
Information Technology and Management Science
ISSN 2255-9094 (online)
2021, vol. 24, pp. 8–14
https://doi.org/10.7250/itms-2021-0002
https://itms-journals.rtu.lv

8

©2021 Pavels Osipovs.
This is an open access article licensed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0).

The Practice of Implementing ML Service into an
Internet Business Application

Pavels Osipovs*
Riga Technical University, Riga, Latvia

Abstract – Currently, there are a large number of articles
describing the theoretical aspects of development in the field of
machine learning. However, the experience of their practical
application in real systems is described much less often. Basically,
authors describe the efficiency, accuracy, and other performance
metrics of the resulting solution, but everything stops at the
prototype stage. At the same time, how the trained model will
behave not on test data, but in real conditions, can be very
different from the indicators obtained at the development stage.
This article describes the experience of the implementation and
real use of a classification service based on machine
learning techniques.

Keywords – Machine learning, machine learning for business,

REST service, text classification, WEB API.

I. INTRODUCTION
Scientific articles on the development of new, or

improvement of already existing methods of machine learning
are constantly published in journals and collections of articles
released as a result of conferences. However, against the
backdrop of a large amount of academic research, the number
of articles describing the practice of using machine learning to
solve real-world problems is not so large.

This article describes the experience of using the
classification model in a real working business system. The task
was to create an internal service that would return a set of
relevant categories based on some text description. At the
beginning of the project, there was a database with a large
number of texts and related to each category. As part of the task,
the initial import and preparation of data for training were
made, the classification model was trained, the effectiveness of
several types of classification models was tested, a micro-
service was created and its load testing was performed.

II. GENERAL ARCHITECTURE
Python was chosen as the main programming language for

the system being created. Currently, it is one of the most
popular tools for creating systems in the field of machine
learning [1]. The language has a large number of libraries, both
directly intended for solving problems of training classification
models, and for solving related problems, such as importing
data, cleaning it, lemmitization [1]. The main libraries used in
the project:

* Corresponding author. E-mail: pavels.osipovs@gmail.com

• csv – for generating files in CSV format;
• zipfile – for unpacking and packing archived files;
• shutil – for recursive work with the file system;
• pymysql – for working with a MySQL database;
• pickle – for serializing binary models to files;
• pandas – for convenient presentation of data from a CSV

file in memory;
• sklearn.* – for importing various classification models [2].

An interesting feature of the language is the creation of

virtual environments (virtualenv), which allows you to isolate
the software libraries used in the project from their system-wide
versions of the underlying operating system – the host.

Most modern projects use version control systems both
during development and for distribution. Systems such as GIT
or Mercurial [3] allow you to conveniently organize the project
development process among a large number of developers,
provide decentralized storage of all source codes, and maintain
an advanced revision history. The created system also uses a
closed GIT repository to store all project files.

Modern versions of the command shell (console), in addition
to just text input / output, provide various options for outputting
information. For example, for operations that take a long time
to complete, it is convenient to use an interactive indicator of
the percentage of operations performed. It is also convenient to
provide the ability to customize script parameters based on user
input. For example, the following simple Python code allows
the user to confirm or reject a question from the script:

def user_yes_no_query(question):
 '''
 CLI-based question for user input
 :param question:
 :return:
 '''
 sys.stdout.write('%s [y/n]\n' % question)
 while True:
 try:
 return strtobool(input().lower())
 except ValueError:
 sys.stdout.write('Please respond with \'y\' or

\'n\'.\n')

https://doi.org/10.7250/itms-2021-0002
https://itms-journals.rtu.lv/
http://creativecommons.org/licenses/by/4.0
mailto:pavels.osipovs@gmail.com

Information Technology and Management Science
–– 2021/24

9

Then the following code will display a request to delete the
directory with old data, write it to the delete_old_data
variable (Fig. 1):

delete_old_data = user_yes_no_query('Delete old

generated data folder?')

To train a high-quality model, there must be a lot of

consistent information in the database. In this case, about
600 000 records were used, with several categories for each of
them. The relationship between texts and categories in the
database is shown in Fig. 2.

Initially, texts and categories are stored in different database
tables, but during the import process they are combined into one
common CSV file.
 The final process of obtaining a classification model from
records in the database is shown in Fig. 3.

The process consists of the following steps:

1. Getting records from the database formatting and
saving them as a CSV file.

2. Training the model on data from a CSV file, and
serializing the resulting model into a PICKE file.

In the process of formatting the text, it is possible to clear it

of unnecessary characters (numbers, punctuation marks, etc.),
as well as to bring it to normal form (lemmatization).
Depending on the characteristics of the texts used for training,
a model trained on a normalized text can show both better and
worse results relative to a model trained on a non-
normalized text.

