
Information Technology and Management Science

109

ISSN 2255-9094 (online)
ISSN 2255-9086 (print)
December 2017, vol. 20, pp. 109–115
doi: 10.1515/itms-2017-0019
https://www.degruyter.com/view/j/itms

©2017 Andrejs Kauliņš.
This is an open access article licensed under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), in the manner agreed with De Gruyter Open.

Supporting Problem Solving Process of Expert
System Architecture in Database Administration

Andrejs Kauliņš
Riga Technical University, Latvia

Abstract – The present article describes the supporting problem
solving process of expert system architecture in database
administration. The proposed expert system produces solutions
using input data from users, also recommends a better solution
according to the defined task, restrictions and given optimisation
goal. To generate solutions, an expert system uses the combined
method to produce a solution. The present article also describes a
problem domain, where an expert system could be used. In the
implementation section, system design and implementation are
also introduced. Conclusion section comprises further research
and development steps.

Keywords – Expert system architecture, decision support, ontology.

I. INTRODUCTION

The problem solving process in database administration is a
complex process. Database administrators direct or perform all
activities to maintain a successful database environment. Many
regulations indicate implementation of data security, high
availability and strong database requirements. The present
article describes expert system architecture to help users take
right decisions in the database administration field. The system
generates solutions based on input data from users. A user shell
provides task definition, infrastructure parameters, restrictions
and optimisation goal. The algorithm of generating solutions is
constructed based on ontology and genetic algorithms. Users
get the best solution according to the provided goal and
estimates for implementation time and costs for this solution.
The system uses different components – user interface, task
handler, solution generator and optimiser, task estimator,
relational database, knowledge database and report subsystem.
The system is designed to support Oracle Database
administration process, but could be adapted to support a
decision-making process in other fields.

II. PROBLEM DOMAIN

Database administration includes different aspects and DBA
administrators have many duties:

 To identify database requirements by interviewing
customers, analysing department applications,
programming, and operations, as well as evaluating
existing systems and designing the proposed systems;

 To recommend solutions by defining database physical
structure and functional capabilities, database security,
data back-up, and recovery specifications;

 To install the revised or new systems by proposing
specifications and flowcharts, recommending optimum
access techniques, coordinating installation requirements;

 To maintain database performance by calculating
optimum values for database parameters, implementing

new releases, completing maintenance requirements,
evaluating computer operating systems and hardware
products.

 To prepare users by conducting training, providing
information, resolving problems;

 To provide information by answering questions and
requests;

 To support database functions by designing and coding
utilities;

 To maintain quality service by establishing and
enforcing organisation standards;

 To maintain professional and technical knowledge by
attending educational workshops, reviewing
professional publications, establishing personal
networks, benchmarking state-of-the-art practices,
participating in professional societies;

 To contribute to team effort by accomplishing the
related results as needed.

New strict regulations of data security – General Data
Protection Regulation (GDPR) [2] –, force database
administrators to encrypt and protect data in a database. How to
solve and implement this requirement in practice? Often online
encryption is impossible and we have conflicts between
implementing regulations and business system availability.
Even more, the encryption task can be implemented in different
ways – using SQL, PL/SQL packages, data export/import, etc.
Which is the right solution in our environment with given
business requirements? The described expert system helps users
to generate solutions and choose the best one based on the
estimates and goal defined.

III. EXPERT SYSTEM ARCHITECTURE

The main goal of the expert system is to generate potential
solutions to a given problem, estimate them and recommend an
appropriate resolution according to a given optimisation rule.
To perform these tasks, a system will accept input data and
produce output results as a final report (Fig. 1).

Vulgaris
Parameters P1...Pn

Limitations O1...Ok

Task

Solutions of task S1...SR

Best solutions of task S*

Estimates for best solutions of task E1...Ed

Fig. 1. Input/output data.

Information Technology and Management Science
 ___ 2017/20

110

A. Input Data

1. Problem domain infrastructure description:
1.1. Server type, OS platform version;
1.2. Number of CPU installed;
1.3. RAM size installed on the server;
1.4. Database version;
1.5. SGA/PGA size parameters;
1.6. Storage description (number of disks, RAID arrays if

used, disk parameters – rpm, volume).
All parameters are defined as single value parameters

P1, ..., Pn, as shown in Fig. 1 (Table I).

