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Abstract – The analysis of alternative decisions and the choice of 
the optimal – in a given sense – decision is an integral part of 
people’s purposeful activity in all areas of their social life. Many 
formal approaches have been proposed to solve these problems. 
One such approach is expected utility theory, which correctly 
models individuals’ subjective preferences and attitudes to risk. 
For a very long time this theory was the leading approach for 
decision making under conditions of risk. However, numerous 
practical studies have shown its weakness: the theory did not 
explicitly use subjective perceptions of decision outcome 
probabilities in optimal decision-making processes. This research 
has led to the creation and development of approaches to explicitly 
consider the probabilities of outcomes in decision making. This 
paper provides a critical analysis of the descriptive properties of 
expected utility theory and presents various forms of probability 
weighting functions. 
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I. INTRODUCTION 
The origins of probability theory lie in gambling. The 

widespread use of such games in the seventeenth century 
required calculations of the players’ odds in various gambling 
situations. The emergence of probability theory as a science of 
chance was a response to the peculiar needs of society. 

Even before the appearance of probability theory, it was clear 
that the goal of any player was to win as much as possible. 
When it became clear that the players’ chances of winning 
depended on certain random events (favourable cards, a certain 
number of dice rolls), the expected winnings became a measure 
of the players’ successes and failures. This winning could be 
calculated by multiplying the probabilities of different game 
outcomes by the corresponding winnings and losses and 
summing up the obtained results. At the same time, a 
fundamental principle of gambling was formulated: to 
maximise the players’ expected winnings. Nowadays this 
principle, in the context of decision making, is formulated as 
maximising the expected value over the whole set of alternative 
solutions. 

The concept of maximising expected winnings was 
transparent and understandable to professional players. 
However, as knowledge and experience accumulated, it became 
clear that, in specific circumstances, the concept went against 
simple reasoning logic. Let us consider a simple example. Let 
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it be known that due to a slight asymmetry a coin goes tails in 
52 cases out of 100. The player is offered the following game: 
he bets in conventional monetary units (cmu). Then a coin is 
tossed. If the coin goes tails, he wins x cmu. If the coin goes 
heads, he loses his bet. The expected winnings in this game are 
calculated very simply 
 

0.52 0.48 0.04E x x x= − = . 
 

Since the expected winnings are positive, the player may be 
advised to take part in this game. However, obviously, only a 
very risky person would take part in such a game. Most sensible 
people will refuse to play, since the odds of winning and losing 
are only slightly different from each other. 

How to solve this paradox? The first answer to this question 
was given by D. Bernoulli in 1738. He put forward the 
ingenious idea that the utility of money does not increase in 
direct proportion to its quantity, but in a more complex way, 
namely as the logarithm of the quantity of money. Modern 
evidence shows that Bernoulli’s assumption of a logarithmic 
relationship between the utility of money and the quantity of 
money only takes place in certain specific situations. 

Unfortunately, D. Bernoulli’s fruitful ideas about utility have 
been forgotten for almost 200 years. However, it does not 
follow that the concept of utility itself has been forgotten. The 
concept has been used extensively in economics, the study of 
consumer demand and other areas of human activity. An 
empirical study of the behaviour of individuals in risky choice 
situations (gambling, lotteries, etc.) has shown that rationally 
thinking individuals in such situations act to maximise their 
utility. In other words, the concept of utility existed, but there 
was no theoretical justification for the concept. 

A step in the direction of developing a grounded theory of 
utility was the work of E. P. Ramsey and the work of 
B. de Finetti. These works are related to the theoretical 
underpinning of subjective probability theory. Both works 
assumed that when individuals estimate subjective probabilities 
on the basis of a wager, they act in such a way as to maximise 
their expected utility. Thus, in these papers a bridge was built 
between utilities and probabilities. 
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II. CONCEPTUAL FOUNDATIONS OF EXPECTED UTILITY 
THEORY 

The first paper that successfully laid the theoretical 
foundations for expected utility was [1]. In this work, the 
authors proposed a system of axioms about the individual’s 
preferences on a set of risky lotteries (games). They proved that 
if the requirements of these axioms are satisfied, an individual’s 
utility function can be constructed, and the best actions of an 
individual in risky choice situations are those that maximize 
expected utility. 

