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Abstract – Currently, there are a large number of articles 
describing the theoretical aspects of development in the field of 
machine learning. However, the experience of their practical 
application in real systems is described much less often. Basically, 
authors describe the efficiency, accuracy, and other performance 
metrics of the resulting solution, but everything stops at the 
prototype stage. At the same time, how the trained model will 
behave not on test data, but in real conditions, can be very 
different from the indicators obtained at the development stage. 
This article describes the experience of the implementation and 
real use of a classification service based on machine 
learning techniques. 
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I. INTRODUCTION 
Scientific articles on the development of new, or 

improvement of already existing methods of machine learning 
are constantly published in journals and collections of articles 
released as a result of conferences. However, against the 
backdrop of a large amount of academic research, the number 
of articles describing the practice of using machine learning to 
solve real-world problems is not so large. 

This article describes the experience of using the 
classification model in a real working business system. The task 
was to create an internal service that would return a set of 
relevant categories based on some text description. At the 
beginning of the project, there was a database with a large 
number of texts and related to each category. As part of the task, 
the initial import and preparation of data for training were 
made, the classification model was trained, the effectiveness of 
several types of classification models was tested, a micro-
service was created and its load testing was performed. 

II. GENERAL ARCHITECTURE 
Python was chosen as the main programming language for 

the system being created. Currently, it is one of the most 
popular tools for creating systems in the field of machine 
learning [1]. The language has a large number of libraries, both 
directly intended for solving problems of training classification 
models, and for solving related problems, such as importing 
data, cleaning it, lemmitization [1]. The main libraries used in 
the project: 
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• csv – for generating files in CSV format; 
• zipfile – for unpacking and packing archived files; 
• shutil – for recursive work with the file system; 
• pymysql – for working with a MySQL database; 
• pickle – for serializing binary models to files; 
• pandas – for convenient presentation of data from a CSV 

file in memory; 
• sklearn.* – for importing various classification models [2]. 

 
An interesting feature of the language is the creation of 

virtual environments (virtualenv), which allows you to isolate 
the software libraries used in the project from their system-wide 
versions of the underlying operating system – the host. 

Most modern projects use version control systems both 
during development and for distribution. Systems such as GIT 
or Mercurial [3] allow you to conveniently organize the project 
development process among a large number of developers, 
provide decentralized storage of all source codes, and maintain 
an advanced revision history. The created system also uses a 
closed GIT repository to store all project files. 

Modern versions of the command shell (console), in addition 
to just text input / output, provide various options for outputting 
information. For example, for operations that take a long time 
to complete, it is convenient to use an interactive indicator of 
the percentage of operations performed. It is also convenient to 
provide the ability to customize script parameters based on user 
input. For example, the following simple Python code allows 
the user to confirm or reject a question from the script: 

 
def user_yes_no_query(question): 
    ''' 
    CLI-based question for user input 
    :param question: 
    :return: 
    ''' 
    sys.stdout.write('%s [y/n]\n' % question) 
    while True: 
        try: 
            return strtobool(input().lower()) 
        except ValueError: 
            sys.stdout.write('Please respond with \'y\' or 

\'n\'.\n') 
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Then the following code will display a request to delete the 
directory with old data, write it to the delete_old_data 
variable (Fig. 1): 

 
delete_old_data = user_yes_no_query('Delete old 

generated data folder?') 

 
To train a high-quality model, there must be a lot of 

consistent information in the database. In this case, about 
600 000 records were used, with several categories for each of 
them. The relationship between texts and categories in the 
database is shown in Fig. 2. 

Initially, texts and categories are stored in different database 
tables, but during the import process they are combined into one 
common CSV file. 
  The final process of obtaining a classification model from 
records in the database is shown in Fig. 3. 

 
The process consists of the following steps: 

1. Getting records from the database formatting and 
saving them as a CSV file. 

2. Training the model on data from a CSV file, and 
serializing the resulting model into a PICKE file. 

 
In the process of formatting the text, it is possible to clear it 

of unnecessary characters (numbers, punctuation marks, etc.), 
as well as to bring it to normal form (lemmatization). 
Depending on the characteristics of the texts used for training, 
a model trained on a normalized text can show both better and 
worse results relative to a model trained on a non-
normalized text. 

 

III. TRAINING AND MODEL SELECTION 
Usually, when training a model, the base dataset is divided 

into two parts: training and test, then the first is used for 
training, and the second is used to assess the quality of the built 
model. In manual mode, splitting a test sample into parts is not 
always convenient, so the sklearn package has a special method 
for this: train_test_split(), which automatically splits the 
sample into the required parts. An example of using this method 
is given below: 

 
from sklearn.model_selection import train_test_split 
x = np.arange(1, 15).reshape(22, 2) 
y = np.array([1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0]) 
x_train, x_test, y_train, y_test = train_test_split(x, y, 

test_size=0.3) 
 
The division into parts happens every time in a random order. 