TABLE I
PARAMETERS FOR INFRASTRUCTURE DESCRIPTION

Class/Subclass name Parameter Value

Business System SLA Gold/Silver/Bronze

Server Model T5

Database Manufacturer, version Oracle, 12.1.0.2.0

Linux OS version, CPU, RAM Rhel 7.4, 4,8 Gb

Storage Model G1000

Storage controller Firmware version 4.1.2.3

LUN Pool name, RAID type ASMD, RAID1

Disk Type, rpm, cache
Spined, 5400,

2 Mb

2. Restrictions which apply to solutions. Later we will see an
example of restrictions. For example, if a business system
should be online all the time, or can be at the downtime state,
for a limited amount of time “data should be available”.

3. Task definition. System should generate solutions to a task.
“Encrypt Data in LOB segment”, “Compress tablespace”,
“Upgrade database” are typical DBA tasks, which should be
solved.

4. Goal for optimal solution.
There are two practical goals for the best solution – by

implementation time (reducing implementation time) and
implementation costs (minimising implementation costs).

B. Output Data

1. Possible list of all solutions (for internal purposes, and if a
user requires the whole list with estimates).

2. Solutions that are applicable to our restrictions.
3. Better recommended solution, which fits our optimisation

goal.
4. Estimates for each solution (implementation times, costs).
To formulate solutions and recommendations, the system has

modules (Fig. 2).

Knowledge
Base

Data
Extractor

Solution
Generator

Solution
Optimizator

UsersExpert

User
Interface

RDBMS

Solution
Evaluator

Validated
Solutions

Optimal
Solution

Fig. 2. Expert system architecture.

C. Data Extractor

Data extractor writes all parameters in a relational database
in tables and extracts restrictions, task and optimisation goal.
Ontology is used to fulfil the rest of the information on the
infrastructure. For example, ontology contains information on
a relationship of server and memory, storage, and CPU that
could be installed in a given type of server. Informing the
system that we have server type SPARC T5-2, it must have one
or two processors installed in it, and even more – if one
processor is installed, it has to have 128 Gb / 256 Gb / 512 Gb
of RAM, and if it has two processors installed, then it can have
256 Gb / 512 Gb / 1024 Gb of RAM. All these details about the
given type of server are described in ontology (Fig. 3) [7]–[9].

Business
System

-Name
-SLA

Server1

-#CPU
-RAM

Storage

-Raid
-Capacity

Server2

-#CPU
-RAM

Linux

-OS Version
SPARC

-OS Version

DB

-Version
-SGA
-PGA

Fig. 3. Infrastructure ontology.

Information Technology and Management Science
 ___ 2017/20

111

After all input data are fixed, we can generate solutions, for
that purpose “Solution Generator” takes control.

D. Solution Generator

Solution generator reads knowledge base, for solutions,
which are generated and saved in a similar problem solution
process. For a given task, it manipulates with atomic operations,
for example, in the task of encrypting data, atomic operations:

 Upgrade a database;
 Add CPU;
 Migrate a database;
 Move a table;
 Redefine a table;
 Export a piece of data;
 Import a piece of data;
 Unplug tablespace;
 Plug tablespace.

Solutions to problems in our domain could be simple, just
consisting of one atomic operation: Problem – Solution and
complex:

Problem: Sol1 → Sol2 → ... → Soln (Fig. 4).
On the other hand, each atomic operation can take some time

for implementation and will require system or data
unavailability in each step of implementing a complex solution
(Fig. 5).

Each version of database has some features implemented in
it. Version 12.2 has Transportable Data Encryption ONLINE
feature, which can be used to encrypt LOB segment. All
features for a specific version are documented in oracle manual,
for example, for Oracle Database 12.2 one can reference
Oracle® Database New Features Guide 12c Release 2 [12].

Solutions are dependent on features used, so we need to store
information about these features in the knowledge base
(Table II).

TABLE II
FEATURE AVAILABILITY IN DB VERSION

No. Feature 11.1 11.2 12.1 12.2

1
Transport-

able
tablespace

Yes Yes Yes Yes

2

Transparent
data

encryption
(online)

N/A N/A N/A Yes

3
LOB

operations
Basic Basic Advanced Advanced

Upgrade

Database
Version 12.1

Database
Version 12.2

Unencypted
LOB Segment

Unencypted
LOB Segment

Encrypt
Online

Database
Version 12.2

Encypted
LOB Segment

Unplug
from 12.2

Database
Version 12.2

Encypted
LOB Segment

Plug
into
12.1

Database
Version 12.1

Encypted
LOB Segment

Fig. 4. Complex solution to a simple problem.

Information Technology and Management Science
 ___ 2017/20

112

Sol2

Sol3

Sol1

Sol4

Implementation
Steps

4

3

2

1

Implementation Time

t1 t2 t3 t4

Fig. 5. Complex solution implementation steps.