An essential feature of the von Neumann and Morgenstern 
approach was that the probabilities of relevant outcomes of 
lotteries (games) were assumed to be known and determined in 
an objective way. 

In [2], the author proposed a different axiomatic basis for 
expected utility. In essence, Savage’s approach is a synthesis of 
the ideas of de Finetti and von Neumann and Morgenstern. His 
results consist in both a complete theory of subjective 
probabilities and a complete theory of expected utility. 
Subjective probabilities are estimated based on the principle of 
maximising expected utility. In turn, the subjective probability 
estimates are used to estimate the utility of risky actions. 

Given the fundamental difference between von Neumann 
and Morgenstern’s and Savage’s theories regarding a priori 
existence of probability estimates, von Neumann and 
Morgenstern’s theory is called the expected utility theory under 
risk, while Savage’s theory is called the expected utility theory 
under uncertainty. 

Expected utility theory has found wide application in 
problems of optimal decision choice under risk. Suppose there 
is a standard decision choice problem under risk. Assume that 
all factors of the problem are known and the decision situation 
is modelled appropriately, e.g., using a decision tree. The first 
step in solving this problem is to construct a decision maker’s 
utility function u(K) on the set of values of the evaluation 
criterion K. Then, using the constructed utility function u(K) the 
criterion estimates of all outcomes are transformed into 
corresponding utility estimates. The next step is to calculate the 
expected utility for each alternative decision aj, j = 1,…,m. 

( ) ( )
1=

= ∑
n

j ji ji
i

u a u k p ,      (1) 

where u(kij) – utility estimate of the i-th outcome of the j-th 
alternative decision; 
pij – probability of occurrence of the i-th outcome of the j- th 
alternative decision. 

The optimum decision is chosen according to the condition 

( ) ( ) ( )
1

opt max max
n

j j j j ji ji
i

a u a u k p
=

→ → ∑ .   (2) 

Expected utility theory is an axiomatic theory. One of the 
axioms is the axiom of independence. Let there be three 
alternatives (games, lotteries, solutions) A, B, C, A B  and 
α ∈ (0,1]. Then 

( ) ( )α 1 α α 1 αA C B C+ − + − .     (3) 
 

This axiom states that an individual has well-defined 
preferences on sets of perspectives. If the individual prefers 
perspective A to perspective B, then according to (3) he must 

prefer a linear combination (mixture) of perspectives A and C 
to a linear combination (mixture) of perspectives B and C. 

We have given here the independence axiom of the expected 
utility theory because it will play an important role in the 
subsequent analysis of the descriptive properties of this theory. 
Let us call the fact that expected utility satisfies the 
independence axiom, the first characteristic feature of the 
theory. 

The second characteristic of expected utility theory is that the 
form of the utility function simultaneously reflects an 
individual’s preferences for a set of decision outcomes and his 
attitude towards risk. Let us define this concept in more detail. 
Suppose we have a decision 

( ) ( )( )1 1, ; ..., ,= n nA u x p u x p , 
where u(xi), i = 1,…,n, – utility estimate of the i-th outcome, pi, 
i = 1,…,n – probability of occurrence of the i-th outcome, and 
the outcomes are ordered so that u(x1)<u(x2)<…<u(xn). 

Let us decrease the value of the probability of some outcome 
of the decision A by a value δ and add this value to the 
probability of the outcome with a larger value of expected 
utility. The result is a new solution ′A . If we calculate the 
expected utility values of U(A) and ( )′U A , we have the 

following obvious relation ( )U A′  < U(A). This is due to the 
transfer of a certain fraction of the probability δ from one 
outcome to the other. This transfer decreases the expected 
utility of the first outcome and increases the expected utility of 
the other outcome. Obviously, the increase in the expected 
utility of the second outcome is greater than the decrease in the 
expected utility of the first outcome. It follows that 
( )U A′  < U(A) and ′

A A . 
Thus, the notion of stochastic perspective dominance means 

that shifting some proportion of probability from a less 
favourable outcome of a prospect to a more favourable one 
results in a more favourable decision. 

