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Abstract – Anchor box parameters and bounding box overlap 
ratios are studied in order to set them appropriately for the Faster 
R-CNN detector. The benchmark detection is based on 
monochrome images whose background may mask a small dark 
object. Three object detection tasks are generated, where every 
image either contains a small black square/rectangle or does not 
contain the object, representing thus class “background”. If this 
class is represented, the ratios are recommended to be tried at 0.7. 
The ratio for positive training samples is to be tried at a less value, 
but greater than 0.4, for the task every image of which contains an 
object. The minimum anchor box size is better to be tried at a 
lesser value from a range of object sizes. The anchor box pyramid 
scale factor and the number of levels are better to try at 2 and 8, 
respectively. Subsequently, these parameters may be corrected as 
their influence is fuzzier than that of the ratios. 

 
Keywords – Anchor box, bounding box overlap ratio, object 

detection, R-CNN. 

I. INTRODUCTION TO AN OBJECT  
DETECTION TASK PROBLEM 

Object detection is an important part of machine vision, 
artificial intelligence, medical diagnostics, and industrial 
automation. The task of object detection involves images, and 
it seems far simpler than the task of object tracking that involves 
sequences of images or videos [1], [2]. Although detecting and 
recognising objects in an image are not as hard as tracking 
objects in motion, both tasks require many parameters for  
fine-tuning object detectors and trackers. Without setting these 
parameters to their effective values, even detectors of very 
simple objects do not recognise them [3]. It is principally 
essential to learn how to adjust the parameters for achieving 
proper accuracy of detection because this is a particular basis 
for object tracking, apart from object detection itself. 

II. RELATED WORKS AND MOTIVATION 
As CNNs are widely used for image categorization, they can 

serve a platform for classifying image regions within an image. 
An early application of CNNs to object detection was a 
combination of region proposals with CNN features given the  
R-CNN method [4]. Remarkably, combining with pre-trained 
CNNs allows using small training sets [5], [6] that are very 
relevant in practice. 

Instead of classifying every region using a sliding window, the 
R-CNN detector only processes those regions that are likely to 
contain an object. This reduces the computational cost incurred 
when running a CNN. The region proposals, or bounding boxes, 
are created by a process called selective search [7]. The image is 

passed through windows of different sizes, and for each size the 
selective search method tries to group together adjacent pixels 
by texture, colour, or intensity to identify objects. Once the 
proposals are created, the R-CNN detector warps the region to 
a standard square size and passes it through to a pre-trained 
CNN. On the final layer of the CNN, a support vector machine 
(SVM) is added. The SVM classifies whether we have an 
object, and, if this is so, what object in the bounding box is. 
Eventually, the box is run through a simple linear regression 
model to output tighter coordinates to fit true dimensions of the 
object that has been classified [4]. 

The R-CNN method has two notable drawbacks: training is 
expensive in space and time, and the R-CNN detector is slow 
because it performs a CNN forward pass for each object region 
proposal, without sharing computation. The Fast R-CNN 
method removes these drawbacks by its way of sharing the 
computations over region proposals [8]. A Fast R-CNN 
architecture has a special pooling layer for regions of interest 
(RoIs). After a feature map is produced from the input image, a 
RoI pooling layer extracts a fixed-length feature vector from the 
feature map for each object region proposal. RoIs from the same 
image share computation while training. The Fast R-CNN 
method jointly trains the CNN, classifier, and bounding box 
regressor in a single model. The SVM classifier is replaced with 
a softmax layer on the CNN top to output a classification. A 
linear regression layer is added parallel to the softmax layer to 
output box coordinates. Whereas the R-CNN method has a 
CNN for extracting image features, an SVM to classify, and a 
regressor to tighten bounding boxes, the Fast R-CNN method 
instead exploits a single network for computing all the three 
ones. 

