
Information Technology and Management Science 
ISSN 2255-9094 (online) 
2022, vol. 25, pp. 16–23  
https://doi.org/10.7250/itms-2022-0003 
https://itms-journals.rtu.lv 

 
 

16 
 

©2022 Author(s). This is an open access article licensed under the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0). 
 

Hybrid Classification Model for Biomedical Data 
Analysis 

Natalia Novoselova1*, Igor Tom2 
1,2United Institute of Informatics Problems, Minsk, Belarus 

Abstract – The paper describes a method for constructing a 
hybrid classification model that allows combining several sources 
of biological information in order to build a classifier to identify 
subtypes of complex diseases. The distinctive feature of the method 
is its adaptive nature, i.e. the ability to build efficient classifiers 
regardless of data types, as well as a multi-criteria approach to 
evaluate the effectiveness of a classification. The testing results on 
real biomedical data showed the advantages of the proposed 
hybrid model in comparison with individual classifiers.  
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I. INTRODUCTION 
Different sources of biological information characterise 

various changes that occur in the body at the cellular level 
during the development of a complex disease. In order to take 
into account the variety of data sources and their limited sample 
size we have developed a method for constructing a hybrid 
classification model in order to improve the accuracy of 
diagnosing subtypes of complex diseases. 

The hybrid model is a classification ensemble where 
classification models built on the same or different sources of 
biomedical data are considered as base classifiers. The method 
using several a priori specified classification models [1]–[4] 
allows determining both the individual classifiers of the 
ensemble and the structure of the entire hybrid model. 

In machine learning ensembles of classifiers have a rather 
rich history and are mainly constructed on a single data set in 
order to improve the accuracy of classification [5]–[10]. The 
theoretical justification for improving the accuracy of 
classification using an ensemble is the Condorcets theorem [7]. 
According to this theorem, for a binary classification problem 
and L base classifiers whose error is less than 0.5, the majority 
of the ensemble has an error lower than an individual classifier 
if the errors of individual members of the ensemble are not 
correlated. 

For example, if we have 21 classifiers, and the probability of 
error for each base classifier is p = 0.3 and the errors are 
independent, the majority vote ensemble error probability is 
calculated using the binomial distribution, as in Eq. (1). For the 
case where more than L/2 classifiers gave an erroneous result 
the probability of error Perror is: 
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An important component of building ensembles of classifiers 
is the search for a compromise between the accuracy and 
independence of base classifiers, since more accurate classifiers 
tend to be more dependent [5]. From this point of view, 
ensembles built on heterogeneous data sources can be quite 
guaranteed to improve the accuracy of classification and 
prediction of subtypes of complex diseases or to differentiate a 
case from control. 

The proposed method for constructing a hybrid classification 
model is based on the fact that, as a rule, different classifiers are 
most effective for different data sets, and therefore, it is a 
difficult task to initially select the best classifier for data from a 
particular source of biomedical information. The method 
combines the bagging procedure and aggregation of ranked lists 
to build base classifiers, which allows adaptively adjusting the 
ensemble considering the type of data being classified. To 
ensure independence in the construction of the ensemble, 
various types of base classifiers are considered [1]. In addition, 
the assessment of the base classifiers of the ensemble is based 
on the calculation of several classification efficiency criteria [1] 
and allows selecting the most optimal combination of base 
classifiers corresponding to the maximum value of the 
efficiency of the entire ensemble. 

II. EFFICIENCY CRITERIA OF CLASSIFICATION 
To assess the efficiency of classifiers, in addition to the 

standard accuracy criterion, criteria are used that allow 
considering the imbalance between the number of elements in 
individual classes. More informative criteria can be obtained by 
evaluating the correspondence between the actual and predicted 
class labels on the test set. 

