 47 nodes 
primarily triangulated. None of the initial Q = 128 edges is removed due to lmax 
is sufficiently great. It also formally means that subset (6) coincides with set 
(2), i. e. U = 128.  

Under too short length lmax, however, subset (6) may be torn 
into two or more disconnected sets (graphs). For instance,  
if *L  is the total edge length and for the set of 47 nodes in Fig. 5 

 * *
max

2
1 23

L Ll
N

= =
−

, (7) 

then 48 out of 128 edges are removed and subset (6) is of 80 
edges, but this subset is torn into three disconnected graphs (see 
Fig. 6, where the removed edges are dash-lined). So, building a 
minimum spanning tree over subset (6) may cause uncertainty 
when such cases of the disconnection occur. 

 

Fig. 6. Subset (6) for 47 nodes in Fig. 5 under maximum edge length (7). The 
subset is a union of the three disconnected graphs. One of these graphs is of just 
three edges (the close-to-be-sliver triangle in the top right). 
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VI. RUNNING THROUGH ROOT NODES 
Let subset (6) be a set of T separate (disconnected) graphs, 

where graph t is of W(t) edges of set  

 { } ( )( ) ( )
1

W tt t
w w

E E
=

= ⊂E  (8) 

and 

( )

1

T
t

t

E E
=

=
U

 by 1 2( ) ( )t tE E = ∅I   

 1 1,t T∀ =  and 2 1,t T∀ =  for 1 2t t≠ . (9) 

In a particular case, when subset (6) forms a single connected 
graph, T = 1 and W(1) = U, (1)E E= . Let the edges in set (8) 
connect M(t) nodes 

 ( ){ } ( ) { }( )
11

M t Nt
i im

m ==
⊂P P , (10) 

i. e., tree t is built over M(t) nodes (10), where the nodes for 
each tree are indexed separately. Let us denote by ( )*L t   
the total edge length of tree t built for graph t with a root  
node  

 ( ) ( ){ } ( )( ) ( )
0 0 1

M tt t
m

m m
=

∈P P  by ( ){ }0 1,m M t∈ . (11) 

Note that ( )*L t  does not depend on the root node. Inasmuch as 
the best tree should connect the maximum possible number of 
nodes, only trees that cover the maximum number of nodes are 
considered further. Thus, the maximal integer is selected from 
the set of all possible numbers ( ){ } 1

T
tM t = . Subset 

 ( )max
1,

arg max
t T

T M t
=

=  (12) 

contains all indices of trees that cover the maximum number of 
nodes. Therefore, the maximum number of nodes is 

 ( )max maxM M t=  for max maxt T∈ . (13) 

Then the minimum of total edge length ( )*L t  is searched over 
trees with index max maxt t T= ∈  by running through any maxT  
root nodes  

( ){ }max

max max

( )
0 0

t
t T

m
∈

P   

in these trees, i. e., by taking a single node { }0 max1,m M∈  in 

every tree and calculating its ( )* maxL t . Thus, a subset 

 ( )
max max

*
max * max maxarg min

t T
T L t T

∈
= ⊂  (14) 

of indices of trees covering Mmax nodes with the minimum of 
total edge length is found. Every tree * *

max maxt T∈  having the 

same length ( )*
** * maxL L t=  in subset (14) is a solution to the 

problem under the maximum edge length constraint. 
Obviously, if T = 1 then *

max max 1T T= =  and the problem is 
solved by just calculating the single minimum spanning tree 
length ( )* 1L . In this case, no maximum number of covered 
nodes by (12) is searched because it is already known as 
Mmax = M(1). In other cases, when T > 1, the maximum number 
of covered nodes is found by (12) and (13), whereupon the set 
of all tree lengths ( ){ }

max max* max t TL t ∈   

is determined after (14) by running through maxT  root  
nodes. 

