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Abstract – This study compares the performance of Logistic 
Regression and Classification and Regression Tree model 
implementations in predicting chronic kidney disease outcomes 
from predictor variables, given insufficient training data. 
Imputation of missing data was performed using a technique 
based on k-nearest neighbours. The dataset was arbitrarily split 
into 10 % training set and 90 % test set to simulate a dearth of 
training data. Accuracy was mainly considered for the 
quantitative performance assessment together with ROC curves, 
area under the ROC curve values and confusion matrix pairs. 
Validation of the results was done using a shuffled 5-fold cross-
validation procedure. Logistic regression produced an average 
accuracy of about 99 % compared to about 97 % the decision tree 
produced. 
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I. INTRODUCTION 
The use of data to develop decision-making procedures has a 

long history with diverse approaches aimed at predicting 
outcomes of medical conditions. One of them being the prompt 
diagnosis and management of Chronic Kidney Diseases (CKD). 
A Global Burden of Disease report revealed that the global all-
age death rate attributed to CKD increased significantly by 
41.5 % between 1990 and 2017 [1], having previously being 
ranked 19th on the global cause of death index in 2013 [2]. 
Reducing the mortality rate stemming from kidney disease 
progression begins with early and accurate diagnosis.  

The undesirable outcomes encountered during the treatment 
of kidney diseases have resulted in the need for improving the 
detection of such through various methods, which may include 
engaging the use of selected machine learning approaches. 
While there are a few machine learning prediction techniques 
that can provide insight into making informed decisions 
regarding diagnosis and treatment of diseases, it is often 
difficult to determine which would be best suitable for the 
situation at hand. In this particular case, the study examines 
which is a more suitable algorithm between logistic regression 
(LR) and classification and regression tree (CART) for 
predicting the outcome of chronic kidney diseases, given that 
the amount of available training data has a lesser ratio compared 
to the test data. 
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Classification algorithms from the machine-learning 
knowledgebase are capable of making these predictions by 
learning non-trivial relationships from a collection of training 
data, thereby producing a generalization of these relationships 
that can be used to interpret new separate test data [3]. A typical 
classification algorithm can examine either the linear or non-
linear relationship between a binary outcome and categorical or 
continuous predictor variables depending on whether the 
dataset is linearly separable or not. The accuracy of a linear 
machine on linearly-separable data instances will be 
unpredictable [4]. In essence, the choice of a suitable algorithm 
for prediction of data outcomes can be viewed as fundamentally 
dependent on the kind of dataset in use, whether it be linearly 
separable or not. This is the basis on which the choice of the 
classification algorithms used in this study is predicated. 

Being a simplistic algorithm, logistic regression is oftentimes 
the first point of call for classification tasks, less susceptible to 
overfitting and quick [5]. It is also known to be a linear classifier 
[6]. A decision tree algorithm, on the other hand, is a tree-like 
model of decisions made based on the outcomes of tests 
performed on a set of variables, and can be used on not linearly-
separable data. Each branch represents the outcome of the test 
made and each leaf node obtained represents the final decision 
taken. A variant of the tree algorithm known as classification 
and regression tree works by using the Gini index to split the 
training set into subsets using a feature-threshold value pair, 
selecting the subset with more decrease in impurity [7], [8]. The 
two models described above have been employed over the years 
in the classification of a variety of datasets. Given that both 
models are being utilized for similar purposes, it is imperative 
to perform an investigation in order to gain insight into a 
comparative analysis of logistic regression and decision-tree 
models, their strengths and their respective weaknesses.  

This study will be conducted with the intent to further 
increase the contributions from computational science to 
medicine. The findings from this study will provide insight into 
which algorithm will be a more preferable choice regarding the 
prediction of chronic kidney disease outcomes especially in 
developing countries where scarcity of training data abound. 
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II. RELATED WORK 
The comparison of logistic regression and decision tree 

learning models for binary case classification has been explored 
in numerous medical domains, for instance, the diagnosis of 
acute cardiac ischemia [9] in which logistic regression 
performed better than decision tree using a 60:40 split. In 
another study, a duplicated chronic kidney disease dataset split 
in a 70:30 ratio revealed that the decision forest possessed the 
highest accuracy [10]. A predictive performance comparison of 
few learning approaches on chronic kidney disease progression 
was done using an 80:20 proportion of the dataset [11]. As 
observed above, the amounts of training data have usually been 
higher than half of the total data sizes. Curiosity arises 
regarding the prediction accuracy of machine learning 
algorithms generally whenever the amount of training data is 
much lower than the amount of test data.  

III. MATERIALS AND METHODS 
This section describes the full procedure for this study, which 

was completed using the Python 3.7.7 library together with 
machine learning modules in a Spyder 4.1.3 scientific python 
development environment. 

