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Abstract – Advances in sequencing technology have led to an 
ever increasing amount of available short-read sequencing data. 
This has, consequently, exacerbated the need for efficient and 
precise classification tools that can be used in the analysis of these 
data. As it stands, recent years have shown that massive leaps in 
performance can be achieved when it comes to approaches that are 
based on heuristics, and apart from these improvements there has 
been an ever increasing interest in applying deep learning 
techniques to revolutionize this classification task. We attempt to 
study these approaches and to evaluate their performance in a 
reproducible fashion to get a better perspective on the current 
state of deep learning based methods when it comes to the 
classification of short-read sequencing data. 
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I. INTRODUCTION 
Individual genome and metagenome sequencing has become 

increasingly more affordable over the past years [1], [2], which 
has led to an explosion in the amount of data available for 
analysis. This has, in turn, spawned a need for more affordable 
tools to analyse these data. In the present study, we will 
consider the recent taxonomic classification tools and evaluate 
their performance when working with metagenome sequencing 
data. Kraken2, a state-of-the-art tool widely used for such tasks, 
has shown that there is still a lot of room for improvement in 
currently used methods. Kraken2 allows reducing its memory 
footprint to just 15 % and its runtime to just 20 % compared to 
its predecessor Kraken [3]. 

A number of deep learning and machine learning based tools 
have been developed in recent years with a goal of alleviating 
different and resource intensive aspects of current methods – 
memory requirements, classification time, classification 
precision or disk space requirements [4]–[7]. A major issue of 
evaluating the current state of these tools lies in the fact that 
there are no published results showing their relative 
performance when the same reference data are used and when 
they are applied to non-synthetic samples. This is an issue that 
is characteristic of many bioinformatics tools [8]. There is also 
a known issue with self-reported performance metrics, which 
are the only results available for a lot of tools – they tend to 
have bias problems [9]. 

There have been some attempts to standardise the way tools 
are benchmarked [8], but so far no standard protocols nor 

benchmark data sets have been adopted and most tools still 
report their results using bespoke approaches. This makes 
gauging the performance of these tools in real world scenarios 
quite tricky as generated samples can be less complex than real 
ones [16]. 

Our goal is to evaluate the performance of a set of freely 
available published deep learning based tools by using the exact 
same reference data: metagenome data from a set of samples 
that have been sequenced by MGI DNBSEQ-T7 sequencers 
[10], which include two reference samples with a predefined 
composition (Zymo samples [11] – referred to as C1 and C2) 
and three human gut (fecal) metagenome samples that were 
produced within the ERDF project “Optimisation of H.pylori 
Eradication Therapy for Population-Based Gastric Cancer 
Prevention” (referred to as S1, S97 and S104). The non-control 
samples were added to the experiment to assess how the tools 
would perform if the reference database did not contain all of 
the organisms present in the sample and therefore there were no 
exact matches to the sequences in the sample. 

II. METHODS 
We selected suitable deep learning based tools for genomic 

classification by searching the SCOPUS and Arxiv databases, 
excluding the tools that were designed for tasks other than 
shotgun sequence classification. This way we chose four tools: 
• MetaVW – embedding based tool that leverages Vowpal 

Wabbit [12] as its backbone [4]; 
• fastDNA – fastText [18] based embedding tool [5]; 
• GeNet – a classification tool that uses a convolutional 

model [6]; 
• DeepMicrobes – a classification tool that leverages an 

attention model [7]. 
In addition, we decided to use the Kraken2 results as our 

‘ground truth’ for samples that we did not have a theoretical 
taxonomic distribution because it was a widely recognised and 
commonly used tool [3]. We found this necessesary due to the 
way the experiment was set up: we  included real-life samples 
with an unknown composition, so an estimate of their 
composition was established using Kraken2 as a reliable state-
of-the-art tool. 

The expirements were performed on a workstation running a 
12-core procesor (Intel i7-8700k), 64 GB of RAM, Nvidia GTX 
1080 Ti graphics card (GPU) and 500 GB of PCIe storage. We 

https://doi.org/10.7250/itms-2020-0005
https://doi.org/10.7250/itms-2020-0005
https://itms-journals.rtu.lv/
http://creativecommons.org/licenses/by/4.0


Information Technology and Management Science 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 2020/23 

36 
 

make a point of noting down the storage solution due to Vowpal 
Wabbit being heavily bound by storage speed [12] that will 
impact the performance of MetaVW [4]. 

We evaluated all tools using the same five samples (read 
counts and average read length, which provide insight into data 
complexity, are given in Table I) and used the small database 
from MetaVW [13] (mostly due to practical concerns – it 
contained all of the information needed for all of the tools to 
train) to create the reference databases for all of the tools 
(containing 1565 sequences related to 193 species) [4]. 