To compare how the suggested method performs versus 
solving the problem by straightforwardly (randomly or taking 
the first tree) picking a tree out of maxT  trees (when max 1T > ), 
the number of initial nodes is varied as 

 { }10, 20, 30, 40, 50, 60, 70, 80N ∈ . (15) 

The maximum edge length is set to 

  (16) 

by a constraint factor 

 { }1,1.1,1.2,1.3,1.4,1.5β∈ . (17) 

For β = 1 the maximum edge length by (16) is the average of 
the initial set of edge lengths (5) following the Delaunay 
triangulation. For each pair {N, β} the initial set of nodes (1) is 
generated as 

[ ] [ ]80 50 80 50i i i i i ix y = ⋅θ + ϑ + ⋅ξ + ζ +   

 for 1,i N= , (18) 

where θi, ξi are values of two independent random variables 
distributed uniformly on the open interval ( )0;1  and ϑi, ζi are 
values of two independent random variables distributed 
normally with unit variance and zero mean [36], [37]. For every 
triple  

 { }{ }1
, ,N

i i
N

=
βP  (19) 

the problem is regenerated for 100 times. An example of a 
problem with 50 initial nodes for β = 1 has two separate trees, 
and both cover 25 nodes. However, one tree has the total edge 
length of 209.8151 (Fig. 7), whereas the other one has the total 
edge length of 196.6618 (Fig. 8) being 6.269 % shorter. In this 
example, the maximal number of disconnected trees covering a 
maximum number of nodes is 2: max 2T = . 

In the 4800 results of the computational set-up by  
(15)–(18), the maximal number of disconnected trees covering 
a maximum number of nodes varies between 1 and 5:  

{ }max 1, 2, 3, 4, 5T ∈ . 
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Fig. 7. The minimum spanning tree (highlighted bold; the removed edges are 
dash-lined) of one of two disconnected graphs for a problem with 50 nodes 
(N = 50) and β = 1. The tree covers exactly a half of the nodes (Mmax = 25) and 
its total edge length is 209.8151. 

 

Fig. 8. The minimum spanning tree of the other disconnected graph for the 
problem with 50 nodes and β = 1 in Fig. 7. The tree covers the other half of the 
nodes (Mmax = 25), but its total edge length is 196.6618. This tree is 6.269 % 
shorter than that in Fig. 7. 
 

There are 4523 problem instances with max 1T =  and 233 
instances with max 2T = . The tree triple covering a maximum 
number of nodes ( max 3T = ) has occurred rarely – it is just 34 
times, and the tree quadruple ( max 4T = ) has been registered 8 
times. The rarest instance of five trees covering a maximum 
number of nodes ( max 5T = ) occurred only 2 times, both by the 
severest maximum edge length constraint (β = 1.5): one with 10 
nodes and the other one with 30 nodes (Fig. 9). The latter is 
solved to a tree whose length is 21.6192, while the lengths of 
the other four trees are 24.4593, 24.6687, 28.8194, 32.6425 
(listed in ascending order of their least root nodes). Without 
considering the root node change, the average loss in the total 
edge length would be 

21.6192 24.4593 24.6687 28.8194 32.6425 1.2231
5 21.6192

+ + + +
≈

⋅
. 

The maximal loss is far more impressive: 

{ }max 21.6192, 24.4593, 24.6687, 28.8194, 32.6425 1.5099
21.6192

≈ . 

In general, the average and maximal losses being relevant for 
those 277 instances of max 1T >  are respectively calculated  
as 

 

Fig. 9. The instance of 30 nodes and β = 1.5 (the severest maximum edge length 
constraint), for which the minimum spanning tree (highlighted bold) covers 5 
nodes (Mmax = 5). The tree has the total edge length of 21.6192, while the other 
four trees covering 5 nodes have lengths 24.4593, 24.6687, 28.8194, 32.6425. 
These trees are easily spotted due to each of them comprises 4 edges. The 
remaining, sixth, tree comprises just 2 edges, and therefore max 5T =  here. 
Compared to the solution tree, the four trees are longer by 13.137, 14.1055, 
33.3045, and 50.9887 %, respectively. These are indeed very significant 
differences, so determining the shortest tree in this instance would be quite 
important and efficient in practice. 
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( )
max max