Despite a clear straightforward move for sparing space and 
time, RoIs are generated by the fairly slow selective search 
process. The region proposal step is dramatically sped up 
through the Faster R-CNN method [9]. A region proposal 
network (RPN) was introduced in 2015 for sharing full-image 
convolutional features with the detection network, thus 
enabling a much faster region proposer. An RPN is a fully 
convolutional network added prior to the Fast R-CNN detector. 
The Faster R-CNN makes thereby a region proposal a part of 
the CNN training and prediction steps. The RPN passes a 
sliding window over the CNN feature map, outputting potential 
bounding boxes and their respective scores. Anchor boxes 
considering certain object aspect ratios and sizes are used for 
this purpose. 

The anchor box has three parameters: a 2M ×  matrix 
( ) 2mh M
a

×
=A  of minimum anchor box sizes (MABSs), an 
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anchor box pyramid scale factor s, and a number of levels n in an 
anchor box pyramid. The MABSs are used to build the anchor 
box pyramid of the RPN [9]. Each row of matrix A defines the 
height and width of an anchor box. In MATLAB, the default value 
for this parameter uses the minimum size and the median aspect 
ratio from the bounding boxes for each class in the ground truth 
data [10]. To remove redundant box sizes, those boxes are kept 
that have an intersection-over-union (IoU) [4] that is less than or 
equal to 0.5 ensuring that the minimum number of anchor boxes 
is used to cover all the object sizes and aspect ratios. 

The anchor box pyramid scale factor is used to successively 
upscale anchor box sizes. By the MATLAB recommendation, this 
factor is taken from 1 through 2, but the default value is 2s = . 

Number of levels in an anchor box pyramid is selected for 
ensuring that the multiscale anchor boxes are comparable in size 
to the size of objects in the ground truth data. The MATLAB 
default value of n is selected based on the size of objects within 
the ground truth data for covering the range of object sizes. 

The Faster R-CNN detector is trained in four stages, each of 
which may have its own training options [9]. At the first stage, an 
RPN is trained. The RPN is initialized with a pre-trained CNN. 
Then, a Fast R-CNN network initialized also with the pre-trained 
CNN is trained using the already trained RPN. At the third stage, 
the RPN is re-trained using weight sharing with the Fast R-CNN 
network. Finally, the Fast R-CNN network is re-trained using the 
updated RPN, where the shared convolutional layers are kept 
fixed and the unique layers of the Fast R-CNN are fine-tuned. 

Setting the anchor box parameters appropriately is very 
important for training the Faster R-CNN detector successfully. 
Besides, bounding box overlap ratios (BBORs) [3] for positive 
training samples (PosTS) and negative training samples (NegTS) 
must influence the training and detection accuracy. These 
parameters should not be set by rules of thumb. Hence, a question 
is how to set those parameters properly, otherwise detectors will 
not work correctly. Obviously, there are many benchmark 
datasets and tasks, and each task will have its own appropriate 
anchor box parameters and BBORs. That is why a hard detection 
task should be considered. One of such tasks is object detection 
within monochrome images, where colour contrasts and 
intensities cannot help in detection. Such tasks are more real in 
the industry and surveillance practice (except for medical 
diagnostics) because the images for analysis and object detection 
are acquired from small webcams that may have either low 
resolution or just transmit grayscale signals (in some cases, the 
images are noised due to wireless transmission). An additional 
obstacle to object detection within monochrome images is that 
monochromatism often masks objects, which, for instance, may 
merge with the background [11]. Consequently, an object 
detection task (ODT) with monochrome images is both a suitable 
benchmark task for solving a problem of an appropriate Faster  
R-CNN detector parametrization and a prototype of the factually 
practiced object detection [3], [11]. 

III. THE AIM AND TASKS 
Since selecting the anchor box parameters and BBORs is an 

open question, the aim is to develop a technique of setting them 
appropriately for a hard ODT. The ODT will be of monochrome 
images, wherein artificial objects should be defined as much as 
less detectable for strengthening the role of appropriateness in 

selecting the parameters and ratios. The criterion of the 
appropriateness is the Faster R-CNN detector performance, 
which will be substantiated separately. To achieve the said aim, 
the following tasks are to be fulfilled: 

1. To substantiate a benchmark ODT whose images and 
objects are monochrome. 

2. To select a pre-trained CNN for including it into a 
Faster R-CNN detector architecture. 

3. To select boundaries of the anchor box parameters and 
BBORs, within which the Faster R-CNN detector will 
be trained and tested. 