The two control samples are ZymoBIOMICS™ Microbial 
Community Standard samples that contain data from ten 
different species [11]. 

TABLE I 
SAMPLE CHARACTERISTICS 

Sample Forward read 
count 

Forward 
average read 

length 

Reverse read 
count 

Reverse 
average read 

length 

C1 38581675 150 38581675 150 

C2 52537916 150 52537916 150 

S1 28990760 150 28990760 150 

S97 28987851 150 28987851 150 

S104 22358511 150 22358511 150 

Reference databases were created and models were trained 
using the default setting wherever possible. The only deviation 
from this being DeepMicrobes where we used 11-mers instead 

of 12-mers due to not being able to train the 12-mer model 
within 11 GB of video RAM. The commands used have been 
made available on GitHub [14]. These runs were timed and 
resource usage was monitored during training. A general 
outline of the database creation process is presented in Fig. 1. 

After training the neural network models, they were used to 
classify the previously described samples. The results were 
evaluated using both the necessary computing resources, which 
were quantified as runtime and resource usage data (memory 
and graphics card usage), and the classification precision, based 
on the ‘ground truth’: the theorethical composition of the 
reference control samples or composition identified by Kraken2 
for the gut microbiome samples. We calculated the overall 
precision as the proportion of reads that the current tool 
classified the same as the ‘ground truth’: 
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Fig. 1. An overall outline of the database creation process. Some practical items that we would like to draw additional attention to include: fastDNA (1) requires 
all sequences to be uppercase and needs custom meta tags for the sequences, MetaVW (2) requires some external libraries that the tool does not ship with, GeNet 
(3) needs the reference data to be split up on a taxon-by-taxon basis and (4) requires custom meta tags for the sequences, DeepMicrobes (5) ships with all of the 
required tools, but they are split up between a multitude of subdirectories, (6) it also requires the reference data to be split up into separate files similarily to GeNet 
and (7) the training set has to be processed with a read simulator [18]. The scripts that this figure represents are available on GitHub [14]. 
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We also evaluated the overall coverage, which was achieved 
by each of the tools. The coverage is a relevant metric due to its 
ability to clearly show if a tool precision could be an artefact of 
it either under or over reporting when compared to other tools 
and was calculated as follows:  

    
 

total reads assigned taxidcoverage
total reads

= . (2) 

Classification results (precision and coverage) were 
evaluated both in raw form, where the resulting taxonomic rank 
of the organism in the taxonomy tree was defined by the tool, 
and normalized in two different ways to determine the 
suitability of produced results for practical application: 
selecting the results classified at the phylum rank or at the genus 
rank. This was done by traversing taxonomic tree data aquired 
from NCBI [16]. 

III. RESULTS AND DISCUSSION 
Overall training process showed high dispersion in terms of 

time to train/build. Kraken2 and fastDNA showed the best 
results (Table II). In all probability fastDNA outperformed the 
rest of the tools that leveraged neural networks by such a large 
margin because it was based on the highly efficient fastText 
[18]. Interestingly, there is a significant difference between 
GeNet and DeepMicbrobes and between MetaVW and 
fastDNA, even though the two pairs use similar methods when 
approaching the problem of learning the contents of the 
reference set. The disparity between MetaVW and fastDNA 
could be explained by the multithreaded capabilities of the tools 
that they are based on [12], [17]. While the disparity between 
GeNet and DeepMicrobes comes down to termination 
conditions – with DeepMicrobes terminating after 1 epoch by 
default [19], while the implementation of GeNet implies that it 
should terminate either at 400 epochs or when reaching 99.5 % 
precision, but it did not – we stopped the training process by 
hand once it had reached 99.5 % precision (at epoch 418) [19]. 

It should be noted that a signicifant portion of the training 
time for DeepMicrobes was spent on preprocessing the samples 
for further use. This along with the time that was necessary for 
Kraken2 to prepare for database being built was separated out 
to give a better idea of the time these two tools spent on the 
build/train process itself (Table II). 

TABLE II 
TRAINING PERFORMANCE 

Tool 
Memory usage Time taken 

(including 
preprocessing) 

Is GPU 
accelerated 

Kraken2 
2939 MB 3m 

(16m) 
No 

MetaVW 15.7 GB 15h 47m No 

GeNet 2964 MB 10d 23h 50m Yes 

DeepMicrobes 
5958 MB 6h 15m 

(6h 39m) 
Yes 

fastDNA 3205 MB 16m No 

 

Choosing Kraken2 as the baseline when data on sample 
composition were not available carries a caveat: accuracies for 
the non-control samples are not necessarily indicative of the 
best performance – they are indicative of the performance most 
similar to Kraken2. 