Let B = {B1, B2,…, Bc} define the partition of the test set into 
groups according to their real class label li, where 

  |j i i jB x B l k   . (2) 
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Let |Bi| = ni define the power of class ki. The set 
R = {R1, R2,…, Rc} defines the partitioning of test objects based 
on the predicted class label 𝑙𝑙𝑖𝑖, where 

  | ij i jR x B l k   . (3) 

Let |Ri| = mi define the number of objects predicted to belong 
to class ki. Thus, using the sets R and B the contingency matrix 
N is defined as 

  ( , ) | aij i j a i a jN i j n R B x B l k и l k       , (4) 

where 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑐𝑐. 
The value nij corresponds to the number of objects of the class 

ki for which the class ki is predicted, and nij is the number of 
objects for which the prediction matches the actual class label, 
otherwise there is a discrepancy between the predictions and the 
real class of the objects. 

Using the contingency table, a number of information criteria 
for evaluating the efficiency of classifiers are calculated. The 
precision preci of the classifier D for the class ki, i = 1,…, c 
defined as the ratio of correct predictions to all objects for which 
the class ki  is predicted and is defined as  

 ii
i

i

n
prec

m
= , (5) 

where mi is the number of objects for which the class label ki is 
predicted. 

The overall classifier accuracy is the weighted average of the 
precisions of the classes as follows 

 1 1
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The recall for an individual class ki, i = 1,…, c is the ratio of 
correct predictions to all objects of the class ki and is defined as 

 ii
i

i

n
recall

n
= , (7) 

where ni is the number of objects of the class ki. 
In the case of a binary classification, the positive class recall 

corresponds to the classification sensitivity, and the negative 
class recall corresponds to the classification specificity. 

If the number of classes is relatively small (no more than 
100–150 classes), the considered criteria allow evaluating the 
results of the classification. The higher the accuracy and recall, 
the better it is. To simultaneously assess the accuracy and recall, 
a complex metric F-score is used. F-score is the harmonic mean 
between precision and recall and for class ki is defined as 

 
2 22

1 1
i i ii

i
i i i i

i i

prec recall n
F

prec recall n mprec recall

⋅ ⋅
= = =

+ ++ . (8) 

The overall F-score for the classifier is the average of the  
F-scores for the individual classes. 

III. METHOD FOR CONSTRUCTING A HYBRID CLASSIFICATION 
MODEL 

As part of the research, a general scheme of a hybrid 
classification model has been developed, which allows 
combining several sources of biological information about 
patients in order to build a classification model that allows 
diagnosing subtypes of complex diseases or differentiating the 
case from control. The proposed hybrid model is a classification 
ensemble with the following distinctive features: 

• unified presentation of information from various data 
sources, including harmonization of the list of cases and 
genes/proteins; 

• implementation of the procedure for selecting 
classification features for each individual data source [11], 
[12]; 

• construction of the base or individual classifiers of a 
hybrid model, which can be either a single classifier or an 
ensemble of classifiers built on the same data source; 

• implementation of several integrating schemes of the 
individual classifiers. 

The general scheme of the hybrid model is shown in Fig. 1. 

 
Fig. 1. Diagram of a hybrid classification model. 

The proposed adaptive method for constructing the structure 
of a hybrid classification model combines the procedure of 
bagging and aggregation of ranked lists. 

The method simultaneously uses several efficiency criteria, 
such as accuracy, sensitivity and specificity, to select the 
optimal base classifier for a particular data source. This allows 
both increasing the stability of the model selection under 
conditions of a limited training sample and increasing the 
generalizing ability of the hybrid classification model. 

Each classification efficiency criterion allows ranking the 
classifiers according to its values. In the case of simultaneous 
evaluation of classification results by several criteria, the most 
optimal classifier is determined using weighted aggregation of 
ranked lists. The ordered lists L1,…, LK of classifiers, where K 
is the number of efficiency criteria, are aggregated to obtain a 
single combined list of classifiers ordered simultaneously by all 
K criteria. The optimization objective function in this case is 
defined as follows: 
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where δ is a ranked list of simple classification models of size 
M; d is the proximity function of any pair of ordered lists and 
wi is the weight coefficient corresponding to the value of the 
efficiency criterion. 