III. TRAINING AND MODEL SELECTION
Usually, when training a model, the base dataset is divided

into two parts: training and test, then the first is used for
training, and the second is used to assess the quality of the built
model. In manual mode, splitting a test sample into parts is not
always convenient, so the sklearn package has a special method
for this: train_test_split(), which automatically splits the
sample into the required parts. An example of using this method
is given below:

from sklearn.model_selection import train_test_split
x = np.arange(1, 15).reshape(22, 2)
y = np.array([1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0])
x_train, x_test, y_train, y_test = train_test_split(x, y,

test_size=0.3)

The division into parts happens every time in a random order.

As a result, the method returns four variables:
x_train: The training part of the first sequence (x);
x_test: The test part of the first sequence (x);
y_train: The training part of the second sequence (y);
y_test: The test part of the second sequence (y).

When creating a machine learning model, the most important

issue is to evaluate the effectiveness of the trained classifier.
One of the simplest and effective ways to obtain this estimate is
to compare the classification accuracy of the test sample created
by the model with the real categories marked in the test sample.
For this purpose, it is possible to use the algorithm shown in
Fig. 4, or the same algorithm in the format of code:

y_score = clf.predict(test_x)
n_right = 0
for i in range(len(y_score)):
 if y_score[i] == test_y[i]:
 n_right += 1
print("Accuracy: %.2f%%" % ((n_right / float(len(test_y))

* 100)))

Here, the clf variable contains the object of the classifier

model under test.

Fig. 1. Request when executing a script in the console.

Fig. 3. Common model education process.

Fig. 2. Simple relation scheme in database.

Information Technology and Management Science
–– 2021/24

10

As a result, after executing this code, the console will display
the percentage of correctly classified records, which can be
considered a measure of the accuracy of the resulting classifier.

Since the various models from the scikit-learn package

inherit a common interface, they all have a model.predict()
method, which allows you to evaluate the quality of different
models using the same code.In the future, the presence of a
common interface for working with different models can
provide interesting opportunities for automatic selection of the
best model. To do this, you only need to prepare a list of all
models that are suitable for the current task + an array of
possible parameters for each. Additionally, for each of the
possible parameters, you need to indicate its type (nominal,
discrete, ordinal, numerals, etc.). For different data types, you
must also specify either a set of possible values or a range + the
step size used. As a result, the program will automatically apply
all algorithms to the training data, and test the effectiveness of
the resulting model on a test sample. The efficiency of the
parameters can be selected using genetic algorithms, then
initially several random sets of possible parameter values are
formed, and then this population evolves, thereby improving the
quality of the used set of parameters. As a result, only the best
algorithm with the best found set of parameter values will be
used for classification. Such a method can require significant
time and resources, but the final model can show good
performance indicators, and against this background, the cost of
finding it may not be significant.

The process of training the model itself is relatively simple,
and consists of the following stages:

1. The required library is imported.
2. Parameters of training of the selected model are set.
3. The training code is called, into which the training
and test samples are transferred.

Examples of training different models are given below.

Naive Bayes
Naïve Bayes classifiers [4] are often used for text

classification because of their speed and good accuracy in some
of cases.

𝑃𝑃(𝐴𝐴|𝐵𝐵) =
𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵)
 ,

𝑃𝑃(𝐵𝐵) = �𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴).
𝑌𝑌

from sklearn.naive_bayes import MultinomialNB
clf = MultinomialNB().fit(train_x, train_y)

Classification tree [5]
It is a powerful and popular text classification method. It

shows especially good results in the case of the consistency of
the training samples set. Simple decision tree structure is
presented in Fig. 5.

from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier(random_state=0).fit(train_x,
train_y)

Logistic regression
Logistic regression [6] (Fig. 6) is one of the most common

classification algorithms in the field of Natural Language
Processing (NLP).

from sklearn.linear_model import LogisticRegressionCV

Fig. 6. Simple logistic regression function.

Predict category
for a text

Is prediction
correct?

Increase the counter of
correctly predicted

categories by 1

Are there more
categories for

prediction?

Classifier accuracy % =

Start

End

Yes No

Yes

No

Fig. 4. Classification accuracy calculation.

Fig. 5. Simple decision tree.

