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Abstract – In order to tailor inventory control to urgent needs of 

grocery retail, the discrete-event simulation model with realistic 

perishability mechanics is proposed in the paper. The model is 

stochastic and operates with multiple products under constrained 

total inventory capacity. Besides, the model under consideration is 

distinguished by quantity discount, uncertain replenishment lags 

and lost sales. The paper presents both mathematical description 

and algorithmic implementation. An optimisation framework 

based on a genetic algorithm is also proposed for deriving an 

optimal control policy. The proposed approach contributes to the 

field of industrial engineering by providing a simple and flexible 

way to compute nearly-optimal inventory control parameters. 

 

Keywords – Genetic algorithm, perishability, simulation-

optimisation, stochastic inventory control. 

I. INTRODUCTION 

In inventory control models, it is overwhelmingly assumed 

that products can be stored infinitely long [1]. Unfortunately, 

such an assumption does not correspond to reality because some 

products lose their valuable qualities over time, for instance, 

food, medicine and donor blood.  

It should also be pointed out that the current success of online 

grocery retail has sparked interest in inventory control with 

perishability and encouraged researchers to study such models 

meticulously. Namely, according to the American Statistics 

Portal, in 2015 online grocery sales amounted to about $7 

billion in the USA [2]. Moreover, these figures are expected to 

rise to $18 billion by 2020 and up to $26.87 billion by 2025 [3]. 

Thus, the future for online grocery retail is bright, and there is 

an urgent need for inventory control models that incorporate 

perishability mechanics. 

II. RELATED WORK AND NOVELTY 

The study on inventory control models with perishability 

dates back to Whitin [4]. In their seminal work the authors 

presented the model of production-inventory system with 

exponential deterioration rate and constant demand [5]. Later, 

Papachristos and Skouri developed an inventory control model 

with constant deterioration rate, time-dependent demand and 

partial backlogging [6]. Dye et al. extended this model and 

proposed a two-echelon inventory control model for 

deteriorating products [7]. 

Nowadays discrete-event simulation is the most dominant 

simulation paradigm for simulation-optimisation frameworks 

that, however, is not frequently used [8]. The first simulation-

based optimisation of inventory control system dates back to Fu 

[9]. The model assumes zero replenishment lead time and 

periodic review. The cost function comprises holding, 

purchasing, transportation and backlogging.  

Among modern papers, metaheuristic in general and genetic 

algorithms in particular are distinguished. For instance, 

Peirleitner et al. considered a stochastic supply chain 

management problem [10]. The problem is stated as bi-

objective optimisation problem. Overall supply chain costs are 

subject to minimisation, while the service level must be 

maximised. Such optimal control parameters as reorder points 

and lot sizes are derived by combining genetic algorithm with 

discrete-event simulation. In the same year, a discrete-rate 

simulation paradigm was used as a core to solve a single-

product inventory control problem [11]. In this study, the model 

is developed in ExtendSim using an inbuilt genetic algorithm to 

find optimal control parameters. The recent research focuses on 

spare part inventory control for an industrial plant. Assuming 

that the demand is driven by maintenance requirements, spare 

part provision for a single-line conveyor-like system is 

considered [12]. Average cost per unit time is taken as the 

optimality criterion and optimisation is conducted using 

SimRunner’s inbuilt genetic algorithm.  

Highlighting the novelty of the present research, it is 

important to point out that the considered simulation models a 

stochastic multi-product inventory control system that operates 

with deteriorating products, i.e., perishability mechanics is 

modelled in a way that closely corresponds to reality. These 

settings are characterised by explicit nonlinearity, which makes 

search space challenging to explore. The applied genetic 

algorithm is distinguished by integer chromosome encoding, 

uniform crossover and tournament selection.  

III. METHODOLOGY 

A. Inventory Control Model under Consideration 

The model is developed to be implemented in the form of a 

discrete-event simulation. 

