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Abstract – Choice and decision making are an integral part of 
the purposeful activities of people in all areas of public and private 
life. Tasks of multi-criteria decision making are characterised by 
the fact that alternative decisions are evaluated by a set of criteria 
and the concept of a decision and its outcome coincide. The 
defining concept in such problems is the concept of a set of Pareto 
optimal decisions (Pareto set). This set forms alternative decisions 
that are not comparable in terms of the set of evaluation criteria. 
The choice of the optimal decision in the Pareto set can be 
performed only on the basis of the subjective preferences of the 
decision maker. In recent decades, extensions of traditional 
methods of multi-criteria decision making to a fuzzy environment 
have been proposed. One of the well-known approaches to multi-
criteria decision making is the TOPSIS method. In the paper, a 
fuzzy version of this method is considered in situations where the 
values of evaluation criteria are set in the form of fuzzy numbers. 

 
Keywords – Fuzzy criteria values, ideal negative decision, ideal 

positive decision, multi-criteria decision making. 

I. INTRODUCTION 
In a broad sense, decision-making problems can be divided 

into two large classes: 
(1) Problems of decision making in conditions of certainty, 

when the outcomes of alternative decisions are not influenced 
by any uncertain factors (events). In this kind of problems, the 
concepts of alternative decisions and their outcomes coincide. 

(2) Problems of decision making under risk, when the 
outcomes of alternative decisions are caused by external 
random events (states of nature). Problems of the first class are 
usually called multi-criteria decision making, meaning that 
each decision is evaluated by a set of values of the relevant 
criteria [1]–[4]. 

The determining factor in multi-criteria decision making is 
the concept of a set of Pareto optimal alternative decisions 
(Pareto set). This set is formed of decisions that cannot be 
compared using only the values of the evaluation criteria. If we 
take as a basis any pair of decisions from the Pareto set, then 
one decision will be better than the other according to some 
criteria, but worse according to other criteria [5]–[8]. 

The choice of the optimal decision in the Pareto set can be 
carried out only on the basis of the subjective preferences of the 
decision maker. Whatever the system of subjective preferences 
is, it is always based on one of two global optimality principles: 
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(1) Achieving the maximum possible effect with a given cost. 
(2) Achieving the desired effect with the lowest possible cost. 
One of the well-known approaches to the multi-criteria 

choice of decisions is the TOPSIS method (Technique for Order 
Preference by Similarity to Ideal Decision). This method was 
first proposed in [9]. Further improvements of the method are 
presented in [9]–[11]. Among the latest works related to this 
method, [12], [13] must be mentioned. The essence of this 
method is as follows. On the basis of the existing criteria, 
assessments of alternative decisions, the so-called “ideal 
positive decision” and “ideal negative decision” are formed. All 
alternative decisions are evaluated on the basis of calculating 
the distances from these decisions to “ideal” decisions. 

In real situations of making decisions, it is not always 
possible to set unambiguous criteria-based evaluations of 
decisions. This can be caused by various reasons: the undefined 
nature of the criteria themselves, the lack of initial data, the 
variability of the values of the criteria over time, and others. In 
such situations, it seems appropriate to model the initial 
uncertainty of the values of the criteria. One of the options for 
such modelling is to represent the values of the criteria in a 
fuzzy form. In recent decades, various extensions of traditional 
methods of multi-criteria decision analysis to a fuzzy 
environment have been proposed [14], [15]. 

In this paper, a fuzzy version of the TOPSIS method is 
considered; it is assumed that the values of the evaluation 
criteria are given in the form of triangular fuzzy numbers. 

The objective of the paper is to present in detail theoretical 
foundations of the fuzzy version of the TOPSIS method and 
provide examples of its practical use for decision making in 
various areas of social activity. 

Let us shortly outline the minimum necessary information 
about fuzzy numbers and operations on them, which will be 
used in the presentation of further material. 

In general, a fuzzy number is a fuzzy set defined on the set 
of real numbers R . A fuzzy number can be specified in the 
form of a set of values on R and the corresponding values of 
the membership function, in the form of a membership function 
graph, and in the form of an expression describing the 
membership function. As an example, Fig. 1 shows the graphs 
of the membership functions of two triangular fuzzy numbers 
A and 𝐵𝐵� . 
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Fig. 1. Graphical representation of membership functions of two triangular fuzzy numbers A and 𝐵𝐵� . 