As a result, the method returns four variables: 
x_train: The training part of the first sequence (x); 
x_test: The test part of the first sequence (x); 
y_train: The training part of the second sequence (y); 
y_test: The test part of the second sequence (y). 
 
When creating a machine learning model, the most important 

issue is to evaluate the effectiveness of the trained classifier. 
One of the simplest and effective ways to obtain this estimate is 
to compare the classification accuracy of the test sample created 
by the model with the real categories marked in the test sample. 
For this purpose, it is possible to use the algorithm shown in 
Fig. 4, or the same algorithm in the format of code: 

 
y_score = clf.predict(test_x) 
n_right = 0 
for i in range(len(y_score)): 
    if y_score[i] == test_y[i]: 
        n_right += 1 
print("Accuracy: %.2f%%" % ((n_right / float(len(test_y)) 

* 100))) 
 
Here, the clf variable contains the object of the classifier 

model under test. 

Fig. 1. Request when executing a script in the console. 

Fig. 3. Common model education process. 

Fig. 2. Simple relation scheme in database. 
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As a result, after executing this code, the console will display 
the percentage of correctly classified records, which can be 
considered a measure of the accuracy of the resulting classifier. 

Since the various models from the scikit-learn package 

inherit a common interface, they all have a model.predict() 
method, which allows you to evaluate the quality of different 
models using the same code.In the future, the presence of a 
common interface for working with different models can 
provide interesting opportunities for automatic selection of the 
best model. To do this, you only need to prepare a list of all 
models that are suitable for the current task + an array of 
possible parameters for each. Additionally, for each of the 
possible parameters, you need to indicate its type (nominal, 
discrete, ordinal, numerals, etc.). For different data types, you 
must also specify either a set of possible values or a range + the 
step size used. As a result, the program will automatically apply 
all algorithms to the training data, and test the effectiveness of 
the resulting model on a test sample. The efficiency of the 
parameters can be selected using genetic algorithms, then 
initially several random sets of possible parameter values are 
formed, and then this population evolves, thereby improving the 
quality of the used set of parameters. As a result, only the best 
algorithm with the best found set of parameter values will be 
used for classification. Such a method can require significant 
time and resources, but the final model can show good 
performance indicators, and against this background, the cost of 
finding it may not be significant. 

The process of training the model itself is relatively simple, 
and consists of the following stages: 

1. The required library is imported. 
2. Parameters of training of the selected model are set. 
3. The training code is called, into which the training 
and test samples are transferred. 

 
Examples of training different models are given below. 

 
Naive Bayes  
Naïve Bayes classifiers [4] are often used for text 

classification because of their speed and good accuracy in some 
of cases. 

𝑃𝑃(𝐴𝐴|𝐵𝐵) =
𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵)
 , 

𝑃𝑃(𝐵𝐵) = �𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴).
𝑌𝑌

 

from sklearn.naive_bayes import MultinomialNB 
clf = MultinomialNB().fit(train_x, train_y) 
 
Classification tree [5] 
It is a powerful and popular text classification method. It 

shows especially good results in the case of the consistency of 
the training samples set. Simple decision tree structure is 
presented in Fig. 5. 

 

 
from sklearn.tree import DecisionTreeClassifier 
clf = DecisionTreeClassifier(random_state=0).fit(train_x, 
train_y) 

 
Logistic regression 
Logistic regression [6] (Fig. 6) is one of the most common 

classification algorithms in the field of Natural Language 
Processing (NLP). 

 
 
 
 
 
 

 
from sklearn.linear_model import LogisticRegressionCV 

Fig. 6. Simple logistic regression function. 

Predict category 
for a text

Is prediction 
correct?

Increase the counter of 
correctly predicted 

categories by 1 

Are there more 
categories for 

prediction? 

Classifier accuracy % =

Start

End

Yes No

Yes

No

Fig. 4. Classification accuracy calculation. 

Fig. 5. Simple decision tree. 

Classifier accuracy % = 
correctly predicted 
––––––––––––––––– 

Total categories 
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clf=LogisticRegressionCV(cv=5, random_state=0, 
multi_class='multinomial').fit(train_x, train_y) 

 
K-nearest neighbors 
K-nearest neighbors [7] – it’s a popular approach to the 

classification of texts, when the categories correspond to the 
text based on the closest Euclidian distance (Fig. 7). 

 
from sklearn.neighbors import KNeighborsClassifier 
clf = KNeighborsClassifier(n_neighbors=3).fit(train_x, 
train_y) 
 

Linear classifier with SGD training 
Stochastic Gradient Descent [8] (Fig. 8) classification 

sometimes shows good results [9] for texts classification. 

 
from sklearn import linear_model 
clf = linear_model.SGDClassifier(max_iter=1000, tol=1e-3, 
loss='log').fit(train_x, train_y) 

 
SVM classifier variant 
Support Vector Machines [10] (Fig. 9) – another popular 

approach for text classification with Machine Learning. 