A. Data and Dataset Pre-processing 
The dataset used in this study was the UCI machine learning 

repository’s Chronic Kidney Disease dataset [12], where the 
rows represent observations recorded and the columns represent 
variables. The original dataset contained a total of 400 rows of 
observations with one row containing invalid data discarded, 
leaving a total of 399 valid observations. The dataset contains a 
range of predictor variables namely ‘Sex’, ‘Age’, ‘sod’, ‘Pot’, 
‘Chl’, ‘Bica’, ‘Urea’, ‘Cre’, ‘UA’, ‘Alb’, ‘Classification’, each 
making up a column containing corresponding values for each 
of the 399 observations. ‘Sex’ and ‘Classification’ are nominal 
variables containing categorical data values. All the variables 
except ‘Classification’ were used to determine if a patient had 
chronic kidney disease or not. Total CKD observations were 
199 and 200 were not CKD. The dataset acquired from the 
repository was observed as having contained eight missing 
values in the ‘age’ column which accounted for 2 % of the total 
number of the column observations, while the ‘Sex’ and ‘Cre’ 
column had only one missing value, about 0.25 % each. The 
columns ‘UA’ and ‘Alb’ contained 355 and 382 missing 
observations which accounted for 88.9 % and 95.7 %, 
respectively, and they had to be discarded as they were deemed 
to be insignificant in predicting the outcome of the disease in 
patients. The requirement for the learning algorithms to accept 
the input data is that the dataset has to be totally numerical. 
Hence, there is the need for the conversion of the alphabetical 
data values in the columns ‘Sex’ and ‘Classification’ to 
numerical values. To achieve it, the values ‘F’ and ‘KD’ were 
mapped to 1, while values ‘M’ and ‘NKD’ were mapped to 0. 

Datasets are usually neither complete nor homogeneous; 
hence, data pre-processing is needed. Missing data may occur 
for a number of reasons, such as malfunctioning measurement 
equipment, values that have not passed quality control criteria, 
human error during data capture, changes in experimental 

design during data collection and collation of several similar but 
non-identical datasets [13]. The undesirable implication is that 
the presence of some missing observations reduces the 
representativeness of the samples involved, which can result in 
the distortion of inferences [14]. Also, it is possible for the lost 
data to generate bias during the estimation of parameters [15]. 
Therefore, it is exigent to devise means of filling the missing 
entries in the dataset before use. This can be performed on the 
dataset by considering a method for imputing the missing data. 
Imputation methods are beneficial because they have the ability 
to increase predictive accuracy in the presence of missing-data 
perturbation [16]. The approach chosen for estimating the 
values of the missing data in this study incorporates a technique 
using the k-nearest neighbour predictive algorithm [17], in 
which the features of N nearest neighbours of the missing 
feature entry are fetched and either averaged uniformly or 
weighted by distance to each neighbour to obtain a value. The 
weighted-distance value was used to fill-in the missing feature 
entry. The data preparation was performed using Pandas [18]. 

B. Research Design 
The resulting CKD dataset was split into two subsets, 

namely, the training set and the test set. These subsets were 
populated with randomly selected observations from the parent 
set. The training subset was filled randomly with 10 % of the 
parent set, while the test subset comprised 90 % of the data 
contained in its parent dataset. This means that the newly 
created partitions of dataset contained 39 observations in the 
training set and 360 observations in the test set. Random 
generator seeds 5, 8 and 10 were incorporated during the 
random sampling to ensure reproducibility of the procedure. 
This procedure describes the sampling phase.  

To perform the classification tasks in this study, the logistic 
regression [19] and the classification and regression tree [20] 
supervised learning models were implemented using the Scikit 
library [21]¸ a useful machine learning suite that is highly 
utilized in supervised and unsupervised learning. This logistic 
regression algorithm utilizes a coordinate descent optimization 
algorithm implemented with the LIBLINEAR library [22]. The 
processed dataset which was obtained from the UCI repository 
was used to train the models. This means that the prediction 
models were fit to the training data in order to make predictions 
on the test set. This cycle of training the models and making 
predictions is performed in three distinct iterations, with the 
random seeds of the first, second and third iterations set at 5, 8 
and 10, respectively, and the results of the performance 
measurements recorded. Taking into consideration the almost 
evenly-balanced class distribution of the input dataset, the 
running speed and classification accuracy have chiefly been 
chosen in this study to compare the performances of the logistic 
regression and decision-tree algorithms which were both 
applied to the same dataset in succession. The running speed of 
each algorithm compared is measured by computing the time 
difference in seconds between the moment the model-training 
phase commences and the moment the prediction phase is 
immediately completed. Metrics based on confusion matrix 
pairs, as well as the area under ROC curves were employed in 
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analysing the performance of classifiers. The area under each 
ROC curve can reveal the predictability strength of a classifier 
algorithm. A higher area under curve (AUC) value indicates 
that the corresponding classifier possesses superior predictive 
ability [23]. 