 

In Fig. 1, these denotations are used: 
a1, b1 – lower bounds of supports of fuzzy numbers A and B ; 
am, bm – cores (modal values) of fuzzy values A and B ; 
au, bu – upper bounds of supports of fuzzy numbers A and B . 
 
Fuzzy numbers A and B that are graphically represented in 

Fig. 1 can be written in parametric form as �̃�𝐴 = (1,2.5,4) and 
𝐵𝐵� = (2,3.5,5). 

Let us define arithmetic operations on fuzzy numbers. Let 
two fuzzy numbers ( ), ,l m uA a a a=  and ( ), ,l m uB b b b= be 
given. Then 

 ( ), ,u m lA a a a− = − − − ; (1) 
( ), ,l l m m u uA B a b a b a b+ = + + +  ;    (2) 

 ( ) ( ), ,l u m m u lA B A B a b a b a b− = + − = − − −   .  (3) 

In this paper, we use simplified versions of multiplication 
and division of fuzzy numbers. In the overwhelming majority 
of practical cases, these operations are correct, with the 
exception of some specific situations that are not typical in the 
context of problems of fuzzy choice of decisions. 

( ), ,l l m m u uA B a b a b a b∗ = ∗ ∗ ∗  , 0A > , 0B >   (4a) 
 ( )* * , * , *l u m m u lA B a b a b a b= − − −  , 
 0, 0A B> <  , or 0, 0A B< >  .     (4b) 

 
1 , ,l m u

u m l

a a aA A
b b bB B

 
= ∗ =  

 





 

.      (5) 

 
 
 

II. FUZZY VERSION OF TOPSIS 
Let the Pareto set containing m alternative decisions be 
defined. These decisions are evaluated by a set n of fuzzy 
criteria {𝑘𝑘�𝑖𝑖𝑖𝑖/  𝑖𝑖 = 1, … ,𝑚𝑚,  𝑗𝑗 = 1, … ,𝑛𝑛}. To select the optimal 
decision using this approach, it is necessary to perform the 
following calculation procedures. 

1. To calculate fuzzy normalised values of criteria 
jir  using 

Eq. (6) 

2

1

,ji

ji
m

ji
j

k
r

k
=

=

∑







1, ...,i n= .       (6) 

2. To calculate fuzzy weighted values of criteria using Eq. (7) 

v�𝑖𝑖𝑖𝑖 = α�𝑖𝑖�̃�𝑟𝑖𝑖𝑖𝑖 , 1, ..., ,j m= 1, ...,i n= .   (7) 

When the values of coefficients α𝑖𝑖  are set in a deterministic 
form, the fuzzy weighted values of criteria are calculated using 
Eq. (8) 

v�𝑖𝑖𝑖𝑖 = α𝑖𝑖�̃�𝑟𝑖𝑖𝑖𝑖 , 1, ..., ,j m= 1, ...,i n= .   (8) 

3. To generate an ideal positive decision a+ by condition (9) 

( ) ( ){ }max / , min / , 1, ...,j ji j jia v i I v i I j m+ ′→ ∈ ∈ =  , (9) 

where I  – a subset of criteria representing positive effects; I ′  – 
a subset of cost criteria. 

4. To generate an ideal negative decision a− by condition 
(10) 
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( ) ( ){ }min / , max / ,j ji j jia v i I v i I− ′→ ∈ ∈  1, ...,j m= . (10) 

5. To calculate the distances between alternative decisions 
and ideal decisions (separation estimates). In general case, these 
distances can be calculated using the following expressions: 

𝑆𝑆𝑖𝑖+ = ∑ 𝑑𝑑�v�𝑖𝑖𝑖𝑖 , v�𝑖𝑖+�, 𝑗𝑗 = 1, . . . ,𝑚𝑚𝑛𝑛
𝑖𝑖=1 ;    (11a) 