 
Fig. 9. SVM approach to classification. 

 
from sklearn.svm import SVC 
clf = SVC(kernel='linear', verbose=1).fit(train_x, 

train_y)   
One-vs-the-rest (OvR) multiclass strategy  
OvR [11] is a popular heuristic method for using binary 

classification algorithms for the multi-class classification 

purposes. Common approach for OvR classification is 
presented in Fig. 10. 

from sklearn.multiclass import OneVsRestClassifier 
clf = OneVsRestClassifier(LogisticRegression(C=1, 
dual=False, penalty='l1', solver='liblinear', 
verbose=0)).fit(train_x,train_y) 

 
Depending on the type of model and training settings, the 

time required to build the final classifier can vary greatly. With 
600 000 records, some of the models take 15 minutes to train 
and some take hours. At the same time, it is impossible to assess 
the quality of the model without spending time on its training. 
Therefore, testing the influence of various parameters on the 
final quality of the classification can be quite time-consuming. 

The size of the resulting PICKLE file with the model is not 
large for most models. As part of the work carried out, for 
various classifiers it varied from 0.5 to 2.5 Mb. 

IV. CREATING MICRO-SERVICE 
After the most effective model has been obtained, the stage 

of creating a micro-service begins, which will allow using it 
within the framework of a real service. For this purpose, an 
approach based on a combination of Supervisor [12] + Nginx 
[13] = JSON API [14] technologies is used. 

The structure of the created solution is shown in Fig. 11. A 
pool of processes managed by Supervisor is created in 
the system. 

Fig. 11. Common structure of WEB server created. 

Fig. 7. K-nearest neighbors approach. 

Fig. 8. SGD Linear classifier. 

Fig. 10. OvR classification approach. 
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Each of the processes is available for communication using 
its unique access port. The configuration file for Supervisor, 
which provides automatic operation of four processes, is 
given below: 

 
    [program:atml] 
    numprocs = 4 
    numprocs_start = 1 
    process_name = atml_%(process_num)s 
    logfile=/var/log/supervisor/atml.log 
     
    ; Pass TCP port numbers. Path to virtualenv Python3 

interpreter used 
    

command=/home/vagrant/ml.services.company.com/ml_serv
er/bin/python3 /home/vagrant/ml.services.company.com 
/ml_server/ml_server/server.py --port=808%(process_num)s 

     
    user=vagrant 
    autostart=true 
    autorestart=true 
 
Here, both the number of supported processes and the 

settings for communication with each of them are set. Also, 
ports of access to each of the created processes are 
automatically allocated. 

Next, the WEB Server Nginx is configured, which serves as 
an intermediary between requests from the network and 
Supervisor. Also, it balances the load between all processes 
available in the pool. 

An example configuration file used to configure Nginx is 
shown below: 

 
upstream atml { 
        server 127.0.0.2:8081 fail_timeout=0; 
        server 127.0.0.2:8082 fail_timeout=0; 
        server 127.0.0.2:8083 fail_timeout=0; 
        server 127.0.0.2:8084 fail_timeout=0; 
    } 
     
    server { 
        listen 80; 
        server_name atml; 
        charset utf-8; 
        location / { 
          proxy_set_header Host $http_host; 
          proxy_redirect off; 
          proxy_buffering off; 
          proxy_pass http://atml; 
        } 
        error_log  /var/log/nginx/atml-error.log error; 
    } 
Here, for each of the pool of processes available in 

Supervisor, the interaction parameters are written to send the 
incoming request to one of the free processes, as well as return 
the result. 

The initial configuration algorithm is shown in Fig. 12. In the 
form of a program code, it is shown below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
#!/usr/bin/env python3 
 
import pickle 
import json 
import glob 
import ntpath 
import sys 
 
from aiohttp import web 
import argparse 
 
import nltk 
from nltk.stem.snowball import SnowballStemmer 
from nltk.tokenize import word_tokenize 
 
server_host = '127.0.0.2' 
server_port = 8089  # Default value 
 
# Get port assigned by supervisor 
parser = argparse.ArgumentParser(description="Get port 

assigned by supervisor") 
parser.add_argument('--port') 
args = parser.parse_args() 
if args.port: 
    server_port = args.port 
 
The very process of using the previously trained models is 

also described directly in the server script. The block diagram 
is shown in Fig. 13. 