The fourth characteristic of the expected utility theory is as 
follows. To calculate the expected utility of a decision, only 
estimates of the utility of its outcomes and values of the 
probabilities of these outcomes are needed. At the same time, 
the values of the probabilities of outcomes are included in the 
calculation of the expected utility of a decision as coefficients, 
i.e., the value of the expected utility depends linearly on the 
values of the relevant probabilities. An individual’s preferences 
on the set of outcomes and his attitude to risk are modelled 
using the utility function alone. Thus, an individual’s 
preferences are not directly related to the values of the 
probabilities of the outcomes; these values only contribute to 
the prospect’s estimate of expected utility. This conclusion 
follows directly from the formal definition of expected utility. 

The four properties discussed above characterise expected 
utility theory as a purely normative theory of decision-making. 

The theory has been shown to work in many practical 
applications. Economists often view this theory as descriptive 
in the sense that it describes the rational behaviour of 
individuals. From the perspective of decision choice, the theory 
is seen as a normative theory that specifies how individuals 
should act in risky choice situations. In [3], it is argued that 
expected utility theory can also be seen as a predictive or 
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positivist theory. This is because the theory exhibits high 
predictive accuracy compared to other competing approaches. 

III. CRITICISM OF THE DESCRIPTIVE PROPERTIES OF EXPECTED 
UTILITY THEORY 

Experiments to test the descriptive properties of expected 
utility theory began soon after its emergence. One of the first 
such experiments was organised by W. Edwards [4], [5]. The 
aim of the experiments was to check whether individuals in 
risky choices really behaved as if they were maximising the 
expected utility of relevant prospects, or whether they were also 
taking into account in their choices the probabilities of the 
outcomes of the evaluated prospects. The results of the 
experiments showed unambiguously that in their choices, 
individuals focused not only on the gains and losses of the 
prospects, but also on their probabilities. 

Regarding these results, the author rightly notes “People 
prefer relatively low loss probabilities (and relatively high loss 
quantities) and avoid relatively high loss probabilities and 
relatively low loss quantities. These findings are compatible 
with the hypothesis that people view events with negative 
expected values as less plausible than the same events with 
positive expected values, although they do not prove this 
hypothesis.” 

Similar results are also presented in [6]. In [7] the author, 
using a witty example of deterministic lottery outcomes, 
showed that individuals in risky choice situations implicitly 
consider the probabilities of the outcomes of alternative 
decisions. 

The descriptive properties of expected utility theory have 
been hit hard by the so-called Allais paradox [8]. This paradox 
represents specially constructed choice situations that are 
offered to individuals. From the results of the choices we can 
confidently assess whether they are made on the basis of the 
expected utility theory or on another basis. 

Individuals are asked to choose their preferred lottery in the 
following two choice situations. 

Choice 1 
Lottery 1:  

( )5000000, 0;1000000,1; 0, 0A =  or 

( )5000000, 0.10;1000000, 0.89; 0, 0.01B = . 
Choice 2 

Lottery 2: 
( )5000000, 0;1000000, 0.11; 0, 0.89A =  or 

( )5000000, 0;1000000, 0.11; 0, 0.89B = . 
In these lotteries, winnings are expressed in terms of cmu. 

For the sake of brevity, we will omit these notations in the 
following statement. 

The lottery 1A has a guaranteed winning probability of 
1 000 000 and a zero chance of winning 5 000 000 and 0. In the 
lottery 1B, there is a 0.10 chance of winning 5 000 000, a 0.89 
chance of winning 1 000 000 and a zero chance of not winning 
anything. 

In the lottery 2A, there is a 0.11 probability of winning 
1 000 000, no chance of winning 5 000 000 and a 0.89 
probability of not winning anything. In the lottery 2B, there is a 

probability of 0.10 to win 5 000 000, no chance of winning 
1 000 000 and a probability of 0.89 to win nothing. 

According to expected utility theory, the lottery 1A should be 
preferred to the lottery 1B and the lottery 2A should be preferred 
to the lottery 2B, or the lottery 1B should be preferred to the 
lottery 1A and the lottery 2B should be preferred to the lottery 
2A. 