4. To run the Faster R-CNN detector through those 
varied parameters and ratios by registering the 
detection performance based on properties of IoUs. 

5. To analyse the obtained results and decide on the 
appropriateness of the anchor box parameters and 
BBORs for the substantiated benchmark ODT. 

6. To discuss the technique of setting those parameters 
and ratios appropriately, and make a conclusion 
considering an outlook for possible further research or 
its expansion. 
 

IV. BENCHMARK ODT 
To evaluate performance correctly and consistently, the 

benchmark image classification problem must be spacious and 
blanket. An example of such an image classification problem is 
the ImageNet dataset [12]. However, the ImageNet dataset is 
very huge and bulky for statistical evaluation. Therefore, a few 
benchmark datasets will be used. 

Let us consider a bunch of monochrome images of suburb 
house frontal views (Fig. 1). Although the images are pretty 
simple, they have a lot of small localities like house windows, 
grass, trees, fence, shadows, and doors, where a darkened object 
could be masked in. The image resolution is not high, being 
rather low. The bunch of 120 such images might factually 
constitute a small training set suitable for any ODT with a few 
object types to be found within the image. 

 

Fig. 1. A bunch of 120 monochrome 220 330×  images of suburb house 
frontal views. The images are 8-bit grayscale. A darkened object could be 

masked in localities like house windows, grass, trees, fence,  
shadows, and doors. 

First, it is sufficient to generate an artificial object to every 
image. The simplest object is a square occupying from 2 % up 
to 3 % of the whole image. The object colour is set black for 
masking it in the dark localities that is expected to strengthen 
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the role of the appropriateness in selecting the anchor box 
parameters and BBORs. Henceforward, the 40 40×  black 
square is inserted randomly within each of those 120 images, 
making thus a training set without class “background” (i.e., 
there are no “pure” images; every image contains an object, 
which should be detected). Figure 2 presents an assembled 
image of this training set, where only a few black squares are 
clearly seen. Although the object to be detected here is 
elementary, detectability of these objects is not as easy as it may 
seem. For instance, the squares within the images in Fig. 3, 
extracted from the training set in Fig. 2, are really well-masked. 

 

Fig. 2. An assembled image of a training set of 120 monochrome 220 330×  
images, where every image contains the 40 40×  black square to be detected. 

 

Fig. 3. An assembled image of a subset of the training set shown in Fig. 2, 
where the black squares are well-masked. Apparently, this is not a unique 

version of only those 28 “masking” images. A few new images (from Fig. 2) 
which mask the object might be added. Surely, the set of “masking” images is 

kind of fuzzy determined by human perception of a definite observer. 
 
A testing set without class “background” is created 

analogously (Fig. 4). It also contains images that successfully 
mask the black square (Fig. 5). 

For benchmarking with the ODT by the training set in Fig. 2, 
analogous training and testing sets are created with class 
“background”, where about 20 % of images are kept original, 
without inserting the black square. There are 25 and 23 images 
without the black square in the new training and testing sets, 
respectively (Fig. 6 and Fig. 7). 

 

Fig. 4. An assembled image of a testing set of 121 monochrome 220 330×  
images (they are related to images in Fig. 2 but without repetitions, it is a new 

set), where every image contains the 40 40×  black square to be detected. 

 

Fig. 5. A subset of 12 images of the testing set in Fig. 4, where the black 
squares are well-masked due to dark colour and geometrical form similarities. 

For a layman, it is pretty hard to quickly detect accurately all the squares. 

 

Fig. 6. A subset of 35 images of a new training set of 120 monochrome 
220 330×  images, where 95 images contain the 40 40×  black square to be 
detected. The rest 25 images in this new set represent class “background”. 
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Fig. 7. A subset of 35 images of a new testing set (related to the training set 
whose subset is shown in Fig. 6) of 121 monochrome 220 330×  images, 

where 98 images contain the 40 40×  black square to be detected. The rest 23 
images in this new set represent class “background”. 