In the proposed method, when M is small enough (M < 8), 
the aggregation of the ranked lists in order to minimize the 
function Φ(δ) is carried out using the exhaustive search 
procedure. For more complex optimization problems, 
combinatorial optimization algorithms can be used. The weight 
coefficients wi make it possible to increase or decrease the 
influence of individual performance criteria and contribute to 
the construction of an adaptive structure of the hybrid model. 

General scheme of the proposed method for constructing the 
base classifiers of the hybrid model is presented below. 

Step 1. Initialization. 
A set of training data ( ) ( ){ }, 1n p nX y

× ×
 is given, where n is the 

size of the training sample, p is the dimension of the feature 
space. Determine N as the number of subsamples for the 
bagging procedure. 

Step 2. Sampling. 
Generate the j-th subsample { }* *,j jX y  of size n using 

random selection with replacement. The selection continues 
until the objects of each class are presented in the subsample. 
As a result, some objects can be selected more than once, while 
a number of objects will not be included in the subsample. 
Unpresented objects form an OOB (out-of-bag) set. 

Step 3. Classification. 
Train M classifiers using the j-th subsample. 
Step 4. Performance evaluation. 
Use M trained classifiers to predict class labels for objects in 

the OOB set { }* *

,oob oob

j jX y  not included in the j-th subsample. 

Using known class labels, calculate the values of K efficiency 
criteria. Rank the classifiers according to the values of each 
efficiency criterion and make K ordered lists L1 ,…, LK of  
size M. 

Step 5. List aggregation. 
The ordered lists L1 ,…, LK are aggregated using weighted 

rank aggregation, which will allow determining the best 
classifier ( )1

jA . 

Repeat steps 2–5 N times. 
The above procedure allows you to build the base classifiers 

of the hybrid model, which are both ensembles of classifiers and 
components of the hybrid classification model. 

To predict the class for a new object it is necessary to 
calculate the class label for all N classifiers of the ensemble. 
The base classifiers of the ensemble may represent different 
classification models, and not the same classifier, as, for 
example, in the tree forest method [6]. As a result, the final class 
label of the ensemble is determined by the combinational 
scheme of the ensemble elements. Below are the steps of the 
class prediction procedure. 

Step 1. Individual predictions. 
Use N “best” individual models ( ) ( )

1

1 1, , NA A…  built for each 

subsample of the training set to compute N class label 
predictions for each new object. Given a sample ( )1px

×
 let 

( )1
ˆ ˆ, , Ny y…  determine N predictions from N individual 

classifiers. 
Step 2. Combination by majority vote. 
The final classification is based on the choice of the most 

frequently occurring class among the N predicted labels, and 
corresponds to the majority vote classification 

 ( )
1

ˆ
N

c i
i

argmax I y c
=

=∑ , (10) 

where N is the number of subsamples of the bagging procedure 
and c is one of the class labels. 

Step 3. Determination of class probabilities. 
The probability of the class c is determined using the 

proportion of votes for this class 

 ( ) ( )
1

1 ˆ|
N

i
i

P C c X x I y c
N =

= = = =∑  (11) 

IV. TESTING THE METHOD AND RESULTS OF EXPERIMENTS ON 
DATA 

To test the method and to compare the effectiveness of 
individual classification models of ensembles of classifiers, a 
number of experiments were carried out both on artificially 
generated and real gene expression data from the TCGA 
database [13]. 

The artificial dataset consists of two classes. The objects of 
the first class are generated according to one of two normal 
distributions N({a, a,…, a}, I) and N({−a, −a,…, −a}, I) where 
I is the identity matrix. Objects of the second class are generated 
according to the multivariate distribution 

N({a,−a, a,−a,…, a,−a}, I), 2a
d

= , where d is the number 

of features. Fig. 2 shows the data set with d = 10. 