The inventory control system stores a sequence of products 

𝑃 = (𝑝1, 𝑝2, . . . , 𝑝𝑛)𝑛∈ℕ+  under limited total storage capacity 

Imax. The model takes into consideration only such moments of 

time, in which the system variables change. These discrete 

events are given as a sequence 𝑇 = (𝑡1, 𝑡2, . . . , 𝑡𝑛)𝑛∈ℕ+. Since 

the inventory control system works with perishable products, it 

is very convenient to represent the storage as a sequence of lots 

𝑆𝑡
𝑝

= (𝑠1
p,t

, 𝑠2
p,t

, . . . , 𝑠𝑛
p,t

)𝑛∈ℕ+  replenished at different moments 

of time, such that for each 𝑆𝑡
𝑝
 there is a corresponding sequence 

of days to expiration 𝐸𝑡
𝑝

= (𝑒1
p,t

, 𝑒2
p,t

, . . . , 𝑒𝑛
p,t

)𝑛∈ℕ+ . Thus, for 

each single product at each moment of time, overall inventory 
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level is 𝐼𝑡
𝑝

= ∑ 𝑆𝑡
𝑝𝑛

𝑖=1 . Days to expiration decrease during the 

simulation and the function ε(.) is introduced in order to model 

it in an iterative way: 

𝐸
t+1

𝑝
= 𝜀(𝐸

t

𝑝
) = (𝑒0

p,t − (𝑡
i+1

− 𝑡
i
), . . . , 𝑒𝑛

p,t − (𝑡
i+1

− 𝑡
i
)).    (1) 

Empty and expired lots are removed, ∀𝑒𝑖
p,t

⩽ 0, 𝑆𝑡
p

←

𝑆𝑡
p

𝑠𝑖
p,t

,⁄   𝐸𝑡
p

← 𝐸𝑡
p

𝑒𝑖
p,t

⁄ and ∀𝑠𝑖
p,t

= 0, 𝑆𝑡
p

← 𝑆𝑡
p

𝑠𝑖
p,t

⁄ , 𝐸𝑡
p

←

𝐸𝑡
p

𝑒𝑖
p,t

⁄  (Fig. 1). Besides, the number of expired products is 

traced for later total expense calculation: 

Expired
t

𝑝
= ∑ 𝑠𝑖

𝑝,𝑡[Φ].𝑛
𝑖=1                                   (2) 

where [Φ] is the Iverson bracket [13]: 

[Φ] = {1 𝑖𝑓 𝑒𝑖
𝑝,𝑡

⩽ 0 .

else 0
                                        (3) 

 
Fig. 1. Mechanics behind perishability (modelling time is measured in days) 

[14]. 

Assuming that 𝑇𝑑𝑒𝑚𝑎𝑛𝑑𝑠
𝑝

= (�̂�1, �̂�2, … , �̂�𝑛)  includes only 

timings, when the new demand  𝑑𝑡
𝑝
 for a product p arises. Since 

the model under consideration is stochastic, demand size is a 

random variable D under a known distribution. In this regard, 

we introduce demand inter-arrival time as 𝑎𝑖 = �̂�𝑖 − �̂�𝑖−1, which 

is a value of a random variable A under a specified continuous 

distribution. Besides, a recursive function 𝑓𝑖=1(. ) is declared in 

order to fulfil arising demands depending on the available 

inventory capacity: 

𝑓𝑖=1(𝑠𝑖
p,t, 𝑑

t

𝑝
) = {

𝑠𝑖
p,t ← 𝑠𝑖

p,t − 𝑑𝑡 
p  𝑖𝑓 𝑠𝑖

p,t ≥ 𝑑𝑡
p

else 𝑠𝑖
p,t ← 0, 𝑓 i+1(𝑠𝑖+1

p,t , 𝑑𝑡
p − 𝑠𝑖

p,t)
,        (4) 

where i stands for an index of a lot to fulfil the demand.  