E. Solution Evaluator

To get evaluations and validate solutions, before
implementing any change in production, these solutions have to
be implemented in the test environment. That could be a
difficult task, in terms of costs and time. Test environment
should be the same as the production one; data should be the
same as in production. All solutions have to be implemented in
the test environment to validate the process of implementation
and fix the time, which all operations take in the test
environment. Another issue is to validate the process for errors.
Database upgrade scripts could fail due to errors, so it is
necessary to fix them, before implementing solutions in the
production environment. To evaluate atomic operation
execution time, Markov chain [1] is used to model the test
environment and estimate results.

After obtaining validated and estimated solutions, it is
possible to choose the best one as a final recommended
solution.

F. Solution Optimiser

Optimiser estimates validated solutions and chooses the best
one, which fits by the optimisation goal given to the system.

Finally, a report is generated to a user with a recommended
solution.

G. Knowledge Base

Knowledge base contains different ontologies:
 Ontology of infrastructure;
 Ontology of database features;
 Ontology of PL/SQL statement semantics.

Knowledge base is based on triples; an engine is a property
graph of Oracle Database (Fig. 9). Knowledge base is populated
by an expert of database administration domain. All ontologies
are built by oracle commands described in [10]. After each
generated solution, the main steps are saved into a relational
database for future re-usage. Input data are compared with
history and if the entered data are the same, the existing
solutions are reused.

IV. SIMPLE EXAMPLE

Let us consider a simple task for database administrators. To
implement European Union regulations, we need to encrypt
documents, which are stored in oracle 12.1 version database.
Documents (pdf, pictures, and scanned documents) are stored
in Large Objects (LOB) as separate segments from tables.
Business system is critical and should be available 24 × 7 (Gold
support agreement level by ITIL). Maintenance window is
defined on Sunday from 8:00 am to 12:00 (noon), so allowable
downtime is 4 hours. Database is located on SPARC T5-2
server with 2 CPU and 1TB RAM memory is installed. Data
files are located on external storage HITACHI USP, for data
protection RAID1 is used, each logical unit (LUN) contains
20 disks (256 GB × 15000 rpm); total volume is 5 GB. Our task
is to “encrypt 1GB of data placed in LOB segment”. We have a
restriction – database downtime is 4 hours. There are a plenty
of solutions to this task:

 To move data with a single SQL command (alter table
move to encrypted tablespace);

 To switch parallelism on the table, so the encryption
process will proceed in parallel, at a degree defined by
a database administrator.

 If CPU is bottleneck, we can add additional CPU cores
to a virtual server (LDOM or local zone), where a
database is located.

 If Oracle version supports DBMS_REDEFINITION
feature, we can use table redefinition online to complete
the task [6].

 In Oracle 12.2 version, we can use online encryption
feature without downtime.

 Unencrypted data can be exported to a file system, and
then imported in the encrypted tablespace. This
operation should be made, when the system is
unavailable to users (new transactions due to the
import/export process).

How to choose the best solution? If we have an older version

of Oracle Database, we cannot implement encryption without
downtime (technical issues). Even in such a case, it is possible
to upgrade the database to a newer version, encrypt data, then
downgrade version to the original one.

In any case, a solution should be tested in the test
environment due to the following reasons:

 Time estimation in each step;
 Quality check (software errors can happen,

administrators should fix them before implementing a
solution in the production environment).

As you can see, implementing a solution for data encryption

is easy to define from the business side, but hard to implement
technically.

When all the details are provided for an expert system, a
solution generator takes control and tries to generate solutions
for a given task and defined goal. Solution estimator eliminates
solutions which are not valid or compatible with our
restrictions. In our case, a simple command “alter table

Information Technology and Management Science
 ___ 2017/20

113

emp.scott_lob move tablespace tbs_encrypted” executes as one
process, and takes on a given server for 10 hours with
tablespace offline, so data in the table are not available, and this
solution is not valid. To take more powerful CPU to reduce
time, we have to add additional cores, which are additional costs
for software licenses. If we have more powerful servers (for
example, T7, which is 30 % faster), we could migrate the
database to them, and this solution would be valid. Then it took
3.3 hours. But before encrypting data, we should test and
migrate the database from T5 server to T7. It would take another
downtime.

V. SYSTEM IMPLEMENTATION

For conceptual system design and modelling, Petri net was
used. System design is an iterative process, for the existing
system Petri net model is designed, then this model is modified
with details of the modelled system, changes are made in
architecture (Fig. 6).

System
Architecture

Petri Net
Model of
System

Improvements
In Petri Net

Changes in

Architecture

System
Architecture

Fig. 6. System design using Petri net.