𝑆𝑆𝑖𝑖− = ∑ 𝑑𝑑�v�𝑖𝑖𝑖𝑖 , v�𝑖𝑖−�, 𝑗𝑗 = 1, . . . ,𝑚𝑚𝑛𝑛
𝑖𝑖=1 ,    (11b) 

where: 𝑑𝑑�v�𝑖𝑖𝑖𝑖 , v�𝑖𝑖+�  – an estimate of the distance between the 
fuzzy weighted value of the i-th criterion of the j-th alternative 
decision and the fuzzy weighted value of the i-th criterion of the 
ideal positive decision a+ ; 𝑑𝑑�v�𝑖𝑖𝑖𝑖 , v�𝑖𝑖−�  – an estimate of the 
distance between the fuzzy weighted value of the i-th criterion 
of the j-th alternative decision and the fuzzy weighted value of 
the i-th criterion of the ideal negative decision a−. 

How can the distances (11a) and (11b) be calculated in 
practice? The use of standard estimates of the distances between 
fuzzy numbers seems to be inappropriate, since these estimates 
require knowledge of the values of the membership functions at 
given points. To get around this problem, alternative 
approaches for calculating the required distances are proposed. 
In this paper, we use the approach proposed in [16]. According 
to this approach, the distance between triangular fuzzy numbers 
A and B is calculated by Eq. (12) 

( ) ( ) ( ) ( )( )2 2 21
,

3 l l m m u ud A B a b a b a b= − + − + −  . (12) 

Using that estimate of the distance, separation estimates jS +

and jS − can be calculated by Eq. (13a) and (13b) 

𝑆𝑆𝑖𝑖+ = ∑ 𝑑𝑑�v�𝑖𝑖𝑖𝑖 , v�𝑖𝑖+� =𝑛𝑛
𝑖𝑖=1

∑ �1
3
��v𝑖𝑖𝑖𝑖𝑗𝑗 − v𝑖𝑖𝑗𝑗+�

2 + �v𝑖𝑖𝑖𝑖𝑗𝑗 − v𝑖𝑖𝑗𝑗+ �2 + �v𝑖𝑖𝑖𝑖𝑗𝑗 − v𝑖𝑖𝑗𝑗+ �
2�𝑛𝑛

𝑖𝑖=1 ; 

(13a) 
𝑆𝑆𝑖𝑖− = ∑ 𝑑𝑑�v�𝑖𝑖𝑖𝑖 , v�𝑖𝑖−� =𝑛𝑛

𝑖𝑖=1

∑ �1
3
��v𝑖𝑖𝑖𝑖𝑗𝑗 − v𝑖𝑖𝑗𝑗−�

2 + �v𝑖𝑖𝑖𝑖𝑗𝑗 − v𝑖𝑖𝑗𝑗− �2 + �v𝑖𝑖𝑖𝑖𝑗𝑗 − v𝑖𝑖𝑗𝑗− �
2�𝑛𝑛

𝑖𝑖=1 . 

(13b) 
Note that estimates jS + and jS −  calculated by expressions 

(13a, 13b) are ordinary real numbers, which facilitates further 
analysis and choice of the optimal decision. 

6. To calculate estimates of the relative proximity of each of 
the alternative decisions to the ideal positive decision 

* , 1,...,j
j

j j

S
C j m

S S

−

+ −= =
+

,       (14) 

where values jS +  and jS − are calculated by Eqs. (13a) and (13b), 
respectively. 

The optimal decision is determined by the condition 

opt(α𝑖𝑖) → max𝑖𝑖𝐶𝐶𝑖𝑖∗.        (15) 

III. ILLUSTRATIVE EXAMPLE 
The Pareto set is formed by three alternative decisions, α1, α2 

and α3. These decisions are evaluated by the values of five fuzzy 
criteria 𝑘𝑘�1, … , 𝑘𝑘�5. The fuzzy values of the criteria are given in 
Table I. The following deterministic values of the relative 
importance of the criteria are given: α1 = 0.2, α2 = 0.1, α3 =
0.3, α4 = 0.1 and α5 = 0.3. It is necessary to determine the 
optimal decision based on the above fuzzy version of the 
TOPSIS method. 