When a group of individuals was asked to choose their 
preferred lotteries in choice situations 1 and 2, the actual 
selection results were as follows: in the first choice situation 
most individuals chose lottery 1A; in the second choice 
situation, most individuals chose lottery 2A. This choice is in 
complete contradiction to the foundations of expected utility 
theory. 

In their actual choices, individuals were not guided by the 
maximisation of expected utility, but by some other criteria. On 
a simple worldly level, their choices can be justified as follows. 
Their choice of the lottery 1A was associated with an extreme 
reluctance to take a risk, because the lottery is not really a 
lottery in the conventional sense, since it is a guaranteed prize 
of 1 000 000. Here, the individuals were acting on the principle 
that “a bird in the hand is better than a crane in the sky”. In the 
lottery 2A with a probability of 0.10 you can win 5 000 000; in 
the lottery 2B with a probability of 0.11 you can win 1 000 000. 
Since the odds of winning in the two lotteries differ slightly, but 
the winnings differ significantly, choosing the lottery can be 
justified as applying the principle “if you take a risk, take a big 
risk”. 

The Allais paradox is associated with two effects: the general 
ratio effect and the common consequence effect. (These effects 
are sometimes called paradoxes in the literature because they 
are related to the Allais paradox). The general ratio effect can 
be clearly demonstrated with the following example of the 
Allais paradox type [9]. There are two choices between 
lotteries. 

Choice 1 
Lottery А: reliably get 3000;      
Lottery В: (4000, 0.80; 0, 0.20).  

Choice 2 
Lottery А: (3000; 0.25; 0, 0.75);       
Lottery В: (4000, 0.20; 0, 0.80).   

Most individuals prefer the lottery 1A to the lottery 1B and 
the lottery 2B to the lottery 1A. However, according to expected 
utility theory, individuals should have the following 
preferences: 1A preferred to 1B and 2A preferred to 2B, or 1B 
preferred to 1A and 2B preferred to 2A. 

Let us show that the choices of most individuals do indeed 
contradict the theory of expected utility. If we construct a utility 
function, the choice 1 1A B concludes that 

 
(3000) 0.8 (4000)u u> . 

 
On the other hand, the choice 2 2A B  concludes that 
 

0.25 (3000) 0.20 (4000)u u< . 
 

Multiplying both parts of the last inequality by 4 gives 
(3000) 0.8 (4000)u u< . 
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This result is in complete contradiction to the result obtained 

on the basis of the first choice. 
In expected utility theory, the principle of ratio independence 

applies, which states that the results of an election are 
independent of the general ratio α. Formally, the principle can 
be expressed as  

( ) ( )1 , ; 0,1 1 , ; 0,1= − = −A x p p B y q q ,  
if and only if 

( ) ( )2 , α ; 0,1 α 2 , α ; 0,1 αA x p p B y q q= − = − . 
In the lottery presented above, 1A, p = 1 and in the lottery 1B, 

q = 0.80. Let us multiply the values of p and q by 0.25. We have 
αp = 0.25, αq = 0.20. It follows that the probabilities of the 
lotteries 1A and 1B are related with the probabilities of the 
lotteries 2A and 2B, by the relation, namely, the former are 
obtained by multiplying the latter with 0.25. 

The actual choice of individuals on the set of lotteries 
presented above explicitly violates the principle of attitude 
independence and is therefore inadmissible from the point of 
view of expected utility theory. 

In a more general formulation, the effect of the general ratio 
can be represented by the following two pairs of lotteries: 

( )1 , ; 0,1= −C X p p ;  ( )1 , ; 0,1= −D Y q q . 

( )2 , α ; 0,1 αC X p p= − ; ( )2 , α ; 0,1 αD Y q q= − , 

where ( )α 0,1∈ . 
The second effect – the common consequence effect – can be 

demonstrated with the following illustrative example [9]. 
Individuals are asked to choose their preferred lottery in each of 
the following pairs of lotteries. 

Choice 1 
Lottery А: a guaranteed income of 500 000; 
Lottery В: (1000, 0.10; 500 000, 0.89, 0, 0.01). 

Choice 2: 
Lottery А: (5 000 000, 0.11; 0, 0.89);  
Lottery В: (1 000 000, 0.10; 0, 0.90). 