 
The third ODT is created by inserting black rectangles whose 

width and height vary between 30 and 50 pixels, in all images. 
Although now the training and testing sets are created without 
class “background”, some training images and testing images 
truly mask the object (Fig. 8 and Fig. 9, respectively). 

 

Fig. 8. A tiny subset of the third training set of 120 monochrome 220 330×  
images containing black rectangles. Some images mask the rectangles as well. 

 

Fig. 9. A tiny subset of the third testing set of 121 monochrome 220 330×
images, with a black rectangle in every image. The location of every rectangle is 
randomly changed, so “masking” images differ from those in Fig. 5 and Fig. 7. 

Thus, these three ODTs are pretty diverse, although they are 
generated from the same monochrome 220 330×  images of 
suburb house frontal views. Owing to the monochromatism and 
masking the black squares and rectangles, these tasks are hard 
as well. 

V. A PRE-TRAINED CNN  
FOR THE FASTER R-CNN DETECTOR 

To deal with small training sets, the pre-trained CNN is used 
in the sense of the transfer learning workflow [13]. In transfer 
learning, a CNN trained on a big dataset is used as the starting 
point to solve a new classification or detection task [14]. This 
means that the pre-trained CNN has already learned a rich 
aggregate of image features that are applicable to a wide range 
of images. This learning is transferable to the new task by  
fine-tuning the pre-trained CNN. The pre-trained CNN can be 
successfully fine-tuned by making small adjustments to the 
weights of the CNN layers. Eventually, the feature 
representations learned for the original task are slightly adjusted 
to support the new task. These slight adjustments are executed 
across small training sets [4], [8], [9], [13], [14]. 

The original task used for pre-training a CNN should have a 
big training set whose images must be very diverse and 
heterogeneous. A good example of such a task is the CIFAR-10 
dataset. The dataset consists of 60,000 colour images of size 
32 32 3× × , represented as 32 32×  matrix in each of the three 
colour channels. The dataset is divided into 50,000 images 
intended for training and 10,000 images intended for validating 
and testing. Although the CIFAR-10 dataset has only 10 image 
categories (6,000 images per category), its images are 
heterogeneous and miscellaneous diversely representing such 
classes as “airplane”, “automobile”, “bird”, “cat”, “deer”, 
“dog”, “frog”, “horse”, “ship”, “truck” [15], [16]. One of the 
promising CNN architectures for classifying CIFAR-10 images 
is of convolutional layers whose number of filters is doubled 
through the layers [15]. The starting number of filters in the first 
convolutional layer can be set at 64. To prevent overfitting and 
improve generalization, a 50 % dropout layer is inserted  
in-between two fully-connected layers (Fig. 10). 

 

 

 
Fig. 10. The architecture of a CNN in MATLAB for classifying CIFAR-10 

images. An additional fully-connected layer is inserted in-between the 
convolutional layer of 256 filters and the final convolutional layer of 10 filters 

(equal to the number of image classes). 
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After having trained the CNN for 80 epochs, it performs at 
84 % accuracy rate (over the CIFAR-10 testing set of 10,000 
images). This is sufficient for continuing with the CNN as a  
pre-trained one to be included into the Faster R-CNN detector 
architecture. 

VI. BOUNDARIES OF THE ANCHOR BOX PARAMETERS  
AND BBORS 

As the object size varies between 30 and 50 pixels, it is 
sufficient to set 11 12a a a= =  and { }30,50a∈  for matrix A  
(which here is just a row). Let the step of a  be 1. The scale 
factor is [ ]1; 2s∈  and the number of levels in an anchor box 
pyramid is { }1, 8n∈ . Let the step of s  be 0.1 and the step of n  
be 1, but these two will be set as default for the first ODT. 

The BBOR for NegTS is a value from half-segment ( ]0; q  by 
0 1q< < . The BBOR for PosTS is a value from half-segment 
[ ); 1r  by 1q r < . For the training set without class 
“background”, 0.001q =  and [ ]0.1; 0.9r∈ . In general, let the 
step for the ratios be 0.1, but it will be 0.02 for more accurate 
evaluation. 