Start 
server

Port number 
presented in startup 

variables?

Use port number 
based on startup 

variable

YesNo

Use default port 
number

• Initialize stemmer for 
language used.

• Load all available models 
into RAM.

Server 
started

Fig. 12. ML server initialization steps. 
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Fig. 13. Request received after model application. 

 
The result of the script is passed back to Nginx, which then 

sends it to the requesting device. As a result, the created service 
becomes available for interaction from the internal network or 
the Internet. Depending on the expected load, the number of 
processes can be significantly increased. The speed of the server 
is also important. Currently, a pool of 32 processes provides 
classification on a public service with a response rate of 250 ms. 
per request. Until the number of simultaneous requests to the 
server is exceeded, the processing time for each request will be 
constant. When queues appear, the service response time will 
noticeably increase. Therefore, it is important to initially 
correctly estimate the maximum planned load and set the 
optimal number of processes in the pool. 

Directly the response time of the service can be obtained 
using the standard Linux utility CURL: 

 
curl -o /dev/null -s -w 'Total: %{time_total}s\n'  

https://ml.services.company.com/model/?text=lorem%20ips
um 

 
For more detailed testing of a service under load, the 

ApacheBench utility [15] is often used, which allows evaluating 
the response time of a service under conditions of a different 

number of parallel requests. The utility accepts three main 
parameters as input: 

-n: the number of requests to send; 
-t: a duration in seconds after which ab will stop sending 

requests; 
-c: the number of concurrent requests to make. 
 
Then an example of a request for testing a service for 

response speed with 100 requests in parallel 10 requests 
simultaneously will be implemented as follows: 

 
ab -n 100 -c 10 
https://ml.services.company.com/model/?text=lorem%20ips
um 

 
At the end of the work, the utility displays a summary table 

with the results (Table I), which contains the minimum, average 
and longest time it took to receive a response from the service. 

TABLE I 
SERVICE RESPONSE TIME CHECKING RESULTS 

Connection 
Times (ms) min mean [+/− sd] median max 

Connect 92 94 2.3 93 104 
Processing 397 731 194 677 1206 
Waiting 396 727 194 677 1206 
Total 490 824 195 771 1307 

 
If the service is accessible on the Internet, it is important to 

ensure its security. This topic is no longer related to the topic of 
this article, and for services working in the Supervisor + Nginx 
bundle, there is a detailed description of how to ensure 
resistance to hacking. Let us just say that it is important to pay 
attention to such concepts as requests throttling and failtoban. 

Researchers often perform an automatic analysis of 
vulnerabilities using pentest services [16]. This type of service 
makes it possible to assess the presence of typical 
vulnerabilities in various services. When creating a publicly 
available service, the programmer is not always able to provide 
protection against all known and unknown vulnerabilities at the 
time of writing the code. Some of the vulnerabilities are closed 
by updating both the operating system itself and the libraries 
used in its creation, but they cannot protect against human 
errors. Therefore, there are both free and paid professional tools 
for automatic and semi-automatic testing of services for a wide 
variety of vulnerabilities. Usually, when using them, the 
checking service generates a large number of requests to the 
service using various POST, GET, PUT parameters, various 
header keys are used, as well as direct requests to system 
configuration files (also log files), which may contain important 
data, not intended for public access. In the event of any atypical 
response from the service under test, the verification system 
signals a potentially found vulnerability. 
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V. CONCLUSION AND FUTURE WORK 
In conclusion, we can say that the system described in the 

article does not include a large number of implementation 
details, but at a general level it allows you to describe the 
structure of an ML-based application actually working in 
business, and this is the aim of this article. 

Despite the external simplicity, the described system has 
been successfully working for several years. Of the problems 
that have arisen during this time, we can only name the need to 
increase the number of processes in the Supervisor pool, when, 
due to the activation of an advertising campaign, an 
unexpectedly large number of requests began to enter 
the system. 

Also, the system does not have an automated tool for 
retraining the model, and when updating it, you need to 
manually fill in the new model and restart both Supervisor and 
Nginx. However, the model is updated very rarely, and there is 
simply no need to automatically update the model. 

The overall effectiveness of the created solution is assessed 
by the company’s management, based on the financial benefits 
received from its implementation. Since the new service 
reduced the amount of manual work and increased the profit 
indicator, its implementation was recognized as 
completely successful. 

In the future, it is planned to expand both the number of 
various automatic classifiers and improve their quality in order 
to further reduce manual work. It is planned to introduce 
automatic methods of retraining, quality testing and updating 
models when the system will be constantly improved. 
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