Fulfilled demand is also counted for later net profit 

calculation: 

 𝑆𝑎𝑙𝑒𝑠𝑡
𝑝

= {
𝑑𝑡

p 𝑖𝑓 𝐼𝑡
p ≥ 𝑑𝑡

p

else 𝐼𝑡
p

.                                  (5) 

For each single product there is a pair of control parameters 

(𝑄𝑝, 𝑟𝑝 ) that determine the whole inventory control policy. 

According to the applied control rule, as soon as the current 

inventory level reaches the reorder point, namely 𝐼𝑡
𝑝

≤ 𝑟𝑝, the 

inventory control system orders a new batch of size 𝑄𝑝 . 

Besides, a Boolean status-variable 𝑠𝑡𝑎𝑡𝑝  ∈ {True, False} is 

declared in order to know if the batch is already ordered: 

𝑜
t

𝑝
= {

𝑄𝑝, 𝑠𝑡𝑎𝑡𝑝 ← True 𝑖𝑓 𝐼𝑡
𝑝

≤ 𝑟𝑝&  𝑠𝑡𝑎𝑡𝑝𝑖𝑠 False

else 0
   .      (6) 

If an order is placed, the inventory-level will not be 

replenished instantly. Such a delivery lag is a random variable 

L under a known distribution. This means that the order 𝑜𝑡−𝑙
𝑝

 

made at the moment of time ti ∈ T will be appended to the 

storage 𝑆𝑡
𝑝

∪ 𝑜t-l

𝑝
, 𝐸𝑡

𝑝
∪ 𝑒𝑝 at the moment of time 𝑡𝑗 ∈ 𝑇 , such 

that 𝑡𝑗− 𝑡𝑖 = 𝑙, where l is a value of a random variable L. For 

this reason, a supply function g(.) is introduced: 

𝑔(𝑆𝑡
𝑝

, 𝐸
t

𝑝
, 𝑄𝑝) =  {

𝑆𝑡
𝑝

,  𝐸𝑡
𝑝

 𝑖𝑓  𝑜𝑡+𝑙
𝑝

= 0

else 𝑆𝑡
𝑝

∪ 𝑄𝑝 , 𝐸𝑡
𝑝

∪ 𝑒𝑝, 𝑠𝑡𝑎𝑡𝑝 ← False.
 (7) 

It is important to point out that either a backorder-event 

𝑑𝑡
𝑝

> 𝐼𝑡
𝑝

 or an overflow-event ∑ 𝑆𝑡
𝑝𝑛

𝑡=1 > 𝐼max  can take place. 

For this reason, the model traces backorders and overflows for 

later cost function calculation: 

𝐵𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟𝑠
t

𝑝
= {

0 𝑖𝑓𝑑𝑡
𝑝

≤ 𝐼𝑡
𝑝

else 𝑑𝑡
𝑝

− 𝐼𝑡
𝑝  ,                           (7) 

𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤
t

𝑝
= {

0 𝑖𝑓 ∑ 𝑆𝑡
𝑝

≤ 𝐼
max

𝑛
𝑡=1

else ∑ 𝑆𝑡
𝑝

− 𝐼
max

𝑛
𝑡=1 .

                     (8) 

The simulation executes functions in the following order: 

First, it checks expiration dates. Second, previously ordered 

goods are replenished. Third, the demand is fulfilled. Obeying 

this order of operations, the following equation to simulate 

inventory dynamics is derived: 

(𝑆
t+1

𝑝
, 𝐸

t+1

𝑝
) = 𝑓 (𝑔(𝑆

t

𝑝
, 𝜀(𝐸

t

𝑝
),  𝑄𝑝)).                    (9) 

Figure 2 demonstrates inventory dynamics. 

Fig. 2. Physical flow (modelling time is measured in days). 

The model incorporated 5 pivotal costs: ordering costs, 

inventory costs, backorder fee, overflow fee and recycle fee.  