VII. RUNNING THE FASTER R-CNN DETECTOR  
THROUGH THE VARIED PARAMETERS AND RATIOS 

The Faster R-CNN detector will be trained for 2 epochs with 
a minibatch size equal to 120. In the first turn, the Faster 
R- CNN detector is run through [ ]0.1; 0.9r∈  and { }30,50a∈  
by 0.001q =  for the dataset without class “background”. Then, 
after deciding on the best s  and n , the detector is run through 

[ ]0.1; 0.8q∈  and [ ]; 0.9r q∈  with the step equal to 0.1 for the 
dataset in Fig. 6 and Fig. 7. Finally, the detector is trained by 
the training set in Fig. 8 and tested over the testing set in Fig. 9 
through the same varied parameters. 

IoUs summed and normed (IoUsSN) against a  (horizontal) 
and r  (vertical) are shown in Fig. 11 for the ODT without class 
“background”. Darker colours and bigger dots correspond to 
greater IoUsSN without missed detections. Numbers of the 
detected objects summed and normed (NsDOSN) are shown in 
Fig. 12 under the same axes and colours. 

 

Fig. 11. IoUsSN are top for 0.5r =  and 0.6r = ,  
too weakly depending on a . 

 

Fig. 12. At the same black dots, NsDOSN are equal to 121 along with highly 
accurate detection. A lot of detections are missed at 0.7r > ,  

where IoUsSN are not top. There are fewer omissions at 0.4r <   
but the accuracy is far poorer. 

As black dots are the best ones, it is clearly seen that the best 
BBOR for PosTS is at [ ]0.5; 0.6r∈  or close to this interval. The 
refined IoUsSN are in Fig. 13, where darker colours and bigger 
dots correspond to greater IoUsSN without missed detections, by 
rendering dark those dots at which the minimal IoU is greater 
than 0.4237 (i.e., the best minimal accuracy for the ODT 
without class “background”). Under the same axes and colours, 
Fig. 14 presents NsDOSN; Fig. 15 shows those minimal IoUs, 
and variances of IoUs are shown in Fig. 16 (the same colour 
convention will be used further). An obvious inference is that 
an appropriate r  is about between 0.49 and 0.51, while the 
MABS should be set closer at the size of the object to be 
detected. However, this trend is too unsteady. 

 

Fig. 13. IoUsSN are top in the middle of the axes. The best accuracy is 
achieved at 0.49r =  ( 0.5r =  is plausible) and 40a =   

by no missed detections. 

 

Fig. 14. The axes middle is the best but detection omissions have no trends. 
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Fig. 15. The axes middle is the best for minimal IoUs  
but they have no trends. 

 

Fig. 16. IoUs are less scattered in the axes middle  
but some artefacts are seen. 

For the ODT whose 25 training (Fig. 6) and 23 testing images 
(Fig. 7) are of class “background”, we form BBORs by 

0.5q r= =  and MABSs by 42a = . For such ODTs (where an 
image may not contain an object), the main characteristics of 
the detector performance are similar to IoUsSN and NsDOSN. 
Additionally, a number backgrdM  of class “background” images 
(which do not contain any objects) is very important to be 
considered by a total number N  of testing images within their 
set I  and a set of the detector parameters P . For instance, 

{ }, ,, , r s nP q= A  in our case. If ( )objectf P  is a set of correctly 
found objects (CFOs), ( )backgrdf P  is a set of correctly found 
backgrounds (CFBs), and ( ),u P I  are IoUs by the respective 
set I  of images with the CFOs, then the standardised indicators 
of the detector performance are the following: 

 
 ( ) ( ) ( )object object backgrdf P f P N M= − , (1) 

 ( ) ( )backgrd backgrd backgrdf P f P M= , (2) 

 ( ) ( ) ( )backgrd,
I

u P u P I N M
∈

= −∑
I

. (3) 

 
These indicators are shown against s  (horizontal) and n  
(vertical) in Fig. 17 (CFOs), Fig. 18 (CFBs), and Fig. 19 (IoUs) 
for the current ODT (its testing subset is in Fig. 7). 
 