A Petri net consists of places, transitions, and arcs. Arcs run
from a place to a transition or vice versa, never between places
or between transitions. The places from which an arc runs to a
transition are called the input places of the transition; the places
to which arcs run from a transition are called the output places
of the transition (Fig. 7).

Fig. 7. Petri net model of the designed system.

On next iteration we add details to Petri net, and then make
changes in system architecture (Fig. 8).

Graphically, places in a Petri net may contain a discrete
number of marks called tokens. Any distribution of tokens over
the places will represent a configuration of the net called a
marking. In an abstract sense, relating to a Petri net diagram, a
transition of a Petri net may fire if it is enabled, i.e., there are
sufficient tokens in all of its input places; when the transition
fires, it consumes the required input tokens, and creates tokens
in its output places. A firing is atomic, i.e., a single non-
interruptible step.

Unless an execution policy is defined (Table III), the
execution of Petri nets is nondeterministic: when multiple
transitions are enabled at the same time, any of them may fire.

TABLE III
EXECUTION POLICIES FOR PETRI NET (FIG. 7)

Event Precondition policy Postcondition policy

Task arrived – A task performed

Start implementation
of task

Task waits for a
solution, a task

performed
A task performed

Completion
implementation
of task

A task performed
Task waits for
solution, a task
accomplished

Task resolved A task accomplished –

Let us consider an example of firing of transition (Fig. 8), the
place p1 is an input place of transition t; whereas, the place p2 is
an output place to the same transition. Let PN0 be a Petri Net
with a marking configured M0 and PN1 be a Petri Net with a
marking configured M1. The configuration of PN0 allows for
transition t through the property that all input places have a
sufficient number of tokens (shown in the figures as dots)
“equal to or greater” than the multiplicities on their respective
arcs to t. Once and only once a transition is enabled, the
transition will fire. In this example, the firing of transition t
generates a map that has the marking configured M1 in the
image of M0 and results in Petri Net PN1, seen in Fig. 8. In the
diagram, the firing rule for a transition can be characterised by
subtracting a number of tokens from its input places equal to
the multiplicity of the respective input arcs and accumulating a
new number of tokens at the output places equal to the
multiplicity of the respective output arcs.

P1 PN0

t
2

2

1

PN1

t
2

2

1

P2 P2

P1

Fig. 8. Petri net firing transition example.

Information Technology and Management Science
 ___ 2017/20

114

Fig. 9. Petri net model of the designed system in next iteration.

Since firing is nondeterministic, and multiple tokens may be
present anywhere in the net (even in the same place), Petri nets
are well suited for modelling the concurrent behaviour of
distributed systems [3], [4].

Expert System Prototype will be developed and integrated in
Oracle Database 12c. User interface will be designed in Oracle
Application Express (APEX 5.1) [5].

For algorithms to generate and optimise solutions, Java Run
Time engine built in the database and code in the Java language
will be used [13].

Oracle Database provides support for developing, storing,
and deploying Java applications. Manual [13] introduces the
Java language to Oracle PL/SQL developers, who are
accustomed to developing server-side applications that are
integrated with SQL data. You can develop server-side Java
applications that take advantage of the scalability and
performance of Oracle Database.

To store ontology of infrastructure, a property graph of
Oracle Database was chosen [10], [11].

A property graph consists of a set of objects or vertices, and
a set of arrows or edges connecting the objects. Vertices and
edges can have multiple properties, which are represented as
key-value pairs.

Each vertex has a unique identifier and can have:
 A set of outgoing edges;
 A set of incoming edges;
 A collection of properties.

Each edge has a unique identifier and can have:
 An outgoing vertex;
 An incoming vertex;
 A text label that describes the relationship between the

two vertices;
 A collection of properties.

Figure 10 illustrates a very simple property graph with seven
vertices and six edges. The vertices have identifiers “Business
system”, “Database”, “Server1”, etc. Vertices have properties
“Name”, “Model”, etc. The edge is from the outgoing vertex
“Business system” to the incoming vertex “Database”. The
edges have a text label “Consist of” and a property type
identifying the type of relationship between vertices (Fig. 10).

Business
System

Database

Name: Client Relationship
Management
SLA: Gold

Manufacturer:Oracle
Version: 12.1.0.2.0

Server1

Server2

CPU: 4
RAM: 8Gb

CPU: 4
RAM: 8Gb

Linux

Sparc

OS version: rhel 7.4

OS version: Oracle
Solaris 11.3

Storage

Model: G1000

Consist of
Type:composition

Consist of
Type: composition

Consist of
Type: composition

Consist of
Type:
composition

Consist of
Type:
composition

Consist of
Type:
composition

Fig. 10. Ontology of infrastructure of Oracle Database property graph.