Information Technology and Management Science 

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  2019/22 

11 

Ordering cost takes into consideration both purchase price 

and transportation cost. The model adopts the cut-off point 

quantity discount [15]: 

𝑐𝑝(𝑄𝑝) = {

𝑐𝑝𝑓𝑜𝑟 0 < 𝑄𝑝 ≤ 𝛽1

𝑘2𝑐𝑝𝑓𝑜𝑟 𝛽1 < 𝑄𝑝 ≤ 𝛽2

𝑘𝑛𝑐𝑝𝑓𝑜𝑟 𝛽
n-1

< 𝑄𝑝 ≤ 𝛽𝑛

  ,            (10) 

where ordering costs for a physical unit 𝑐𝑝(𝑄𝑝) is a function of 

an order quantity, such that 𝐵𝑝 = (𝛽1
p
, 𝛽2

p
, . . . , 𝛽𝑛

p
) is a series of 

cut-off points and 𝐾𝑝 = (1, 𝑘2
𝑝

, . . . , 𝑘𝑛
𝑝

), ∀𝑘𝑖
𝑝

∈ [0,1]is a series 

of corresponding discount factors (Fig. 3). 

Unit inventory cost ℎ𝑝  is constant and corresponds to 

inventory cost associated with the product p during demand 

inter-arrival lag. We also consider that every single out-of-stock 

(backorder) is associated with a loss of business reputation. 

Namely, if the demanded product is backordered, a customer is 

literally forced to search for a substitute. Every backordered 

unit is associated with a constant fee 𝑏𝑝.  

Fig. 3. Cut-off point quantity discount (quantity is measured in pallets). 

Overflows are also penalised by a constant fee 𝜔𝑝. In the real 

world, such expenses are associated with reverse logistics. 

Besides, when the lot is perished, penalty 𝜅𝑝related to recycling 

of expired goods arises. Based on the introduced variables, total 

costs associated with a product p can be calculated as follows: 

𝑇𝐶𝑝 = 𝑐𝑝∑𝑜𝑡
𝑝

+ ℎ𝑝∑𝐼𝑡
𝑝

𝛥𝑡 + 𝑏𝑝∑𝐵𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟𝑠𝑡
𝑝

+

𝜔𝑝∑𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑡
𝑝

+ 𝜅𝑝∑𝐸𝑥𝑝𝑖𝑟𝑒𝑑𝑡
𝑝

.                           (11) 

Considering the fact that each unit of product p is sold at a 

constant 𝑝𝑟𝑖𝑐𝑒𝑝 , the total net profit can be calculated as 

follows: 

 𝑁𝑒𝑡𝑃𝑟𝑜𝑓𝑖𝑡 = ∑ 𝑝𝑟𝑖𝑐𝑒𝑝∑𝑠𝑎𝑙𝑒𝑠𝑝𝑛
𝑝=1 − ∑ 𝑇𝐶𝑝.𝑛

𝑝=1      (12) 

Figure 4 demonstrates the example of monetary dynamics. 

It is worth noting that in the following examples total net 

profit is considered as the simulation output and subject to 

maximisation. 

  

Fig. 4. Monetary dynamics (modelling time is measured in days). 

B. Simulation-Based Optimisation 

As it was demonstrated in the previous section, realistic 

stochastic inventory control problems could be naturally 

reformulated as discrete-event simulations. In simulation-

optimisation based on a genetic algorithm, a simulation is 

utilised instead of an objective function in traditional form and 

a genetic algorithm is applied to find such simulation 

adjustments that would lead to the optimal output [16].  In 

general, methods of this kind are applied to solve stochastic 

optimisation problems of the following form: 

𝑚𝑎𝑥
𝜃∈Φ

𝐽(𝜃) = 𝐸[𝑌(𝜃)],                                (13) 

where θ corresponds to the vector of input parameters, and Φ 

stands for the set of feasible solutions. Y(θ) is the simulation 

output, such that the value of J(θ) is estimated based on the 

average of η replications [17]: 

𝐽𝜂(𝜃) =
1

𝜂
∑ 𝑌(𝜃)

𝜂
𝑖=1 .                              (14) 

In the proposed simulation-optimisation approach, iterative 

search continues until specified search time is over. 