Most individuals prefer the lottery 1A to the lottery 1B in the 
first choice and the lottery 2B to the lottery 2A in the second 
choice. Such choices are at odds with expected utility theory, 
which states that the ‘right’ choices should be either 1 1A B
and 2 2A B , or 1 1B A and 2 2B A . (The explanation for 
these choices is the same as that presented when considering the 
general ratio effect.) 

There have been a large number of experimental studies such 
as those mentioned above. Virtually all of these studies have 
found irrefutable proof that, in real-world situations of risky 
choice, individuals do not follow the prescriptions of expected 
utility theory. They do not focus on maximising expected 
utility, but are guided in their choices by estimates of the 
prospect’s outcomes and, most importantly, estimates of the 
probabilities of these outcomes. These features of real choices 
in risky situations have led to the development of descriptive 
choice theory alternative to expected utility theory. 

Let us refer to [10] in which the authors give the following 
example. Let us imagine the following choice situation in which 
one must choose between being guaranteed $1 000 000 and 
receiving $5 000 000 with probability of 0.98. Most individuals 
prefer the first alternative. According to expected utility theory, 

this means that u(1 000 000) × 1 > u(5 000 000) × 0.98. Now 
let us multiply the values of the relevant probabilities by 0.01. 
We have the following choice situation: get $1 000 000 with 
probability of 0.01 or get $5 000 000 with probability of 0.098. 

According to the independence of choice from general ratio, 
which is postulated in expected utility theory, individuals 
should choose the first alternative in the new choice situation. 
However, most individuals choose the second alternative. This 
is a clear violation of the independence of choice from the 
general ratio and explicitly suggests that the outcomes of 
choices in risky situations are influenced by the probabilities of 
the prospect’s outcomes. 

Other examples of violations of the requirements of expected 
utility theory in real choice situations are presented in [11]–
[14]. 

In what ways do subjective perceptions of probabilities in 
risky choice situations occur? Let us refer to the work of [15]. 
Individuals were asked to choose among simple lotteries 
(x,p; 0,1 − p). Based on the analysis of the election results, it 
was concluded that individuals exhibited four-way patterns of 
attitudes towards risk (Table I). In Table I, c(.,.) is the average 
value of the deterministic equivalent of individuals for each of 
the prospect types. It is clear from the table that individuals 
exhibit a tendency to take risks for wins at low probabilities and 
for losses at high probabilities. On the other hand, individuals 
are risk averse for wins with high probabilities and risk averse 
for losses with low probabilities. 

TABLE I 
FOUR-WAY PATTERNS OF RISK TAKING ATTITUDES 

(SOURCE [15] WITH REFERENCE TO ANOTHER SOURCE) 
 Wins Losses 

Low probability 
( )100, 0.5 14C =  

(tendency to take 
risks) 

( )100, 0.05 8C − = −  
(risk aversion) 

High 
probability 

( )100, 0.95 78C =  
(risk aversion) 

( )100, 0.05 84C − = −  
(tendency to take risks) 

 
These results are fully consistent with those of many other 

empirical studies. 
As expected, utility theory appears to be an unsatisfactory 

descriptive tool for decision-making under risk; the need to 
develop decision-making theories that can model and account 
for the actual choices of individuals outside the strict normative 
requirements of expected utility theory has become clear. First 
and foremost, it is a matter of correctly accounting for 
subjective perceptions of the probabilities of prospective 
outcomes. The idea behind this is to convert (transform) real 
probability estimates into subjective weights that reflect 
individuals’ personal perceptions of these probabilities when 
choosing prospects. In other words, the original probability 
estimates should be weighted. It does not matter whether these 
original estimates are derived objectively or from subjective 
expert judgement. 

IV. PROBABILITY WEIGHTING FUNCTIONS 
A large number of parametric forms of probability weighting 

functions have been proposed. An overview and analysis of 
some common forms of these functions can be found in [10]–
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[16]. At the very beginning of the development of probability 
weighting approaches, a power form of the weighting function 
was proposed 

γ( )w p p= , γ 1> .         (4) 
This function is not at all suitable for correct probability 

weighting. It is sub-proportional over the entire probability 
range [0, 1] and does not reflect the actual subjective perception 
of probabilities in risky choices. 