 

Fig. 2. Projection of an artificially generated data set onto a two-dimensional 
space x1-x2. 
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The general scheme of the experiments consists of the 
following steps: 

• to perform the data preprocessing, including substitution 
of missing values, data standardization; 

• to use of training/test samples or cross-validation 
procedures to evaluate the efficiency of classification 
models, selection of the number of groups for cross-
validation. Choice of efficiency evaluation criteria 
(accuracy, sensitivity, specificity of the model, AUC (area 
under curve)); 

• to select the types of classification algorithms for building 
a hybrid model; 

• to select subsample from data set or several data sets. One 
subsample for each data set includes the same cases. To 
construct the number of classifiers for each subsample and 
select the best one (together with data source) as the base 
classifier; 

• to build a hybrid model by determining the best base 
classifier in terms of efficiency criteria for each subsample 
of the bagging procedure using the aggregation function of 
ranked lists; 

• to predict the class for objects of the test sample (or for all 
groups of the cross-validation procedure). To calculate the 
values of efficiency criteria, both for individual classifiers 
and for the hybrid model; 

• in the case of cross-validation procedure, to calculate the 
average values of the efficiency criteria for all cross-
validation groups. When using training and test samples, 
repeat the above steps n times (𝑛𝑛 = 100) and calculate the 
average values of the efficiency criteria. 

A. Artificially Generated Data 
To test the method a training sample of 100 objects with 1000 

features was generated. The following classifiers were selected 
for building a hybrid classification model: support vector 
machine (SVM), logistic regression with regularization (PLR), 
forest of trees (RF), dimensionality reduction (PLS) and forest 
of trees (PLS+RF), dimensionality reduction (PLS) and linear 
discriminant analysis (PLS+LDA), dimensionality reduction 
(PLS) and quadratic discriminant analysis (PLS+QDA), 
dimensionality reduction (PCA) and linear discriminant 
analysis (PCA+LDA) and multivariate regression using partial 
least squares (PLS). Using the PCA and PLS dimensionality 
reduction methods, five components were extracted. The 
number of samples of the bagging procedure was 50. 

The effectiveness of both individual classifiers and the 
proposed hybrid classification model was evaluated using the 
same test sample with 100 objects. 

The results of testing the proposed method on artificially 
generated data are shown in Table I. For the data, the linear 
discriminant analysis with preliminary dimensionality 
reduction using PCA and the SVM method is significantly 
inferior in efficiency to other individual classifiers. Classifiers 
using PLS dimensionality reduction, such as PLS + RF, PLS + 
LDA, PLS + QDA, have sufficiently high efficiency criteria and 
outperform decision tree without dimensionality reduction. PLS 
+ RF has the highest accuracy and specificity criteria, while 

PLS +LDA has the highest sensitivity value among all 
individual classifiers. The values of the three criteria for the 
hybrid model are comparable to the maximum values for the 
individual classifiers, with the AUC criterion having the highest 
value. 

B. Real biomedical Data 
The experiments were carried out on two datasets (Table II), 

which are the gene expression measurements for cancer 
patients. 

TABLE I 
EFFICIENCY CRITERIA FOR THE ARTIFICIAL DATASET 

 Accuracy Sinsitivity Specificity AUC 

SVM 0.4500* 
(0.0147)** 

0.4620 
(0.0222) 

0.4380 
(0.0203) 

0.4384 
(0.0194) 

RF 0.5550 
(0.0047) 

0.5668 
(0.0333) 

0.5432 
(0.0300) 

0.5836 
(0.0057) 

PLS+LDA 0.6050 
(0.0074) 

0.6004 
(0.0112) 

0.6096 
(0.0115) 

0.6049 
(0.0085) 

PCA+LDA 0.4940 
(0.0065) 

0.5000 
(0.0157) 

0.4880 
(0.0172) 

0.4862 
(0.0079) 

PLS+RF 0.6098 
(0.0075) 

0.6140 
(0.0109) 

0.5996 
(0.0106) 

0.6456 
(0.0075) 

PLS+QDA 0.5980 
(0.0066) 

0.5900 
(0.0156) 

0.6060 
(0.0149) 

0.5981 
(0.0066) 

PLR 0.5214 
(0.0089) 

0.4572 
(0.0100) 

0.5856 
(0.0100) 

0.5283 
(0.0107) 

PLS 0.6004 
(0.0070) 

0.5668 
(0.0163) 

0.6020 
(0.0158) 

0.6448 
(0.0081) 

Hybrid 
model 

0.6068 
(0.0072) 

0.6092 
(0.0119) 

0.6060 
(0.0114) 

0.6504 
(0.0076) 

 
*Mean values of precision, sensitivity, specificity, and AUC for 100 
datasets with N = 100 data items and d = 1000 features. 
**Standard deviations. 