 
TABLE I 

FUZZY VALUES OF CRITERIA FOR DECISIONS IN THE PARETO SET 

 
Decisions 

  Criteria   

 
1jk  

2jk  
3jk  

4jk  
5jk  

𝑎𝑎1 (9, 10, 11) (4, 5, 6) (−6, −5, −4) (13, 14, 15) (−9, −8, −7) 
𝑎𝑎2 (7, 8, 9) (5, 6, 7) (−5, −4, −3) (12 13, 14) (−11, −10, −9) 
𝑎𝑎3 (11, 12, 13) (6, 7, 8) (−7, −6, −5) (10, 11, 12) (−8, −7, −6) 

Using Eqs. (6), (8), let us calculate the values 1jr  and v�𝑖𝑖1 for 

criterion 1jk over the entire set of alternative decisions 

 

( ) ( ) ( )2 2 22
1 9,10,11 7,9,9 11,12,13j

j

k = + + =∑  

( ) ( ) ( )81,100,121 49,64,81 121,144,169= + + =  
 

( ) ( )251,308,371 15.843,17.550,19.261= = . 

 
( )

( )

( )

11
9,10,11

15.843,17.550,19.261

9 10 11
, , 0.467,0.570,0.694

19.261 17.550 15.843

r = =

= = 
 
 



; 

( )
( )

( ) ( )

21

7,8, 9

15.843,17.550,19.261

7 8 9
, , 0.363, 0.456, 0.568

19.261 17.550 15.843

r = =

==



; 
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( )
( )

( ) ( )

31

11,12,13

15.843,17.550,19.261

11 12 13
, , 0.571, 0.684, 0.821

19.261 17.550 15.843

r = =

= =



. 

 
 

v�11 = α1�̃�𝑟11 = 0.2 · (0.467,0.570,0.694) = 
= (0.093,0.114,0.139); 

v�21 = α1�̃�𝑟31 = 0.2 · (0.363,0.456,0.568) = 
= (0.073,0.091,0.114); 

v�31 = α1�̃�𝑟41 = 0.2 · (0.571,0.684,0.821) =
(0.114,0.137,0.164). 

The calculated values are given in Table II.  

TABLE II 

CALCULATED VALUES FOR FUZZY VALUES OF CRITERION
1jk IN THE ILLUSTRATIVE EXAMPLE  

Decisions 1jk  1jr  v�𝑖𝑖1 

1a  (9, 10, 11) (0.467, 0.570, 0.694) (0.093, 0.114, 0.139) 

2a  (7, 8, 9) (0.363, 0.456, 0.568) (0.073, 0.091, 0.114) 

3a  (11, 12, 13) (0.571, 0.684, 0.821) (0.114, 0.137, 0.164) 

2

1j
j

k∑   (15.843, 17.550, 19.261) 

v�1+ (0.114, 0.137, 0.164) 
v�1− (0.073, 0.091, 0.114) 

 

Additionally, the penultimate row of the table contains a fuzzy 
value, v�1+which is the maximum number, 41 max j jiv v=  . The 
last line contains the fuzzy value v�1−, which is the minimum 

value 31 min j jiv v=  . These fuzzy values will be used later to 
form an ideal positive and ideal negative decision. 

Calculations for other fuzzy criteria are performed in a 
similar way. The calculation results are given in Tables III–VI. 

TABLE III 

CALCULATED VALUES FOR FUZZY VALUES OF CRITERION 
2jk  

Decisions 2jk  
2jr  v�𝑖𝑖2 

1a  (4, 5, 6) (0.328, 0.477, 0.684) (0.033, 0.048, 0.068) 

2a  (5, 6, 7) (0.410, 0.572, 0,798) (0.041, 0.057, 0.080) 

3a  (6, 7, 8) (0.491, 0.67, 0.912) (0.049, 0.067, 0.091) 

2

2j
j

k∑   (8.775, 10.488, 12.207) 

v�2+ (0.049, 0.067, 0.091) 
v�2− (0.033, 0.048, 0.068) 

 

TABLE IV 

CALCULATED VALUES FOR FUZZY VALUES OF CRITERION 
3jk  

Decisions 3jk  
3jr  v�𝑖𝑖3 

1a  (−6, −5, −4) (−0.849, −0.570, −0.381) (−0.255, −0.171, −0.114) 

2a  (−5, −4, −3) (−0.707, −0.456, −0.286) (−0.212, −0.137, −0.086) 