* max

max **

t T

L t

T L
∈

⋅

∑
 (20) 

and 

 
( )

max max
* max

**

max
t T

L t

L
∈  (21) 

for every triple (19). Average losses (20) averaged over 100 
instances (19) are presented in Table I. Here and below 
maximal values over the number of nodes are highlighted bold; 
maximal values over the constraint factor are highlighted dim. 
These values show that the average loss tends to increase as the 
maximum edge length constraint is made severer. The 
rightmost column, however, shows that the average loss decays 
as the number of nodes increases. Nevertheless, the overall 
average (here and below highlighted with larger font) implies 
that, without solving problem (14), the solution tree is more 
than 1 % longer on average. Table II presenting maximal losses 
(21) averaged over 100 instances (19) confirms these trends. 
The bold-and-dim patterns in Tables I and II coincide. The 
averaged maximal loss is also at 10 nodes by the severest 
maximum edge length constraint. The overall average is 1.0233 
that is the averaged maximal loss approaches 2.33 %. It is 
noteworthy that there are 300 instances (50, 60, 80 nodes for 
β = 1.1, β = 1, β = 1, respectively) solved by max 1T = . 

TABLE I 
AVERAGE LOSSES (20) AVERAGED OVER 100 INSTANCES (19) 

β 
N 1 1.1 1.2 1.3 1.4 1.5 Average 

10 1.0052 1.0157 1.0544 1.0551 1.0514 1.0722 1.0423 

20 1.0066 1.0276 1.0072 1.0142 1.0244 1.0418 1.0203 

30 1.0065 1.003 1.0094 1.0092 1.0256 1.0195 1.0122 

40 1.0006 1.0047 1.0004 1.0044 1.0048 1.0112 1.0043 

50 1.0003 1 1.0016 1.0064 1.0042 1.003 1.0026 

60 1 1.0004 1.0006 1.0075 1.0077 1.0144 1.0051 

70 1.0013 1.0009 1.0005 1.0024 1.0098 1.0049 1.0033 

80 1 1.0018 1.0003 1.0022 1.0073 1.0065 1.003 

Average 1.0026 1.0067 1.0093 1.0127 1.0169 1.0217 1.0117 

TABLE II 
MAXIMAL LOSSES (21) AVERAGED OVER 100 INSTANCES (19) 

β 
N 1 1.1 1.2 1.3 1.4 1.5 Average 

10 1.0104 1.0323 1.1097 1.116 1.1081 1.138 1.0858 

20 1.0133 1.0488 1.0145 1.0285 1.0491 1.0891 1.0405 

30 1.013 1.0061 1.0189 1.0161 1.0474 1.0411 1.0238 

40 1.0012 1.0093 1.0008 1.0079 1.0099 1.0227 1.0086 

50 1.0007 1 1.0032 1.0128 1.0084 1.006 1.0052 

60 1 1.0007 1.0012 1.0149 1.015 1.0258 1.0096 

70 1.0026 1.0018 1.0011 1.005 1.0206 1.0099 1.0068 

80 1 1.0034 1.0007 1.0044 1.0146 1.0131 1.006 

Average 1.0051 1.0128 1.0188 1.0257 1.0341 1.0432 1.0233 

The worst-case scenario cannot be excluded, too. Thus, 
Table III presents maxima of average losses (20) over 100 
instances (19). The bold-and-dim pattern slightly differing from 
that in Tables I and II fits the abovementioned loss trends. The 
hugest loss has occurred for an instance of 20 nodes and β = 1.1; 
the minimal maximum of average losses (20) has occurred for 
an instance of 60 nodes and the same constraint factor. The 
overall average implies that, without solving problem (14), the 
solution tree is more than 42 % longer in the worst case of the 
average loss. Table IV presenting maxima of maximal losses 
(21) over 100 instances (19) has the same worst-case scenario 
pairs of N and β. The worst loss is 5.217, but there are three 
trees ( max 3T = ) covering just 4 nodes (Mmax = 4). More 
practically valuable are the instances with 40 to 80 nodes, where 
more nodes are eventually covered by the best tree (just like the 
instance illustrated in Figs. 7 and 8), although the potential loss 
is not that huge. Such an instance is illustrated in Fig. 10 for 70 
nodes and β = 1.3, where the best tree covers 15 nodes having 
the length of 70.6549 (the lengths of the other two trees 
covering the same number of nodes are 78.7802 and 91.191, 
listed in ascending order of their least root nodes; the trees are 
shown in Fig. 11 in a simplified presentation style). Herein, the 
maximal loss is 1.2907 and the average loss is 1.1352 (both are 
seen in Tables IV and III), which are very significant if solving 
problem (14) is ignored. In fact, there are many such examples 
among those 27 instances. 