TABLE II 
DESCRIPTION OF REAL DATASETS 

Dataset Number of 
objects 

Number of 
features 

Class labels 

DLBCL 
lymphomas 

77 6286 1. DLBCL -58 
objects 
2. FL – 19 objects 

Breast cancer 130 11217 1. Tumor – 67 
objects 
2. Normal – 63 
objects 

Lung cancer 203 3312 1 AD – 139 objects 
2 SQ – 21 objects 
3 COID – 20 objects 
4 SMCL – 6 objects 
5 NL – 17 objects 

The DLBCL dataset contains samples of two subtypes of 
lymphoma: B-cell and follicular lymphoma. These samples are 
characterized by the expression of 7129 genes. After sliding 
window preprocessing, the measurements were bounded from 
above by 1600, the lower threshold was set at 20. The genes for 
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which the ratio of the maximum to minimum expression value 
was less than three or the absolute value of variation was less 
than 100 were excluded from consideration. Samples were 
normalized with mean and standard deviation. 

Breast dataset contains samples of normal and cancerous 
tissue. Each sample is characterised by the expression of 11 217 
genes. 

Lung dataset contains 203 samples with five subtypes of lung 
cancer characterised by 12 600 genes. Of these, 3312 genes 
were selected with the standard deviation more than 50. 

To build a hybrid classification model for each dataset, we 
used a double cross-validation procedure. Internal cross-

validation was used to select the most efficient classifier based 
on an aggregate efficiency criterion (accuracy, sensitivity, 
specificity), external cross-validation was used to evaluate the 
performance of an ensemble of classifiers. 

Hybrid classification model was built for each dataset and its 
performance was compared with individual classifiers. For the 
DLBCL dataset, a list of features ranked by information content 
was loaded from a file, and the number of features 100, 250, 
500 was sequentially selected to build a classifier. The models 
SVM, PLS+LDA, PLS+QDA, PLS+RF, PCA+LDA, 
PCA+QDA, PCA+RF, PLR were selected as the base 
classifiers. 

TABLE III 
EFFICIENCY CRITERIA VALUES FOR THE DLBCL DATASET 

Number of features Classifier Accuracy* Sensitivity* Specificity* AUC* Number** 
100 svm 0.8482 0.9333 0.6 0.95 156 

pls_lda 0.9 0.9167 0.85 0.9417 147 
pls_qda 0.8857 0.9167 0.8 0.9667 103 
pls_rf 0.8857 0.9333 0.75 0.9667 78 
pca_lda 0.6375 0.7967 0.15 0.5458 4 
pca_qda 0.65 0.83 0.1 0.5233 0 
pca_rf 0.7232 0.8933 0.2 0.5983 3 
plr 0.7429 0.6767 0.95 0.9417 19 
Hybrid model 0.8875 0.95 0.8 0.9667 – 

250 svm 0.9071 0.95 0.75 0.9617 135 
pls_lda 0.9375 0.95 0.9 0.95 168 
pls_qda 0.9375 0.95 0.9 0.9458 99 
pls_rf 0.8982 0.95 0.7 0.925 81 
pca_lda 0.6232 0.7933 0.1 0.4425 1 
pca_qda 0.6321 0.8267 0.05 0.4092 0 
pca_rf 0.6875 0.86 0.15 0.4525 0 
plr 0.8054 0.7433 1 0.95 26 
Hybrid model 0.9357 0.9667 0.85 0.9667 – 