 

C. Genetic Algorithm 

Genetic algorithm is a metaheuristic search technique that 

mimics the “survival of the fittest” phenomena of natural 

selection. The algorithm was originally invented and deeply 

studied by Holland [18]. Applying a genetic algorithm to the 

inventory model under consideration, we are looking for such 

control parameters Q = (Q1, Q2, …, Qn) and r = (r1, r2, …, rn) 

that result in the highest output (net profit). It is decided to use 

simple integer chromosome encoding, since it closely 

corresponds to the structure of the considered problem. Namely, 

the chromosome can be encoded as a list of integers �⃗� = (Q1, r1, 

…, Qn, rn), such that odd elements stand for order sizes and even 

elements represent reorder points. 

Fitness of an individual solution is the mean value of net profit 

calculated in several sequential replications (14) satisfying the 

following constraints: 

∑ 𝑄𝑖
n
𝑖=1 ≤  𝐼𝑚𝑎𝑥  𝑎𝑛𝑑 𝑟𝑖 <  𝑄𝑖  .                    (15) 



Information Technology and Management Science 

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  2019/22 

12 

If constraints are violated, fitness will take extremely low 

values due to infeasibility of such a solution.  

Crossover operator is used to vary chromosomes from one 

generation to the next. The pivotal idea behind crossover is 

simple, namely, given two individual solutions that are both 

highly fit; however, for different reasons, crossover ideally 

results in a new solution that combines the features from 

parental [19]. In order to solve the considered problem, the 

uniform crossover is proposed (Fig. 5). 

 

 

Fig. 5. Uniform crossover. 

Uniform crossover is chosen for two main reasons. First, 

since genes in the individual solution correspond to different 

input variables, uniform crossover allows one to separate odd 

and even genes. Second, as it is mentioned by Michalewicz, 

uniform crossover significantly decreases chances of premature 

convergence [20]. In uniform crossover, individual genes in the 

chromosome are swapped with a fixed mixing ratio Probu, 

according to the following algorithm:  

 
Probu ← probability of swapping values  

�⃗⃗⃗� ← first vector〈v1, v2, …, vn〉 

�⃗⃗⃗⃗� ← second vector 〈w1, w2, …, wn〉 

for i in range from 1 to len(vector) do 

if Probu ≥ random number in range (0.0, 

1.0) 

swap the values of vi and wi 

return �⃗⃗⃗� and �⃗⃗⃗⃗� 
 

Besides, a genetic algorithm requires a mutation operator to 

perform the optimisation. Mutation can be treated as a 

background operator for assuring that the population is diverse 

enough to be efficiently exploited by crossover. The mutation 

operator can be expressed by the following algorithm: 

 
Probm ← probability of replacing the value  

�⃗⃗⃗� ← vector 

for i in range from 1 to len(�⃗⃗⃗�) do 
if Probm ≥ random number in range (0.0, 

1.0)  

𝒗𝒊 ← random integer in feasible range  

return �⃗⃗⃗� 
 

The proposed optimisation framework takes advantage of 

tournament selection because it is a well-known robust 

approach for working with noisy fitness functions [21]. 

Tournament selection runs several “tournaments” among t_size 

individual solutions randomly driven from the population, such 

that the fittest individual in each tournament is picked for the 

following crossover. Algorithmically tournament selection can 

be implemented the following way: 

 
Pop ← population 

t ← tournament size, t_size ≥ 2 

Best ← randomly picked from Pop 

for i in range from 2 to t do 

Next ← randomly picked from Pop 

if Fitness(Next) > Fitness(Best) 

Best ← Next 

return Best 

 

Moreover, it is worth mentioning that tournament selection 

works with parallel architectures and can be easily adjusted 

[19]. Figure 6 demonstrates the logic behind simulation-

optimisation driven by a genetic algorithm. 