C. Validation 
The validity criterion for the dataset is that nominal variables 

are required to contain categorical values only, while 
quantitative variables are required to have only numerical 
values. To leverage the knowledge to be acquired from the 
conclusion in this study, it is important to verify that neither 
fictitious nor erroneous results are obtained usually due to 
overfitting. Shuffled K-fold cross-validation generates a user-
defined number of samples (K) of unconnected shuffled 
train/test data splits, while allowing for a finer control on the 
proportion of train/test samples in each split pair. In this isolated 
validation procedure performed on the full dataset, the number 
of splits was set to 5 and the train/test sample proportion was 
set to 10:90 for each split, just as the case in the training and 
prediction procedure. The cross-validation values obtained for 
the five splits were averaged for each train/test iteration and 
recorded. This method was selected in this study as a measure 
of upholding the validity of results emanating from 
performance evaluation of the learning algorithms. This is 
because cross-validated estimation of model performance is a 
more efficient use of data for model validation; however, it can 
be biased if the number of folds, K, is smaller compared to the 
number of events [24]. In a study on the effectiveness of K-fold 
cross-validation, it was shown that the proposed cross-
validation method produced a good estimate of traditional 
methods and was an accurate assessment for linear models, as 
well as good approximations for non-linear models [25]. K = 5 
was chosen because it is one of the widely-used and 
recommended values in literature [26], [27]. Reliability in 
statistics can be described as the overall consistency of 
performance of a measure. More consistent results repeatedly 
translate to higher reliability [28]. Therefore, an approach 
worthy of consideration is determining the consistency by 
inspecting the accuracy result values of each learning model 
over three iterations for any considerable discrepancies. 

IV. RESULTS AND DISCUSSION 
Logistic regression and the classification and regression tree 

variant of decision tree learning models were implemented on 
the partitioned chronic kidney disease dataset in an attempt to 
perform the classification and prediction of the disease. 
The results obtained were recorded and are duly presented 
below. The results are subsequently evaluated in order to 
determine and compare the performance of both algorithms. 

It can be observed from Table I that the decision tree 
algorithm is always quicker than the logistic regression 
algorithm. This can be attributed to the classification and 
regression tree algorithm implicitly performing its feature 
selection using the Gini impurity criterion, as can be observed 
in Fig. 2 [29].  
 

TABLE I 
PERFORMANCE ASSESSMENT RESULTS OF LOGISTIC REGRESSION (LR) & 

CLASSIFICATION AND REGRESSION TREE (CART) 

 
Running time, 

s 
Area under 
ROC curve Accuracy, % 

Shuffled 5-fold 
cross-validation 

average 

LR CART LR CART LR CART LR CART 

First 
iteration 0.010 0.005 0.986 0.983 98.61 98.33 0.9944 0.9800 

Second 
iteration 0.008 0.005 0.997 0.978 99.72 97.77 0.9994 0.9833 

Third 
iteration 0.013 0.005 1.0 0.972 100 97.22 0.9950 0.9861 

Average 0.0103 0.005 0.9943 0.9776 99.44 97.77 0.9962 0.9831 

 
Reference [30] showed that computing time depended on the 

total number of features used, and, consequently, a reduction in 
the running time due to feature selection was observed when 
compared with the logistic regression. In addition, the order of 
time complexity of classification and regression tree can be 
estimated as O(m×nlogn) [7] [31], where m is the number of 
features and n is the number of observations. In contrast, the 
order of time complexity of logistic regression is given by 
O(nd) [32], where n is the number of samples and d is the 
dataset dimension. This translates to shorter execution time for 
the tree algorithm.  

Furthermore, Table I also shows from the values of the 
average accuracy that the logistic regression algorithm 
possesses slightly superior accuracy than the decision tree 
algorithm. Table I also displays the cross-validation averages 
recorded for each train/test iteration using the shuffled K-fold 
cross-validation procedure described above, separate from the 
training and prediction procedure. It can be observed from the 
cross-validation averages that logistic regression also has 
slightly higher average values than CART. This can further be 
corroborated by the figures of the area under curve for both 
algorithms. Fig. 1, which is collection of ROC curves for the 
two algorithms after three iterations, further illustrates the 
superiority of the logistic regression algorithm in classification 
of chronic kidney disease data. The curves generated reveal that 
the logistic regression algorithm represented by the solid line 
possesses a greater area under its curve. This suggests that the 
logistic regression algorithm has a higher predictive accuracy. 