Classifier accuracy % =
correctly predicted
–––––––––––––––––

Total categories

Information Technology and Management Science
–– 2021/24

11

clf=LogisticRegressionCV(cv=5, random_state=0,
multi_class='multinomial').fit(train_x, train_y)

K-nearest neighbors
K-nearest neighbors [7] – it’s a popular approach to the

classification of texts, when the categories correspond to the
text based on the closest Euclidian distance (Fig. 7).

from sklearn.neighbors import KNeighborsClassifier
clf = KNeighborsClassifier(n_neighbors=3).fit(train_x,
train_y)

Linear classifier with SGD training
Stochastic Gradient Descent [8] (Fig. 8) classification

sometimes shows good results [9] for texts classification.

from sklearn import linear_model
clf = linear_model.SGDClassifier(max_iter=1000, tol=1e-3,
loss='log').fit(train_x, train_y)

SVM classifier variant
Support Vector Machines [10] (Fig. 9) – another popular

approach for text classification with Machine Learning.

Fig. 9. SVM approach to classification.

from sklearn.svm import SVC
clf = SVC(kernel='linear', verbose=1).fit(train_x,

train_y)
One-vs-the-rest (OvR) multiclass strategy
OvR [11] is a popular heuristic method for using binary

classification algorithms for the multi-class classification

purposes. Common approach for OvR classification is
presented in Fig. 10.

from sklearn.multiclass import OneVsRestClassifier
clf = OneVsRestClassifier(LogisticRegression(C=1,
dual=False, penalty='l1', solver='liblinear',
verbose=0)).fit(train_x,train_y)

Depending on the type of model and training settings, the

time required to build the final classifier can vary greatly. With
600 000 records, some of the models take 15 minutes to train
and some take hours. At the same time, it is impossible to assess
the quality of the model without spending time on its training.
Therefore, testing the influence of various parameters on the
final quality of the classification can be quite time-consuming.

The size of the resulting PICKLE file with the model is not
large for most models. As part of the work carried out, for
various classifiers it varied from 0.5 to 2.5 Mb.

IV. CREATING MICRO-SERVICE
After the most effective model has been obtained, the stage

of creating a micro-service begins, which will allow using it
within the framework of a real service. For this purpose, an
approach based on a combination of Supervisor [12] + Nginx
[13] = JSON API [14] technologies is used.

The structure of the created solution is shown in Fig. 11. A
pool of processes managed by Supervisor is created in
the system.

Fig. 11. Common structure of WEB server created.

Fig. 7. K-nearest neighbors approach.

Fig. 8. SGD Linear classifier.

Fig. 10. OvR classification approach.

Information Technology and Management Science
–– 2021/24

12

Each of the processes is available for communication using
its unique access port. The configuration file for Supervisor,
which provides automatic operation of four processes, is
given below:

 [program:atml]
 numprocs = 4
 numprocs_start = 1
 process_name = atml_%(process_num)s
 logfile=/var/log/supervisor/atml.log

 ; Pass TCP port numbers. Path to virtualenv Python3

interpreter used

command=/home/vagrant/ml.services.company.com/ml_serv
er/bin/python3 /home/vagrant/ml.services.company.com
/ml_server/ml_server/server.py --port=808%(process_num)s

 user=vagrant
 autostart=true
 autorestart=true

Here, both the number of supported processes and the

settings for communication with each of them are set. Also,
ports of access to each of the created processes are
automatically allocated.

Next, the WEB Server Nginx is configured, which serves as
an intermediary between requests from the network and
Supervisor. Also, it balances the load between all processes
available in the pool.

An example configuration file used to configure Nginx is
shown below:

upstream atml {
 server 127.0.0.2:8081 fail_timeout=0;
 server 127.0.0.2:8082 fail_timeout=0;
 server 127.0.0.2:8083 fail_timeout=0;
 server 127.0.0.2:8084 fail_timeout=0;
 }

 server {
 listen 80;
 server_name atml;
 charset utf-8;
 location / {
 proxy_set_header Host $http_host;
 proxy_redirect off;
 proxy_buffering off;
 proxy_pass http://atml;
 }
 error_log /var/log/nginx/atml-error.log error;
 }
Here, for each of the pool of processes available in

Supervisor, the interaction parameters are written to send the
incoming request to one of the free processes, as well as return
the result.

The initial configuration algorithm is shown in Fig. 12. In the
form of a program code, it is shown below.

#!/usr/bin/env python3

import pickle
import json
import glob
import ntpath
import sys

from aiohttp import web
import argparse

import nltk
from nltk.stem.snowball import SnowballStemmer
from nltk.tokenize import word_tokenize

server_host = '127.0.0.2'
server_port = 8089 # Default value

Get port assigned by supervisor
parser = argparse.ArgumentParser(description="Get port

assigned by supervisor")
parser.add_argument('--port')
args = parser.parse_args()
if args.port:
 server_port = args.port

The very process of using the previously trained models is

also described directly in the server script. The block diagram
is shown in Fig. 13.