A task
awaits

solutions

Allocation
parameter

A task
accomplis

hed

Search for
the optimal
solution

User's
request

Launching
solution

generation

Solutions
received

Start
implementation of

tasks

Allocation
goals

Recording
goals

In the knowledge base

Recording
parameter

to the database

Allocation
constraints

Recording
constraints

to the database

Goal
recorded

Parameter
recorded

Constraints
recorded

Search
solutions

Search for
the next
solution

Optimal
solution
received

Solution
saved

Conclusion of the
solution
the user

Information Technology and Management Science
 ___ 2017/20

115

VI. CONCLUSION

The present article has introduced the supporting problem
solving process of expert system architecture in database
administration. Domain problem has been considered in case of
system application. The main architecture has been described
and development methodology provided. The present article
has not considered an algorithm of solution generation. The
method of solution generation is too sophisticated and is outside
of scope of this article. Further research will be dedicated to this
topic. Some methods are studied in this area:

 Genetic algorithms [14];
 Neural Networks, Deep Learning [15], [16];
 Reinforcement Learning [17].

The considered system has some benefits:
 Users can save time used to search an appropriate

certified solution to the given problem;
 System can calculate estimates for solution

implementation steps, which reduces testing and saves
total solution implementation time.

REFERENCES
[1] T. Hemdi, Vvedenie v issledovanie operacij, 6-e izdanie. Moskva:

Izdateljskij dom, 2001.
[2] “The protection of natural persons with regard to the processing of

personal data and on the free movement of such data, and repealing”,
Regulation (EU) 2016/679 of the european parliament and of the council
of 27 April 2016 on Directive 95/46/EC (General Data Protection
Regulation).

[3] V. Marahovskij, L.Rozenblum, A. Jakovlev, Modelirovanie paralleljnyh
processov. Seti Petri, Kurs dlja sistemnyh arhitectorov, programmistov,
sistemnyh analitikov, projektirovschikov sloznyh sistem upravlenija,
Sankt-Peterburg: Professionaljnaja literatura, IT-Podgotovka, 400 s.,
2014.

[4] Dj. Piterson, Teorija setej Petri i modelirovanie sistem. Moskva: Mir,
264 s., 1984.

[5] A. Geller, B. Spendolini, Oracle Application Express: Build Powerful
Data-Centric Web Apps with APEX. Oracle Press, 2017.

[6] J. Greenberg, Oracle Database Object-Relational Developer's Guide 12c
Release 1. Oracle corp., 2014.

[7] A. Kaulins and A. Borisovs, “Building Ontology from Relational
Database”, Information Technology and Management Science, vol. 17,
pp. 45–49, 2014. https://doi.org/10.1515/itms-2014-0006

[8] S. Staab and R. Studer, “Handbook on Ontologies”, International
Handbooks on Information Systems, Springer Science and Business
Media, 2013.

[9] B. Bennett, C. Fellbaum, “Formal Ontology in Information Systems”,
Proceedings of the Fourth International Conference FOIS 2006. IOS
Press, 2006.

[10] C. Murray, Oracle Spatial and Graph Property Graph Developer’s
Guide, Release 12.2., 243 p., 2017.

[11] “Oracle Spatial and Graph Property Graph Java API Reference,” 2017.
[Online]. Aviable: http://docs.oracle.com/database/122/SPGJV/toc.htm

[12] Oracle® Database New Features Guide 12c Release 2 (12.2), E49697-19,
Copyright © 2015, Oracle and/or its affiliates, 2017.

[13] T. Das, “Оracle® Database Java Developer's Guide 12c Release 2 (12.2)”,
E50047-11, Copyright © Oracle and/or its affiliates, 308 p., 2017.

[14] M. Gen and R. Cheng, Genetic algorithms and engineering design. John
Wiley & Sons, 411 p., 1997.

[15] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford
university press, 2005.

[16] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning. MIT Press,
2016.

[17] C. Szepesvari, Algorithms for Reinforcement Learning. Morgan and
Claypool, 2010.

Andrejs Kauliņš received the B. sc. ing. and M. sc. ing. degrees in 1993 and
2002 from Riga Technical University and the University of Latvia, respectively.
Since 2013 he has been studying at Riga Technical University to obtain a
Doctoral degree in Computer Science. Currently the major field of study is
complex IT system design based on ontologies.
E-mail: andrejs.kaulins@gmail.com
Phone number: +371 26737122