500 svm 0.9239 0.9833 0.75 0.9267 144 
pls_lda 0.9339 0.95 0.9 0.9667 181 
pls_qda 0.9382 0.9667 0.9 0.9417 66 
pls_rf 0.9214 0.9667 0.8 0.9692 96 
pca_lda 0.5304 0.67 0.1 0.2842 1 
pca_qda 0.6232 0.77 0.15 0.4325 1 
pca_rf 0.6482 0.82 0.1 0.2675 0 
plr 0.8179 0.7767 0.95 0.9717 21 
Hybrid model 0.9357 0.9833 0.9 0.9833 – 

All features svm 0.944 0.9833 0.8 0.9517 80 
pls_lda 0.975 0.9833 0.95 0.9708 220 
pls_qda 0.8875 0.95 0.7 0.8917 30 
pls_rf 0.975 0.9833 0.95 0.9917 120 
pca_lda 0.7607 0.8267 0.55 0.7433 5 
pca_qda 0.6881 0.9133 0 0.6033 0 
pca_rf 0.7089 0.8067 0.4 0.7142 0 
plr 0.95 0.9333 1 0.9917 95 
Hybrid model 0.9835 0.9833 0.95 1 – 

* Mean value of 10-fold cross-validation. The number of samples of the bagging procedure is N = 51. 
** The distribution of individual classifiers included in the ensembles. 
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The number of groups for cross-validation was chosen to be 
10, the number of subsamples to select the base classifiers was 
chosen to be 50. Classification efficiency criteria depending on 
the number of features are presented in Table III. 

Fig. 3. Dependence of classification accuracy on the number of features for 
DLBCL dataset. 

 

Fig. 4. Dependence of AUC on the number of features for DLBCL dataset. 

 

TABLE IV 
EFFICIENCY CRITERIA VALUES FOR THE BREAST DATASET 

Number of 
features Classifier Accuracy* Sensitivity* Specificity* AUC* Number** 

50 svm 0.5097 0.3333 0.6714 0.5365 95 

pls_lda 0.5644 0.5476 0.5833 0.6284 140 

pls_qda 0.5868 0.531 0.6452 0.6463 50 

pls_rf 0.5874 0.5643 0.6095 0.6183 100 

pls 0.5951 0.5762 0.6095 0.628 165 

Hybrid model 0.5726 0.5619 0.5833 0.592 – 

100 svm 0.5053 0.2643 0.7238 0.4848 85 

pls_lda 0.5378 0.4952 0.5762 0.6246 120 

pls_qda 0.5296 0.4929 0.5595 0.6086 90 

pls_rf 0.5581 0.5381 0.5738 0.6103 110 

pls 0.593 0.5381 0.6429 0.6356 145 

Hybrid model 0.6162 0.5381 0.6495 0.6483 – 

500 svm 0.4797 0.3643 0.5905 0.5029 120 

pls_lda 0.5695 0.5881 0.55 0.6082 115 

pls_qda 0.5855 0.5738 0.5952 0.619 85 

pls_rf 0.6154 0.5881 0.6405 0.5969 100 

pls 0.5951 0.6881 0.5095 0.6083 130 

Hybrid model 0.626 0.6571 0.5943 0.6529 – 

All features svm 0.539 0.4071 0.681 0.567 110 

pls_lda 0.5627 0.5881 0.5405 0.6311 115 

pls_qda 0.5627 0.5548 0.569 0.5954 65 

pls_rf 0.5378 0.5048 0.569 0.5882 100 

pls 0.5918 0.681 0.5119 0.6325 160 

Hybrid model 0.6156 0.6414 0.6167 0.6443 – 

* Mean value of 10-fold cross-validation. The number of samples of the bagging procedure is N = 51. 
** The distribution of individual classifiers included in the ensembles. 

 

According to Table III, all classifiers for the DLBCL dataset, 
with the exception of classifiers with a preliminary reduction of 
the feature space using PCA, have efficiency criteria close to 

one, which is due to the good separability between the two 
classes. Figs. 3–4 show classification accuracy and AUC versus 
the number of features for several classification models. 
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According to Figs. 3–4, in most cases the hybrid 
classification model has higher classification accuracy and 
AUC regardless of the number of features. For all models (with 
the exception of SVM), the values of classification accuracy 
and AUC increase with the number of features. Moreover, 
according to experiments, increasing the number of features 
does not lead to significant changes in the classification 
efficiency. 