TABLE II 
PRECISION, RECALL & F1-SCORE RESULTS 

 
Class Precision Recall F1-score 

LR DT LR DT LR DT 

First iteration 
NKD 0.97 0.97 1.0 1.0 0.99 0.98 

KD 1.00 1.00 0.97 0.97 0.99 0.98 

Second iteration 
NKD 0.99 0.96 1.00 1.00 1.00 0.98 

KD 1.00 1.00 0.99 0.96 1.00 0.98 

Third iteration 
NKD 1.00 0.95 1.00 1.00 1.00 0.97 

KD 1.00 1.00 1.00 0.94 1.00 0.97 
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Table II summarises the results for Precision, Recall and F1-
scores of the NKD and KD classes in each iteration, where 
NKD represents the ‘Not Kidney Disease’ classification and 
KD is ‘Kidney Disease’ classification. Precision is calculated 
using the ratio of the correctly predicted positives to the total 
positive predictions. Recall is obtained by calculating ratio of 
predicted true positives to the sum of true positives and false 
negatives. A high precision value depicts a low false-positive 
prediction rate, while a high recall value depicts a low false-
negative prediction rate. From Table II, it can be observed that 
both models produce high precision and recall values for the 

two classes with logistic regression slightly surpassing the tree 
model with better precision and recall. This implies that logistic 
regression is better at not misclassifying a positive sample as 
negative, as well as returning majority of the total actual 
positives as predicted positive results. The F1-score is the 
harmonic mean of precision and recall values. It is an equally 
weighted metric for balancing precision and recall, requiring 
both to have high values in order to obtain a high F1-score. 
Again, logistic regression possesses better scores than the tree 
model in this regard. 

  

 

 (a) (b) 

Fig. 1 Receiver operating characteristic curves of the three train/test iterations. (a), (b), (c) represent the iterations at random seed = 5, 
8, 10, respectively. 

 (c) 

Fig. 2. Graphical representation of the decision tree model-training stage. 

Bica <= 18.5 
gini = 0.492 
samples = 39 

value = [17, 22] 

gini = 0.0 
samples = 22 

value = [0, 22] 

gini = 0.0 
samples = 17 

value = [17, 0] 

True False 
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Fig. 3 illustrates the results of the confusion matrix of each 
of the algorithms displayed in pairs. This was generated on the 
test dataset only after prediction in order to assess the classifier 
performance based on true positives and true negatives, which 
are the correct classifications, and false positives and false 
negatives, which are misclassifications. The quality of the 
output of the two classifiers can be evaluated using the 
confusion matrix. A closer investigation of the left-to-right 
diagonal reveals that the logistic regression algorithm has a 

higher representation of correct predictions. It can also be 
observed from the right-to-left diagonal that the decision-tree 
algorithm has a higher occurrence of wrong predictions. The 
left-to-right diagonal elements represent the number of points 
for which the predicted result is equal to the true result in the 
test data, while the right-to-left elements are those that are 
mislabelled by the classifier. 

 
 

Fig. 3. Confusion matrix pairs from the three iterations of classification tasks using LR & CART. (a), (b), (c) represent the iterations 
at random seed = 5, 8, 10, respectively. Left-to-right diagonal represents the correctly predicted instances. Right -to-left diagonal 
represents the number of incorrect predictions.  
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Fig. 4 graphically represents the average values of the three 
prediction iteration results for the area under ROC values, 
accuracy values and cross-validation results. Fig. 4 shows that 
logistic regression has slightly higher averages in all cases. 

V. CONCLUSION 
In this study, the author has examined two supervised 

machine learning classification algorithms for the prediction of 
kidney disease outcomes. An investigation of the comparison 
of the performances of logistic regression and CART 
algorithms has been performed in order to determine more 
suitable of the two, given inadequate training data. Depending 
on whether a piece of data is linearly separable or not, the 
selection of a more suitable algorithm between logistic 
regression or decision-tree algorithm for classification purposes 
can be determined. Missing data have been filled with values 
generated using a k-NN algorithm after discarding variables 
with missing data greater than 50 %. Logistic regression and 
CART algorithms have been trained using 10 % training data. 
Prediction has been performed on the rest of the dataset using 
the two algorithms as well. The metrics used in assessing 
performance have been accuracy, area under ROC and 
confusion matrix. The results reveal that the decision-tree 
algorithm is faster; however, it is less accurate than the logistic 
regression algorithm. The validation results obtained through a 
shuffled 5-fold cross-validation strategy for accuracy bear 
similarity to the previously obtained average accuracy results. 
The average accuracy, average area under ROC and average 
cross-validation values have been higher for the logistic 
regression model. This implies that logistic regression is a more 
accurate model for CKD prediction, given scarce training data. 
Overall, both algorithms are very capable of executing highly 
accurate classification and prediction tasks. 
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