 

 
Fig. 6. The logic behind simulation-optimisation. 

IV. NUMERICAL EXPERIMENT 

A. Defining the Number of Replications 

In the considered problem, such input variables as  

D~N(μ, σ2), L~N(μ, σ2) and A~Exp(λ) are random; thus, the 

output (net profit) is also a random variable under some 

distribution. In this regard, it is important to decide, how many 

replications are sufficient. For this purpose, we use a method 

based on confidence intervals: 

η = (
𝑧α 2⁄

ζ
𝐶𝑉)

2

,                                (16) 

where η is a minimum number of replications to achieve desired 

confidence interval width ζ for model with a coefficient of 

variation CV [22]. 

A script runs the simulation model 7000 times with random 

inputs in a feasible range so that all replications have the same 

inputs and cover exactly 90 modelling days. After that the 

generated sample is used to calculate sample mean and 

variance, and test normality applying the Anderson–Darling 

test (Table I). 
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TABLE I 

ANDERSON–DARLING NORMALITY TEST 

Statistic Critical value Significance level 

0.716 0.787 0.5 

 

Using this approach, we test the null hypothesis that a sample 

is taken from a normally distributed population, i.e., if the 

calculated statistic is smaller than the critical value, the null 

hypothesis that the data is drawn from normal distribution can 

be accepted for the corresponding significance level [23]. 

Assuming the confidence level of 95 % and corresponding 

𝑧α 2⁄ = 1.96 , we calculate the coefficient of variation using 

sample mean and variance CV = 1512.8/9968.2 = 0.15. 

Therefore, it is decided to work with a confidence interval of 

length 498.4 (5 % of the mean) running each simulation 36 

times to take the average output that corresponds to the average 

net profit obtained during the simulation runs. 

B. Optimisation 

In order to test the proposed optimisation framework, it is 

applied to the 10-product stochastic inventory control problem 

under consideration. It is important to mention that both the 

simulation model and the optimisation framework are 

implemented in Python 3.7 and are open-source [24].  

In the numerical example, a genetic algorithm uses the 

suggested hyper-parameters [19], namely, tournament size of 5, 

crossover probability of 0.35 and mutation probability of 0.05. 

The evolution lasts 31 generations, and each generation is 

populated with 100 candidate solutions. However, it is worth 

emphasising that hyper-parameter variation in the same range 

has not notably affected the convergence speed. 

 

Fig. 7. The example of convergence path (net profit is measured in abstract 

monetary units). 

The fittest candidate solution that results in the net profit of 

6473 monetary units was obtained in 18 generations.  

C. Risk and Reliability Analysis 

The notable advantage of a simulation-driven approach is the 

possibility to conduct risk and reliability analysis (Fig. 8). 

Fig. 8. Comparing the most promising solutions (net profit is measured in 

abstract monetary units). 

Despite the fact that Solution 4 has the highest mean value, 

Solution 5 is distinguished by a smaller standard deviation; 

thus, it can be more attractive for a risk-averse decision maker. 

On the other hand, a risk-loving decision maker will be, most 

likely, interested in Solution 3, since it has the highest possible 

net profit.  

V. CONCLUSION 

To sum up, the proposed simulation-optimisation framework 

is both a simple and efficient approach to find nearly-optimal 

control parameters for a stochastic multi-product inventory 

control system that operates with perishable products. Besides, 

the key advantage of such an approach is the possibility to trace 

inventory dynamics in detail and involve the risk and reliability 

analysis in the decision-making process.  

The study also concludes with a statement that integer 

chromosome encoding works properly in combination with 

uniform crossover and tournament selection. Moreover, fine 

tuning of hyper-parameters can provide a desirable balance 

between the convergence speed and the likelihood of premature 

convergence.  

In future studies, it is expected to test this framework on 

problems with higher dimensionality and compare it to 

alternative metaheuristic techniques. 
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