Using the cross-validation procedure and the hybrid 
classification model, only three objects were classified 
incorrectly, two FL objects were classified as DLBCL and one 
DLBCL object was classified as FL. 

For the Breast dataset, a list of features ranked by information 
content was loaded from a file, and the number of features 50, 
100, 500 was sequentially selected to build a hybrid classifier. 
Models SVM, PLS+LDA, PLS+QDA, PLS+RF, PLS were 
selected as base classifiers. The number of groups for cross-

validation was chosen to be 10, the number of subsamples of 
data objects to select the base classifiers in the hybrid model 
was chosen to be 50. Classification efficiency criteria 
depending on the number of features are presented in Table IV. 

According to Table IV, no individual classifier outperforms 
the others in all three efficiency criteria. The PLS model has 
higher accuracy and sensitivity values, the SVM model has 
better specificity values for most feature sets. The hybrid model 
outperforms individual classifiers in terms of accuracy and 
sensitivity, and also has the maximum value of the AUC 
criterion. 

From Table IV, it can be seen that for all models (with the 
exception of SVM), the classification accuracy and AUC 
increase with the number of features. Unlike other classifiers, 
the hybrid model has equally high values for all efficiency 
criteria. 

 
TABLE V 

EFFICIENCY CRITERIA VALUES FOR THE LUNG DATASET 

Classifier Accuracy* Number** 

svm 0.9367 117 

pls_lda 0.9256 346 

pls_rf 0.9213 47 

pca_lda 0.6363 0 

Hybrid model 0.9411  

* Mean value of 10-fold cross-validation. The number of samples of the bagging procedure is N = 51. 
** The distribution of individual classifiers included in the ensembles. 

 

Classification efficiency criteria for the Lung dataset with all 
the features are presented in Table V. As the number of 
subtypes for the Lung dataset equals five, only overall 
classification accuracy was considered as a performance 
criterion. According to Table V, SVM classification model has 
the highest accuracy among the individual classifiers. 
PCA+LDA is the least efficient classifier. The hybrid model has 
the best classification accuracy. 

V. CONCLUSION 
The proposed method for constructing a hybrid classification 

model allows considering the variety of data sources of 
biological information and their limited sample size in order to 
build a classifier to identify subtypes of complex diseases. The 
hybrid model is a classification ensemble where base classifiers 
built on varied sources of biomedical data are considered as its 
basic elements. 

The advantage of the proposed method is the simultaneous 
use of several performance criteria, such as accuracy, 
sensitivity, and specificity for selecting the optimal base 
classifiers for the considered data sources. It will increase both 
the stability of model selection under conditions of a limited 
training sample and the generalizing ability of the hybrid 
classification model. The proposed method using several a 
priori specified classification models and criteria for evaluating 
the effectiveness of classification allows consistently 

determining the structure of both the base classifiers of the 
ensemble and the entire hybrid model. 

The distinctive features of the method are its adaptive nature, 
i.e. the ability to build efficient classifiers regardless of data 
types, as well as a multi-criteria approach to evaluate the 
classification efficiency using weighted aggregation of ranked 
lists. 

The testing results on the artificial and real biomedical data 
show the advantages of the proposed hybrid classification 
model over other types of classifiers. 