Start
server

Port number
presented in startup

variables?

Use port number
based on startup

variable

YesNo

Use default port
number

• Initialize stemmer for
language used.

• Load all available models
into RAM.

Server
started

Fig. 12. ML server initialization steps.

Information Technology and Management Science
–– 2021/24

13

Fig. 13. Request received after model application.

The result of the script is passed back to Nginx, which then

sends it to the requesting device. As a result, the created service
becomes available for interaction from the internal network or
the Internet. Depending on the expected load, the number of
processes can be significantly increased. The speed of the server
is also important. Currently, a pool of 32 processes provides
classification on a public service with a response rate of 250 ms.
per request. Until the number of simultaneous requests to the
server is exceeded, the processing time for each request will be
constant. When queues appear, the service response time will
noticeably increase. Therefore, it is important to initially
correctly estimate the maximum planned load and set the
optimal number of processes in the pool.

Directly the response time of the service can be obtained
using the standard Linux utility CURL:

curl -o /dev/null -s -w 'Total: %{time_total}s\n'

https://ml.services.company.com/model/?text=lorem%20ips
um

For more detailed testing of a service under load, the

ApacheBench utility [15] is often used, which allows evaluating
the response time of a service under conditions of a different

number of parallel requests. The utility accepts three main
parameters as input:

-n: the number of requests to send;
-t: a duration in seconds after which ab will stop sending

requests;
-c: the number of concurrent requests to make.

Then an example of a request for testing a service for

response speed with 100 requests in parallel 10 requests
simultaneously will be implemented as follows:

ab -n 100 -c 10
https://ml.services.company.com/model/?text=lorem%20ips
um

At the end of the work, the utility displays a summary table

with the results (Table I), which contains the minimum, average
and longest time it took to receive a response from the service.

TABLE I
SERVICE RESPONSE TIME CHECKING RESULTS

Connection
Times (ms) min mean [+/− sd] median max

Connect 92 94 2.3 93 104
Processing 397 731 194 677 1206
Waiting 396 727 194 677 1206
Total 490 824 195 771 1307

If the service is accessible on the Internet, it is important to

ensure its security. This topic is no longer related to the topic of
this article, and for services working in the Supervisor + Nginx
bundle, there is a detailed description of how to ensure
resistance to hacking. Let us just say that it is important to pay
attention to such concepts as requests throttling and failtoban.

Researchers often perform an automatic analysis of
vulnerabilities using pentest services [16]. This type of service
makes it possible to assess the presence of typical
vulnerabilities in various services. When creating a publicly
available service, the programmer is not always able to provide
protection against all known and unknown vulnerabilities at the
time of writing the code. Some of the vulnerabilities are closed
by updating both the operating system itself and the libraries
used in its creation, but they cannot protect against human
errors. Therefore, there are both free and paid professional tools
for automatic and semi-automatic testing of services for a wide
variety of vulnerabilities. Usually, when using them, the
checking service generates a large number of requests to the
service using various POST, GET, PUT parameters, various
header keys are used, as well as direct requests to system
configuration files (also log files), which may contain important
data, not intended for public access. In the event of any atypical
response from the service under test, the verification system
signals a potentially found vulnerability.

Request
received

Request
contains target

model?

Use requested
model

YesNo

Use default
model

Text
normalization

requested?

Apply stemmer
to the received

text

YesNo

Do not modify
the received text

• Apply current classification model to
the text.

• Return found categories and their
probabilities as JSON string.

End

Information Technology and Management Science
–– 2021/24

14

V. CONCLUSION AND FUTURE WORK
In conclusion, we can say that the system described in the

article does not include a large number of implementation
details, but at a general level it allows you to describe the
structure of an ML-based application actually working in
business, and this is the aim of this article.

Despite the external simplicity, the described system has
been successfully working for several years. Of the problems
that have arisen during this time, we can only name the need to
increase the number of processes in the Supervisor pool, when,
due to the activation of an advertising campaign, an
unexpectedly large number of requests began to enter
the system.

Also, the system does not have an automated tool for
retraining the model, and when updating it, you need to
manually fill in the new model and restart both Supervisor and
Nginx. However, the model is updated very rarely, and there is
simply no need to automatically update the model.

The overall effectiveness of the created solution is assessed
by the company’s management, based on the financial benefits
received from its implementation. Since the new service
reduced the amount of manual work and increased the profit
indicator, its implementation was recognized as
completely successful.