3a  (−7, −6, −5) (−0.990, −0.684, −0.477) (−0.297, −0.205, −0.143) 
2

3j
j

k∑   (10.488, 8.775, 7.071) 

v�3+ (−0.212, −0.137, −0.086) 
v�3− (−0.297, −0.205, −0.143) 
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TABLE V 

CALCULATED VALUES FOR FUZZY VALUES OF CRITERION 
4jk  

Decisions 4jk  4jr  v�𝑖𝑖4 

1a  (13, 14, 15) (0.547, 0.635, 0.738) (0.055, 0.063, 0.074) 

2a  (12, 13, 14) (0.505, 0.590, 0.689) (0.050, 0.059, 0.069) 

3a  (10, 11, 12) (0.421, 0.499, 0.590) (0.042, 0.050, 0.059) 

2

4j
j

k∑   (20.322, 22.045, 23.770) 

v�4+ (0.055, 0.063, 0.074) 
v�4− (0.042, 0.050, 0.059) 

 

TABLE VI 

CALCULATED VALUES FOR FUZZY VALUES OF CRITERION 
5jk  

Decisions 5jk  5jr  v�𝑖𝑖5 

1a  (−9, −8, −7) (−0.699, −0.548, −0.429) (−0.210, −0.164, −0.129) 

2a  (−11, −10, −9) (−0.854, −0.685, −0.552) (−0.256, −0.205, −0.166) 

3a  (−8, −7, −6) (−0.621, −0.480, −0.368) (−0.186, −0.144, −0.110) 
2

5j
j

k∑   (16.310, 14.595, 12.884) 

v�5+ (−0.186, −0.144, −0.110) 
v�5− (−0.256, −0.205, −0.166) 

 
 

Using the data in Tables II–VI, let us form an ideal positive 
and ideal negative decision. 
 

𝑎𝑎+ → (v�1+, v�2+, v�3+, v�4+, v�5+) = ((0.114,0.137,0.164), 
(0.049,0.067,0.091), (−0.212,−0.137,−0.086), 
(0.055,0.063,0.074), (−0.186,−0.144,−0.110)); 
𝑎𝑎− → (v�1−, v�2−, v�3−, v�4−, v�5−) = ((0.073,0.091,0.114), 
(0, .033,0.048,0.068), (−0.297,−0.205,−0.143), 
(0.042,0.050,0.059), (−0.256,−0.205,−0.166)). 

 
Distances for other criteria are calculated in the same way. 

We have 
𝑑𝑑(v�12, v�2−) = 0,  𝑑𝑑(v�13, v�3−) = 0.03535, 

𝑑𝑑(v�41, v�4−) = 0.01339,  𝑑𝑑(v�15, v�5−) = 0.04151. 

Using Eq. (12), we will calculate the distance from decision 1a

to the ideal positive decision a+  for each of the criteria. 
 

𝑑𝑑(v�11, v�1−) = �1/3((0.093 − 0.073)2 + (0.114 − 0.091)2 +
(0.139 − 0.114)2) =  

 

( )

( )

2 2 21
0.020 0.023 0.025

3

1
0.00040 0.00053 0.00062

3

+ + =

= + + =

=
 

1
0.00155 0.00052 0.02280

3
·= = = . 

Distances for other criteria are calculated in the same way. We 
have 

𝑑𝑑(v�12, v�2−) = 0;      𝑑𝑑(v�13, v�3−) = 0.03535; 
𝑑𝑑(v�41, v�4−) = 0.01339;   𝑑𝑑(v�15, v�5−) = 0.04151. 

For the remaining decisions, the distances to the ideal positive 
and ideal negative decisions are calculated in the same way. We 
have the following results. 
 - decision 2a : 

𝑑𝑑(v�21, v�1+) = 0.04582; 𝑑𝑑(v�22, v�2+) = 0.00967; 
𝑑𝑑(v�23, v�3+) = 0; 𝑑𝑑(v�24, v�4+) = 0.00447, 

𝑑𝑑(v�25, v�5+) = 0.06261. 
 - decision 3a : 

𝑑𝑑(v�31, v�1−) = 0; 𝑑𝑑(v�32, v�2−) = 0.00966; 
𝑑𝑑(v�33, v�3−) = 0.07092; 𝑑𝑑(v�34, v�4−) = 0.00894; 

𝑑𝑑(v�35, v�5−) = 0. 
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Using Eqs. (13a, 13b), let us calculate the values of the 
estimates of the separation

1S + , 
1S −  

𝑆𝑆1+ = �𝑑𝑑(v�1𝑖𝑖 , v�𝑖𝑖+) = 0.03202 + 0.0194 + 0.03592 +
5

𝑖𝑖=1

 

+0 + 0.02121 = 0.10864. 