REFERENCES 
[1] M. J. Zaki and W. Meira, Data Mining and Analysis: Fundamental 

Concepts and Algorithms. Cambridge University Press, 2014. 
https://doi.org/10.1017/CBO9780511810114  

[2] A. Statnikov et al. “A comprehensive evaluation of multicategory 
classification methods for microbiomic data,” Microbiome, vol. 1, no. 1, 
Art. no. 11, Apr. 2013. https://doi.org/10.1186/2049-2618-1-11  

[3] S. Dudoit, J. Fridlyand, and T. P. Speed, “Comparison of discrimination 
methods for the classification of tumors using gene expression data,” 
Journal of the American Statistical Association, vol. 97, no. 457, pp. 77–
87, Dec. 2002. https://doi.org/10.1198/016214502753479248  

[4] J. R. Quinlan, C4.5: Programs for Machine Learning. Elsevier, 2014. 
[5] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms, 

Wiley, 2014. https://doi.org/10.1002/9781118914564  
[6] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–

32, Oct. 2001. https://doi.org/10.1023/A:1010933404324  
[7] G. Valentini and F. Masulli, “Ensembles of learning machines,” in 

Lecture Notes in Computer Science, vol. 2486, Neural Nets WIRN Vietri-
2002, R. Tagliaferri, M. Marinaro, Eds. Springer, Berlin, Jan. 2002, pp. 3–
19. https://doi.org/10.1007/3-540-45808-5_1  



Information Technology and Management Science 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 2022/25 

23 
 

[8] R. E. Schapire and Y. Freund, Boosting: Foundations and Algorithms. 
MIT Press, 2012. https://doi.org/10.7551/mitpress/8291.001.0001  

[9] O. Okun and H. Priisalu, “Dataset complexity in gene expression based 
cancer classification using ensembles of k-nearest neighbors”, Artificial 
intelligence in medicine, vol. 45, no. 2–3, pp. 151–162, Feb.–Mar. 2009. 
https://doi.org/10.1016/j.artmed.2008.08.004  

[10] T. Hastie, “Multi-class adaboost”, Statistics and its Interface, vol. 2, no. 3, 
pp. 349–360, Jan. 2009. https://doi.org/10.4310/SII.2009.v2.n3.a8  

[11] Y. Wang et al. “Gene selection from microarray data for cancer 
classification – a machine learning approach”, Computational biology and 
chemistry, vol. 29, no. 1, pp. 37–46, Feb. 2005. 
https://doi.org/10.1016/j.compbiolchem.2004.11.001  

[12] H. Liu and L. Yu, “Toward integrating feature selection algorithms for 
classification and clustering”, IEEE Trans. on Knowledge and Data 
Engineering, vol. 17, no. 4, pp. 491–502, Apr. 2005. 
https://doi.org/10.1109/TKDE.2005.66  

[13] The Cancer Genome Atlas. [Online]. Available: 
http://cancergenome.nih.gov/abouttcga. Accessed on: Oct. 6, 2022. 
 
 
 
 
 

Natalia Novoselova received the PhD degree in Computer Science from the 
United Institute of Informatics Problems (UIIP), National Academy of Sciences 
of Belarus (NASB) in 2008. Since 2000, she has been a Senior Scientific 
Researcher at the Laboratory of Bioinformatics, United Institute of Informatics 
Problems, National Academy of Sciences of Belarus (NASB) in Minsk, 
Belarus. Her research interests include data mining methods, notably the neural 
network, genetic algorithms and fuzzy systems and their application to analysis 
of medical and biological data. She is the author of more than 20 research 
publications in these areas. 
Contact information: Department of Bioinformatics, United Institute of 
Informatics Problems, Surganova str. 6, Minsk, 220012, Belarus. Phone: +375-
17-2842092. 
E-mail: novos65@gmail.com  
 
Igor Tom received the PhD degree in Computer Science from the Institute of 
Engineering Cybernetics, National Academy of Sciences of Belarus (NASB) in 
1986.  Since 1999, he has been the Chief of the Department Bioinformatics at 
the United Institute of Informatics Problems of NASB. His current research 
interests are in the fields of the development of intelligent methods of data 
analysis and information technologies for medical and industrial applications. 
He is the author and co-author of more than 170 scientific publications, 
including 50 full papers in journals. 
E-mail: ietom143@gmail.com  

. 
 


	I. Introduction
	II. Efficiency Criteria of Classification
	III. Method for Constructing a Hybrid Classification Model
	IV. Testing the Method and Results of Experiments on Data
	A. Artificially Generated Data
	B. Real biomedical Data

	V. Conclusion