In the future, it is planned to expand both the number of
various automatic classifiers and improve their quality in order
to further reduce manual work. It is planned to introduce
automatic methods of retraining, quality testing and updating
models when the system will be constantly improved.

REFERENCES
[1] J. Plisson, N. Lavrac, and D. Mladenic, “A rule based approach to word

lemmatization,” Proceedings of IS04, Ljubljana, Slovenia, vol. 3, 2004.
[2] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal

of Machine Learning Research, vol. 12, no. 85, pp. 2825–2830, 2011.
[3] F. Lanubile, C. Ebert, R. Prikladnicki, and A. Vizcaíno, “Collaboration

tools for global software engineering,” IEEE software, vol. 27, no. 2, pp.
52–55, 2010. https://doi.org/10.1109/MS.2010.39

[4] “Naive Bayes classifier for multinomial models”. [Online]. Available:
https://scikit-
learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.
html. Accessed on: Sep. 12, 2021.

[5] “Decision tree classifier”. [Online]. Available: https://scikit-
learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.h
tml. Accessed on: Sep. 12, 2021.

[6] “Logistic regression CV (logit, MaxEnt) classifier”. [Online]. Available:
https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegres
sionCV.html#sklearn.linear_model.LogisticRegressionCV. Accessed on:
Sep. 12, 2021.

[7] “Classifier implementing the k-nearest neighbors vote”. [Online].
Available: https://scikit-
learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassi
fier.html. Accessed on: Sep. 12, 2021.

[8] “Linear classifiers (SVM, logistic regression, etc.) with SGD training”.
[Online]. Available: https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.
html#sklearn.linear_model.SGDClassifier. Accessed on: Sep. 12, 2021.

[9] S. Diab, “Optimizing stochastic gradient descent in text classification
based on fine-tuning hyper-parameters approach. A case study on
automatic classification of global terrorist attacks,” International Journal
of Computer Science and Information Security (IJCSIS), vol. 16, no. 12,
pp. 155–160, Dec. 2018.

[10] “C-Support vector classification”. [Online]. Available: https://scikit-
learn.org/stable/modules/generated/sklearn.svm.SVC.html. Accessed on:
Sep. 12, 2021.

[11] “One-vs-the-rest (OvR) multiclass strategy”. [Online]. Available:
https://scikit-
learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassif
ier.html. Accessed on: Sep. 12, 2021.

[12] “Supervisor: A process control system”. [Online]. Available:
http://supervisord.org/. Accessed on: Sep. 12, 2021.

[13] C. Nedelcu, Nginx HTTP Server. Packt Publishing, 2013.
[14] H. Wenhui et al., “Study on REST API test model supporting web service

integration,” 2017 IEEE 3rd International Conference on Big Data
Security on Cloud (bigdatasecurity), IEEE International Conference on
High Performance and Smart Computing (hpsc), and IEEE International
Conference on Intelligent Data and Security (ids), Beijing, China, May
2017, pp. 133–138. https://doi.org/10.1109/BigDataSecurity.2017.35

[15] D. Rahmel, “Testing a site with ApacheBench, JMeter, and Selenium,”
Advanced Joomla!. Apress, Berkeley, CA, 2013, pp. 211–247.
https://doi.org/10.1007/978-1-4302-1629-2_9

[16] L. Richard et al., “Potassium: penetration testing as a service,”
Proceedings of the Sixth ACM Symposium on Cloud Computing, Aug.
2015, pp. 30–42. https://doi.org/10.1145/2806777.2806935

Pavels Osipovs, Dr. sc. ing., is a Leading Researcher at the Institute of
Information Technology, Riga Technical University. He received his Doctoral
degree from Riga Technical University, Riga, Latvia.
His research interests include web data mining, machine learning and
knowledge extraction. Big part of research focuses on different aspects of user
behavior modelling. One more new area of interest is to explore the use of
Python programming language at all steps of scientific research, from initial
idea brainstorming, through all steps, to final article preparation in text format.
E-mail: pavels.osipovs@gmail.com
ORCID iD: https://orcid.org/0000-0003-4027-3997

https://doi.org/10.1109/MS.2010.39
https://doi.org/10.1109/BigDataSecurity.2017.35
https://doi.org/10.1007/978-1-4302-1629-2_9
https://doi.org/10.1145/2806777.2806935
mailto:pavels.osipovs@gmail.com
https://orcid.org/0000-0003-4027-3997

	1. The required library is imported.
	2. Parameters of training of the selected model are set.
	3. The training code is called, into which the training and test samples are transferred.