Let us consider other common parametric probability 
weighting functions. 

 
 - Karmakar’s weighting function [17] 

( )

γ

γγ
( )

1

p
w p

p p
=

+ +
, 0 γ 1< < .    (5) 

A characteristic feature of the Karmakar’s weighting 
function is that in the range of probability values [0, 0.5] the 
weights exceed the values of the corresponding probabilities 
(over-weighting of small probability values); in the range of 
probability values [0.5, 1] the weights are smaller than the 
corresponding probability values (under-weighting of large 
probability values). This nature of the weighting function, in 
general, reflects individuals’ subjective perceptions of 
probabilities. It should be noted that the transition from 
overweighting to underweighting occurs at p = 0.5. 

- Prelec-I probability weighting function [11] 

( )α

ln

1
( )

p

w p
e

−

= , 0 α 1< < .      (6) 

The parameter α is a measure of the subproportionality of the 
probability weights. The smaller the value α is, the more the 
graph of the weighting function deviates from the diagonal line 
(reduction in subproportionality). When α = 1, the weighting 
function is w(p) = p. The graphs of the weighting functions 

intersect the diagonal line at 
1

0.368p
e

= = . 

- Prelec-II probability weighting function [11] 
 

( )α
β ln

1
( )

p
w p

e −
= , 0 α 1< < , β 0> .    (7) 

 
As in the Prelec-I function, the parameter α controls the 

degree of convexity and concavity of the function w(p). Note 
that unlike the Prelec-I function, the graphs of the Prelec-II 
function cross the diagonal line at different points. This makes 
the weighting function (7) a more flexible tool for representing 
individuals’ subjective perceptions of probabilities. 

In [18], the authors suggest using the following probability 
weighting functions for the probabilities of outcomes with 
positive and negative estimates. 

( )( )

γ

1
γγ γ

( )

1

p
w p

p p

+ =

+ −

, γ 0.61=  ,     (8) 

 

( )( )

σ

1
σσ σ

( )

1

p
w p

p p

− =

+ −

, σ 0.69= .     (9) 

Plots of the probability weighting functions (8) and (9) are 
shown in Fig. 1. 
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Fig. 1. Plots of the probability weighting functions (8), (9) [18]. 

The most practical uses are the Prelec-II probability 
weighting function (7) and the Tversky-Kahneman probability 
weighting functions (8) and (9).  

V. CONCLUSION 
Expected utility theory [1] is based on the use of utility 

estimates of the outcomes of alternative decisions instead of 
direct criterion estimates of these outcomes. This approach 
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allows us to model more accurately the subjective preferences 
of decision makers and their attitudes to risk. For a long time, 
the expected utility maximisation approach has been the leading 
approach to choosing actions under risk.  

One of the main shortcomings of the expected utility 
maximisation approach is that the probabilities of relevant 
events and the corresponding outcomes of alternative decisions 
were used only as weights in calculating expected utility. In 
other words, it was implicitly argued that individuals in risky 
choice situations focused only on maximising their expected 
utility without considering the probabilities of outcomes. 

Practical research into the behaviour of individuals in risky 
situations has shown with certainty that, in reality, individuals 
are guided in their choices by the probabilities of the outcomes 
of alternative decisions. The accumulated results of numerous 
studies have convincingly demonstrated the need to consider 
and make practical use of individuals’ subjective perceptions of 
relevant probabilities in their elections. As a result of extensive 
research, various probability weighting functions have been 
proposed. Using these functions, the relevant probabilities were 
transformed into weighting coefficients, which were used in 
place of the original probability estimates in calculating the 
expected utility of alternative choices. 

Another direction of research in the field of decision-making 
has been concerned with the subjective evaluation by 
individuals of the relative importance of the outcomes of 
alternatives. This led to the creation and development of rank-
dependent utility [19]. 

The generalisation of all these results led to the creation of 
cumulative prospect theory [18], which combined expected 
utility theory, the probability weighting principle and rank-
dependent utility theory. Nowadays, this theory is the most 
powerful approach to decision-making under risk. 
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