 

Fig. 17. CFOs by (1) achieve the top rate at higher n   
but there is no regularity. 

 

Fig. 18. CFBs by (2) are poorer than CFOs by (1),  
getting better for 1.3s > . 

 

Fig. 19. The rate of IoUs is high but IoUsSN by (3)  
are irregularly scattered. 

Apparently, in Fig. 17 there is contrary to what Fig. 18 and 
Fig. 19 show. The roughly best s  and n  can be set at 1.7 and 
8, respectively. However, influence of these two on indicators 
(1)– (3) still seems stochastic-like. 

CFOs by (1), CFBs by (2), and IoUsSN by (3) are shown 
against q , r , and a  in Figs. 20–22. Those 3D graphs show that 
MABS does not influence the detector performance. Influence 
of BBOR for NegTS is weak, because faces in the graphs for 
greater q  seem as they are clipped. BBOR for PosTS 
influences: ( )0.6;0.8r∈  brings the best performance. 
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Fig. 20. Ignoring CFBs, CFOs by (1) achieve the top rate at smaller q  and r . 

 

Fig. 21. Ignoring CFOs, CFBs by (2) achieve the top rate at 0.7r >  (where 
0.9r =  is the best for PosTS), independently of MABS and BBOR for 

NegTS. 

 

Fig. 22. IoUsSN by (3) are almost independent of MABS achieving their top 
rate at 0.7q <  and 0.6 0.8r< < . IoUsSN that have zero IoUs are dot-circled. 

After all, how can it be that BBORs for NegTS along with 
MABS are non-influential? Figures 20–22 do not show it but 
those dot-circled zero IoUs correspond to poor triplets of q , r  , 
and a . Summed and standardised numbers of such triplets for  

 
 

 
NegTS show that appropriate values for q  are between 0.5 and 
0.7 (Fig. 23). A conclusion on MABS is unobvious but setting 

{ }33,37a∈  looks reasonable (Fig. 24). 

 

Fig. 23. Relative fails of the detector (recall Fig. 7)  
against BBOR for NegTS. 

 

 
 

Fig. 24. Relative fails of detector (Fig. 7) against MABS.  
The polyline appears as not having a distinct minimum,  

so any conclusion is rough. 
 

IoUsSN against a  (horizontal) and r  (vertical) for the third 
ODT are shown in Fig. 25, where the range of MABS is thinned 
twice as its influence is too weak (see an analogue in Fig. 11). 
Once again IoUsSN seem not depend on MABS. NsDOSN are 
shown in Fig. 26 with empty circled dots corresponding to 
performances with zero IoUs. There are two pairs, 
{ }38, 0.5a r= =  and { }44, 0.4a r= = , at which IoUsSN and 
NsDOSN are top, and the minimal IoU is greater than 0.38. 
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Fig. 25. IoUsSN are better at smaller BBOR for PosTS  
but a few exclusions exist. No visible influence of MABS.  

Setting 0.5r >  is clearly unacceptable. 

 

Fig. 26. Top NsDOSN are at [ ]0.4; 0.5r∈  but they are not guaranteed.  
The minimal IoU is greater than 0.38 in only two cases  

without detection omissions (black dots). Many zero IoUs,  
despite great IoUsSN (greater radii). 

VIII. ANALYSIS OF THE OBTAINED RESULTS  
AND DECISION ON THE APPROPRIATENESS 

Now, it is obvious that the anchor box parameters are far less 
influential than BBORs. In particular, MABS is unexpectedly 
open to be set at any value close to width or height of the object. 
The anchor box pyramid scale factor is a free choice of a value 
below 2 (this is the default value in MATLAB) down an aspect 
ratio (greater than 1) for non-square and non-round shape 
objects. An appropriate number of levels in an anchor box 
pyramid for such objects is seemingly between 6 and 10, 
because 10n >  may retard training. For objects, whose shape 
approaches a square or round, an appropriate number of levels 
is 2 as setting 1n =  is heedless even for ODTs like that with the 
testing set in Fig. 4. 