TABLE III 
MAXIMA OF AVERAGE LOSSES (20) OVER 100 INSTANCES (19) 

β 
N 1 1.1 1.2 1.3 1.4 1.5 Average 

10 1.2546 1.7384 2.5371 2.5371 2.4575 2.9739 2.2498 

20 1.327 3.426 1.7246 1.9052 1.4753 1.6537 1.9186 

30 1.5025 1.1019 1.3496 1.6758 1.6758 1.3873 1.4488 

40 1.0589 1.2047 1.0283 1.1956 1.1913 1.2808 1.1599 

50 1.0334 1 1.1035 1.212 1.1856 1.1272 1.1103 

60 1 1.0204 1.0612 1.1673 1.2028 1.6735 1.1875 

70 1.1288 1.0876 1.0401 1.1352 1.4674 1.2397 1.1831 

80 1 1.0946 1.0332 1.1483 1.1651 1.1691 1.1017 

Average 1.1632 1.4592 1.3597 1.4971 1.4776 1.5631 1.42 

TABLE IV 
MAXIMA OF MAXIMAL LOSSES (21) OVER 100 INSTANCES (19) 

β 
N 1 1.1 1.2 1.3 1.4 1.5 Average 

10 1.5093 2.5735 4.0742 4.0742 3.9216 4.5607 3.4522 

20 1.6541 5.217 2.4492 2.8104 1.9507 2.3074 2.7315 

30 2.005 1.2038 1.6991 2.1227 2.1227 1.8851 1.8397 

40 1.1178 1.4094 1.0565 1.3912 1.4057 1.5615 1.3237 

50 1.0669 1 1.207 1.424 1.3713 1.2543 1.2206 

60 1 1.0407 1.1224 1.3346 1.4056 2.0235 1.3211 

70 1.2575 1.1752 1.0803 1.2907 1.9348 1.4794 1.3696 

80 1 1.1892 1.0665 1.2966 1.3301 1.3382 1.2034 

Average 1.3263 1.8511 1.7194 1.968 1.9303 2.0513 1.8077 
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Fig. 10. The instance of 70 nodes and β = 1.3, for which the minimum spanning 
tree (highlighted bold) covers 15 nodes (Mmax = 15). The tree has the total edge 
length of 70.6549, while the other two trees (shown in Fig. 11) covering 15 
nodes have lengths 78.7802 and 91.191. Compared to the solution tree, the two 
trees are longer by 11.5 and 29.07 %, respectively.  

 

 
Fig. 11. The two trees in Fig. 10, where each covers 15 nodes, but is longer by 
11.5 % (top) and 29.07 % (bottom). The removed nodes are not shown. 

The bold-and-dim patterns in Tables III and IV also coincide. 
The overall average is 1.8077, i. e., is the averaged maximum 
of maximal loss exceeds 80 %, which is quite significant.  
All those results in Tables I–IV remain roughly the same in 
their trends if the part of normal distribution in generating node 
locations is increased. If the part is 10 times increased,  
that is 

[ ] [ ]80 10 50 80 10 50i i i i i ix y = ⋅θ + ⋅ϑ + ⋅ξ + ⋅ζ +   

 for 1,i N= , (22) 

there are 4592 problem instances with max 1T = , 186 instances 
with max 2T = , 17 instances with max 3T = , and 3 instances 
with max 4T = . The rarest instance of five trees covering a 
maximum number of nodes ( max 5T = ) occurred only 2 times, 
both for 10 nodes, but by β = 1.4 and β = 1.5 – unlike the 
instances generated by (18). The overall averages are less than 
those in Tables I–IV (now they are 1.0092, 1.0175, 1.3204, 
1.5908, respectively), but the general pattern described by 
Tables I–IV remains. 