Some concessions had to be made when performing the 
classification tasks. We excluded GeNet from the classification 
tasks since it had no readily made classification scripts and 
producing such scripts was out of the scope of this article. 
MetaVW and fastDNA required single input files (we found 
functions that implied that paired end data could be fed into 
fastDNA, but could not find a way of accessing it without 
modifying the tool [20]), which meant that samples were 
merged using bbmerge. Additionally, DeepMicrobes could 
process controls as is, but required additional utility scripts to 
be produced to facilitate working with non-control samples due 
to the large amount of storage space required for the 
preprocessing of each sample (a 9 GB gzipped sample 
expanded to 127 GB in temporary files that resulted in a 86 GB 
tfrec file). Therefore, we batched the samples into random 10 % 
subsamples whose results were then joined; as a result, the 
reported runtimes were based solely on the controls. 

Just like when training the model, preprocessing samples for 
DeepMicrobes took a significant amount of time. It is indicated 
separately in the table in brackets (Table III). 

TABLE III 
TEST PERFORMANCE 

Tool Memory usage Time 
taken/sample 

Is GPU 
accelerated 

Kraken2 2104 MB 27s No 

MetaVW 8204 MB 23m No 

GeNet – – – 

DeepMicrobes 
2882 MB 5h 36m 

(8h 14m) 
Yes 

fastDNA 3207 MB 24s No 

 
When it comes to the amount of reads that each of the tools 

reported as classified, DeepMicrobes and MetaVW 
differentiated themselves from the rest by not reporting any 
results as unclassified, but always reporting some taxon ID. 
FastDNA fell on the other end of the spectrum classifying 
around 8 % of the reads. We found Kraken2 to be the only tool 
where the number of reads that the tool was able to classify was 
related to the complexity of the sample at hand: the results for 
control samples composed of few different species were much 
higher than for the diverse human samples (Table IV). 

TABLE IV 
COVERAGE 

Tool C1 C2 S1 S97 S104 

Kraken2 84.94 % 82.38 % 7.95 % 6.93 % 5.24 % 

MetaVW 100 % 100 % 100 % 100 % 100 % 

GeNet – – – – – 

DeepMicrobes 100 % 100 % 100 % 100 % 100 % 

fastDNA 8.69 % 8.60 % 8.32 % 8.43 % 8.47 % 
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We found that MetaVW outperformed every other tool (even 
Kraken2) when examining the precision metric of the baseline 
results (Table V). It should be noted that these results are 
skewed as both Kraken2 and DeepMicrobes traverse the 
taxonomic tree when they are not confident enough to classify 
something at a certain taxonomic rank of the said tree [3], [7]. 
However, it is still noteworthy that MetaVW can be reasonably 
used to gather insight from simple samples without the need for 
normalization scripts. 

TABLE V 
PRECISION 

Tool C1 C2 S1 S97 S104 

Kraken2 33.48 % 27.25 % * * * 

MetaVW 66.68 % 52.27 % 1.69 % 1.33 % 1.16 % 

GeNet – – – – – 

DeepMicrobes 0 % 0 % 0.07 % 0.05 % 0.04 % 

fastDNA 1.01 % 1.02 % 92.13 % 92.08 % 91.86 % 

*Used as reference (100 %)     

When data are normalized to genus (i.e., all of the items 
above genus are brought down to genus rank – all others are 
marked as unclassified), we see some interesting patterns 
emerge: the reported percentages of most tools drop, with 
Kraken2 dropping around half of the classified reads for the 
non-control samples and DeepMicrobes dropping around 25 % 
of the reads. 

TABLE VI 
COVERAGE GENUS 

Tool C1 C2 S1 S97 S104 

Kraken2 84.21 % 81.49 % 4.02 % 3.36 % 2.54 % 

MetaVW 99.84 % 99.83 % 88.39 % 90.52 % 92.45 % 

GeNet – – – – – 

DeepMicrobes 70.33 % 77.64 % 61.66 % 60.83 % 59.03 % 

fastDNA 8.56 % 8.65 % 8.28 % 8.39 % 8.43 % 

 
This increases the overall classification precision of Kraken2 

up to around the performance of MetaVW with the other two 
tools underperforming by more than 60 percentage points when 
it comes to the controls. When looking at the non-control 
samples, interestingly, MetaVW drops below both 
DeepMicrobes and fasDNA in terms of precision. This can 
mainly be explained by the large amount of unclassified reads 
present in the Kraken2 results. It is interesting to note that 
fastDNA performs very closely to Kraken2 when looking at the 
non-control samples (Table VII). 

TABLE VII 
PRECISION GENUS 

Tool C1 C2 S1 S97 S104 

Kraken2 66.66 % 47.98 % * * * 

MetaVW 67.79 % 54.41 % 15.52 % 12.84 % 10.09 % 

GeNet – – – – – 

DeepMicrobes 6.18 % 12.00 % 38.56 % 39.38 % 41.14 % 

fastDNA 2.38 % 2.41 % 93.03 % 93.27 % 92.68 % 

*Used as reference (100 %)     

Normalizing to phylum helps most of the tools retain a larger 
number of reads as expected since phylum is a rank that 
includes genus [21]. The reduction in coverage is less than one 
percentage point for all tools, except DeepMicrobes 
(Table VIII). 