𝑆𝑆1− = �𝑑𝑑(v�1𝑖𝑖 , v�𝑖𝑖−) = 0.02280 + 0 + 0.03535 +
5

𝑖𝑖=1

 

+0.01379 + 0.04151 = 0.11345. 

For other decisions, the values of the estimates of separation are 
calculated in the same way. We have 
 

𝑆𝑆2+ = 0.12257; 𝑆𝑆2− = 0.08952; 
𝑆𝑆3+ = 0.08368,   𝑆𝑆3− = 0.12802. 

 
Using Eq. (14), let us calculate the estimate of the relative 
proximity of the decision 1a to the ideal positive decision. 

𝐶𝐶1∗ =
𝑆𝑆1−

𝑆𝑆1+ + 𝑆𝑆1−
=

0.11345
0.10864 + 0.11345

=
0.11345
0.22209

= 0.51083. 

 
By analogy, for decisions 2a and 3a we have 𝐶𝐶2∗ = 0.42208, 

𝐶𝐶3∗ = 0.60472. 
According to condition (15), 3a  should be chosen as the 

optimal decision. 

IV. CONCLUSION 
Multi-criteria decision-making problems are specific 

problems in which each alternative decision is evaluated by a 
set of values of the relevant criteria and there are no 
uncertainties regarding the outcomes of these decisions. The 
determining factor in problems of this kind is the concept of the 
Pareto set, which is formed by decisions with contradictory 
values of the criteria. In other words, one alternative decision is 
better than the other according to some criteria, but worse on 
other criteria. The optimal decision can only be found in the 
Pareto set. We do not consider situations when in the original 
set of alternative decisions there is a globally optimal decision 
that is better than all other decisions for the entire set of criteria; 
these situations are the exception, not the rule. 

The choice of the optimal decision in the Pareto set can only 
be carried out on the basis of the system of subjective 
preferences of the decision maker. All known formal 
approaches to multi-criteria decision making use specific 
methods for modelling subjective preferences. 

The widely used formal methods for choosing decisions in 
the Pareto set are the additive and multiplicative convolution of 
criterion values, the method of compromise programming, the 
method of value function and the TOPSIS method. 

A big problem in the tasks of multi-criteria choice of 
solutions is represented by the uncertainties regarding the 
values of the evaluation criteria. The use of fuzzy criteria values 
instead of the deterministic ones makes it possible to 
successfully model a wide range of initial uncertainties. 

In this paper, a fuzzy version of the TOPSIS method has 
been considered. As in its non-fuzzy version, the comparison of 
alternative decisions in the Pareto set has been made on the 
basis of a combined estimate of the fuzzy distance from the 
estimated decision to the ideal positive and ideal negative 
decisions. Modelling the subjective preferences of the decision 
maker has been carried out using the coefficients of the relative 
importance of the criteria. Using distances to “ideal” decisions 
also simulates such subjective preferences. 

Let us compare the fuzzy version of the TOPSIS method 
with fuzzy versions of additive and multiplicative convolution 
of criteria values. When using one or another type of 
convolution of criteria values, the resulting estimates have a 
fuzzy form, which makes it necessary to compare fuzzy 
numbers, which is a rather complex computational problem. 
The advantage of the TOPSIS method is that the final analysis 
of decisions and the choice of the optimal decision are based on 
deterministic resulting estimates, which greatly facilitates the 
implementation of these important procedures. The 
disadvantage of the TOPSIS method is a rather large amount of 
intermediate calculations required. 

A fuzzy version of the TOPSIS method has found 
widespread use in decision making in various fields of human 
activity under conditions of uncertainty. Among the many 
works on this topic, mention should be made of the works [17]–
[21].  
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