For larger sets of initial nodes this pattern remains also, but 
the losses are weaker and rarer. Thus, when the number of 
initial nodes is varied as 

 { }100, 200, 300, 400N ∈  (23) 

by constraint factor (17) and (22), and the problem is 
regenerated for 100 times for every triple (19), the overall 
averages of average losses (20) and of maximal losses (21) are 
1.0009 and 1.0018 being far less than those in Tables I and II. 
The overall averages of maxima of average losses (20) and of 
maxima of maximal losses (21) are 1.045 and 1.0899, though. 
Thus, in the worst-case scenario of a larger initial set of planar 
nodes, the worst average loss is about 4.5 %, whereas the worst 
maximal loss (on average) is about 8.99 %. The relationship 
between these two overall averages is almost the same as it is 
for problems with (15) generated by (18) and problems with 
(15) generated by (22): the worst maximal loss percentage is 
nearly twice as greater compared to the worst average loss. For 
problems with (23) generated by (22), however, the worst 
average and worst maximal losses are about 10 times as lesser 
compared to the overall averages in Tables III and IV. 
Nevertheless, there is an instance of 400 nodes by β = 1.5 
(Fig. 12), for which the maximal loss by (21) is 1.324 (or, in 
percentage terms, 32.4 %). This is the instance with max 2T = , 
where the solution tree length is 65.0188, and the other tree has 
the length of 86.083. Each of the trees covers 33 nodes 
(Mmax = 33), and eliminating the 32.4 % loss is an efficient 
operation. The average loss by (20) is, obviously, 1.162 (its 
respective percentage 16.2 % is due to there are only two trees). 
Another instance with an impressive potential loss is a problem 
of 100 nodes by β = 1.3, where three trees cover 15 nodes each 
having various lengths (Fig. 13). Despite the maximal loss 
elimination here is 12.2 %, the solution tree is longer than that 
in Fig. 12 and it covers a relatively greater number of nodes 
compared to the trees in Fig. 12. 



Information Technology and Management Science 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 2023/26  

24 

 

Fig. 12. The problem of 400 nodes and β = 1.5, where max 2T =  (the solution 
tree is on the left; these two trees are shown along with initial edges, but the 
removed edges are not highlighted to simplify the visualization). Each of the 
two trees covers 33 nodes (Mmax = 33), which is 8.25 % of the number of initial 
nodes. The solution tree total edge length is 65.0188. The other tree total edge 
length is 86.083, i. e., this tree is 32.4 % longer. If the tree selection is random, 
the potential loss is interpreted as the average one by (20), and it is 

( )0.5 86.083 65.0188 65.0188 1.162⋅ + ≈  (or, in percentage terms, 16.2 %). 

 

Fig. 13. The problem of 100 nodes and β = 1.3, where max 3T =  (these trees 
are shown along with initial edges, but the removed edges are not highlighted). 
Each of the three trees covers 15 nodes (Mmax = 15), which is 15 % of the 
number of initial nodes. Thus, the trees cover a relatively greater number of 
nodes compared to the trees in Fig. 12. The total edge lengths of the trees, from 
the left to the right, are 78.7003, 72.0263, and 70.1428 (the upper tree is the 
solution). Compared to the solution tree, the two trees are longer by 12.2 and 
2.69 %, respectively. The longest tree is on the left, but it is hardly recognizable 
visually. The maximal loss is 1.122 (or 12.2 %). The average loss is 
( ) ( )1 3 78.7003 72.0263 70.1428 70.1428 1.0496⋅ + + ≈  (or 4.96 %).  

VII. DISCUSSION 
Determining the number of disconnected graphs, upon 

removing the edges whose length exceeds lmax, begins from 
finding a first graph (t = 1) and checking whether every next 
node (apart from the nodes in this graph) belongs to this graph. 
If there are no disconnections, i. e., subset (6) forms a single 
connected graph, the problem is solved by building the (single 
possible) minimum spanning tree, where any of the known 
efficient methods can be used. This case appears to be very 
likely for loose maximum edge length constraints. As the 
constraint is made severer, the disconnections are inevitable, 
and the likelihood of two or more disconnected graphs grows. 
The probability of two or more trees covering the same 
maximum of nodes (when max 1T > ) is greater for fewer initial 
nodes. This can also be indirectly inferred from Tables I–IV. 