The pattern that the tools fall into does not differ from the 
results that we saw when normalizing for genus: precision 
improves significantly for less diverse samples and there is 
some improvement from baseline for other samples, although 
the increase is not as significant as in genus data (Table IX). 

TABLE VIII 
COVERAGE PHYLUM 

Tool C1 C2 S1 S97 S104 

Kraken2 84.92 % 82.34 % 7.85 % 6.84 % 5.16 % 

MetaVW 100 % 100 % 100 % 100 % 100 % 

GeNet – – – – – 

DeepMicrobes 74.23 % 80.07 % 67.81 % 67.45 % 67.96 % 

fastDNA 8.60 % 8.69 % 8.32 % 8.43 % 8.47 % 

TABLE IX 
PRECISION PHYLUM 

Tool C1 C2 S1 S97 S104 

Kraken2 84.91 % 72.12 % * * * 

MetaVW 92.59 % 80.20 % 7.85 % 6.84 % 5.16 % 

GeNet – – – – – 

DeepMicrobes 36.00 % 36.00 % 33.88 % 34.22 % 33.49 % 

fastDNA 6.37 % 6.43 % 96.26 % 95.34 % 95.25 % 

*Used as reference (100 %)     

 
The coverage of DeepMicrobes diminished significantly 

during normalization and this pattern was not observed in other 
tools. Therefore, we investigated the taxonomic division of the 
results for all of the tools. FastDNA provided species results, 
MetaVW mostly provided species results as well as sometimes 
responded with taxon IDs that corresponded to genotype (less 
than 1 % of the reads). Kraken2 traversed most of the tree with 
all returned taxids being valid: Kraken2 classified around 37 % 
of the control sample reads  and around 1.4 % of the non-control 
sample reads as species. We found that unlike Kraken2 
DeepMicrobes could generate arbitrary taxon IDs that could not 
be found in the NCBI taxonomy data: overall DeepMicrobes 
returned taxon IDs that corresponded to species for around 
50 % of the reads and classified around 20 % of the control 
reads, while 30 % of the non-control reads had been assigned to 
non-existant taxon IDs [14]. The prevalence of these non-
existant taxon IDs strongly implies that the training set we used 
is too small for DeepMicrobes to function properly. 

IV. CONCLUSION 
We found that tools leveraging deep learning still had some 

catching up to do when comparing their performance to 
Kraken2 in terms of both memory usage and runtime (with 
Kraken2 using less than a fifth of the memory of the most 
memory intensive tool and undercutting some of the tools more 
than 500 times when looking at runtimes at the scale that we 
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tested). A notable exception when looking at the runtime was 
fastDNA – its performance was comparable to Kraken2. It  was 
interesting to see that embedding based tools performed 
similarily to Kraken2 when evaluating their coverage and 
classification precision, even if this similarity in performance 
was limited to specific types of samples depending on the 
thresholding strategy that the tool employed. While the 
performance of DeepMicrobes did not meet the prior 
expectations (based on results reported in the literature) and we 
did not manage to fully benchmark GeNet, we still saw a lot of 
potential in using such tools in environments where system 
memory would be limited and researchers would be willing to 
wait for a longer amount of time to obtain the results. It is 
important to note that this is a statement that heavily hinges on 
the comparative performance of these tools when they are 
trained with a suitably large reference set. 

When looking at the results, we can see that the most useful 
and operable tool is still Kraken2, but there is a disadvantage – 
using Kraken2 with a larger database still requires a significant 
amount of RAM (around 200 GB [22]). This is where the deep 
learning based tools should readily outscale Kraken2. 

We believe that a different thresholding mechanism for 
fastDNA could possibly make it competitive with Kraken2 even 
when using a small reference database such as the one that was 
used in this study. Exploring the behaviour of these tools with 
significantly larger reference databases can yield more insights 
into how well these tools scale with the amount of available 
data. 

Overall, we would like to conclude that a lot of promising 
progress has been made when it comes to applying deep 
learning to bioinformatics and we are eager to see what the 
future will bring. We are hopeful that this paper will draw more 
attention to these tools and applying deep learning to 
bioinformatics. Additionally, we hope for someone with more 
complex control samples to evaluate the performance of these 
tools. 

An interesting byproduct of performing this study is the 
realisation that these tools are harder to use than we had initially 
expected. We attempt to make replicating this study easier by 
outlining the setup process in the repository that contains  the 
scripts that were used to obtain these results. This has been 
made publicly available on GitHub [14]. 
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