BBORs strongly influence the detector performance, and 
their values should be taken more carefully than a value of 
MABS. Without class “background”, BBOR for NegTS does 
not matter and thus it is set at a negligible minimum (say, 0.001 
or so). Referring to graphs in Figs. 11–16 and Fig. 25, Fig. 26, 
with a purpose of an aggregation, an appropriate BBOR for 
PosTS is a value from interval (0.4; 0.6). Endpoints 0.4 and 0.6 
are hardly ever considerable. However, for objects, whose 
shape approaches a square or round, an appropriate BBOR for 
PosTS tends to be greater than for non-square and non-round 
shape objects. This is ascertained from comparing stripes of 
black dots in Fig. 11 and Fig. 12 to Fig. 25. 

For ODTs containing class “background”, i.e., where images 
do not necessarily contain objects, BBORs for NegTS and 

PosTS may be identical. A small gap between them may exist 
but it is unlikely to bring a significant effect. This is ascertained 
from comparing bunches of black dots in faces in Fig. 20 
and Fig. 21. In spite of seeming weak influence of BBORs for 
NegTS, which is observable in Fig. 20 – Fig. 22, relative fails 
of the detector decrease as the value of BBOR for NegTS 
increases up to 0.7 (Fig. 23). Meanwhile, the detector fails least 
if BBOR for PosTS is set at a value between 0.7 and 0.8 
(Fig. 27). The number of such fails disclosed in Fig. 28 against 
BBORs for NegTS (vertical) and PosTS (horizontal) confirms 
that. Hence, setting both BBORs at 0.7 or close to that is an 
appropriate choice to work with class “background”. 

 

Fig. 27. Relative fails of the detector (recall Fig. 7) against BBOR for PosTS. 
This graph reminds the graph in Fig. 23 only for 0.4r . For 0.4r < ,  

CFBs by (2) are poor (Fig. 21). 

 

 
 
Fig. 28. The number of detector fails inversely proportional to the dot radius. 
The single black dot is that where we have no fail. Detectors at vertical stripes 

for 0.1, 0.2, 0.3, 0.4, 0.9{ }r∈  perform unacceptably poorly, without 
exclusions. Every horizontal stripe has its exclusions,  

at which detectors perform with a few fails. 
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IX. DISCUSSION AND CONCLUSION 
We have considered detecting a single object and the case 

when an image does not contain it. What if there were two or 
three or more objects? What would influence of BBORs and 
MABSs then be? Would they influence in a similar way 
compared to the considered cases? These questions are an 
obvious extension of the question raised in the beginning. 
Answering them requires far broader research involving more 
heterogeneous and bigger datasets. 

The present research, even based on simply black squares 
and rectangles within one-origin ODTs, turned out to have 
much confusing results. Generally, influence of BBORs on the 
Faster R-CNN detector performance is some fuzzy. Influence 
of the anchor box parameters is fuzzier. Nonetheless, 
appropriateness in setting those parameters and ratios exists. 
First, a range of object sizes should be learned, although 
BBORs seem not to depend on the range. Second, an anticipated 
difference exists between detecting just ever-present objects 
and revealing sometimes that an image does not contain any 
objects. Thus, it should be learned whether class “background” 
is present. If it is so, BBORs are tried both at 0.7; if not, BBOR 
for PosTS is tried at a less value but greater than 0.4. MABS is 
better to try at a lesser value from the range (recall Fig. 24). The 
anchor box pyramid scale factor and the number of levels are 
better to try at 2 and 8, respectively. Subsequently, these 
parameters may be corrected if IoUs or one of indicators 
(1)– (3) is poor. 

The main result of the experimentation is that anchor box 
parameters and BBORs are impossible to set at their best values 
at one stroke. They instead are corrected at a few stages. The 
first stage, the fuzziest one, has been described. Due to the said 
fuzziness, this is still a rough technique that might be called a 
start-off. It can probably be expanded by trying to detect more 
objects in an image, but without losing generality. The 
expansion is expected to confirm that way of the 
appropriateness for adjusting the anchor box parameters and 
BBORs, rather than ascertain appropriate values for them. 
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