The suggested method firstly removes too lengthy edges, and 
then it builds either minimum spanning trees over disconnected 
graphs or the single minimum spanning tree if there are no 
disconnections. However, might building the trees be the first, 
followed by removing too lengthy edges? No, it would be 
unreasonable because in this case the removal might tear some 
trees already built, whereupon re-building trees had to be run. 

It may seem that (12) and (14) constitute a two-criterion 
optimization problem. In this problem, firstly, the number of 
nodes covered by a minimum spanning tree is maximized, and 
only then the tree length is minimized. Might these operations 
be accomplished inversely? The answer is negative because 
these operations are not of the same priority or order. 
Obviously, a minimum spanning tree which would connect the 
maximum possible number of nodes is to be built. This is the 
prime purpose. The operation of the tree length minimization is 
run only if there are two and more trees each of which connects 
the same (maximum) number of nodes. 

The suggested method builds the best minimum spanning 
tree under maximum edge length constraint with respect to 
planar nodes by using Euclidean metric (4) to calculate graph 
weights (5). In fact, this is the Euclidean minimum spanning 
tree on the plane. Nevertheless, it does not mean that the 
suggested method is limited to the Euclidean metric. Any other 
metric can be used to calculate weights of Q edges (2), and still 
the method will be valid. Moreover, the edge weight is not 
necessarily to be tied to its length. Then, generally speaking, the 
suggested method will build the best minimum spanning tree 
under maximum edge weight constraint with respect to planar 
nodes, whichever metric is used. The matter is that using the 
Euclidean metric is very common in practice to evaluate the 
edge weight, which is a linear function of the edge length. In 
the considered model, the linear function is formally the non-
scaled direct proportion without bias, by which distances (5) are 
taken as weights. However, even if the function that maps the 
edge length into its weight is nonlinear, it nonetheless relies on 
the Euclidean metric. This is why the constraint of the 
maximum edge length is pinned on the model. In other words, 
the suggested method will build still the best minimum 
spanning tree, whichever approach is used to obtain the weights 
of Q edges (2). 
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The study is an important scientific contribution to the 
domain of graph theory in combinatorial optimization. It further 
extends and supplements the theory of minimum spanning trees 
whose practical importance is very high. The main drawbacks 
are additional identification of disconnected trees (if any) and 
ignorance of potentially efficient routes based on trees covering 
fewer than Mmax nodes. For instance, if the best minimum 
spanning tree is 10 % longer than a minimum spanning tree 
covering Mmax – 1 nodes, this may induce vagueness in making 
a decision on the solution tree for Mmax > 10. Such an issue is to 
be addressed in further research. 

VIII. CONCLUSION 
In order to build a minimum spanning tree connecting the 

maximum possible number of planar nodes by not exceeding 
the maximum edge length, an approach has been suggested that 
successively involves triangulating the initial nodes, removing 
too lengthy edges, determining the disconnected graphs, 
selecting the minimum spanning trees covering a maximum of 
nodes, and selecting the tree whose length is minimal. The 
application of this operation sequence is more relevant for not 
large sets of initial nodes with severe maximum edge length 
constraints. If the last operation in the suggested method is not 
accomplished, but the tree selection is random, the solution tree 
becomes 1.17 % longer on average (see Table I) with the worst 
average case of 42 % (see Table III) for 10 to 80 nodes. If the 
worst tree is selected (the tree covering the maximum of nodes, 
but being the longest among the trees covering the same number 
of nodes), the solution tree becomes 2.33 % longer on average 
(see Table II). In the worst case, the loss exceeds 80 % (see 
Table IV).  

In addition to the optimal coverage, the suggested method 
has also a strong relation and practical application to the metric 
facility location problem [3], [4], [38], [39], where planar 
objects are considered. The study can be advanced in further 
research on building minimum spanning trees for three-
dimensional nodes. Minimum spanning trees of spatial graphs 
have practical application as well [40], [41]. The case when the 
node is of four or more coordinates is a matter of a generalized 
research in this direction. 
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