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Abstract – The goal of the paper is to assess the ways for 
computational performance and efficiency improvement of 
collective crowd behaviour simulation by using parallel computing 
methods implemented on graphics processing unit (GPU). To 
perform an experimental evaluation of benefits of parallel 
computing, a new GPU-based simulator prototype is proposed and 
the runtime performance is analysed. Based on practical examples 
of pedestrian dynamics geosimulation, the obtained performance 
measurements are compared to several other available multi-
agent simulation tools to determine the efficiency of the proposed 
simulator, as well as to provide generic guidelines for the efficiency 
improvements of the parallel simulation of collective crowd 
behaviour.  
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I. INTRODUCTION 
Modelling and simulation of collective behaviour today is 

important in many areas – including ecology, biology, 
sociology, as well as urban planning. A valuable approach to 
simulation of collective behaviour is the use of geosimulation. 
However, practical implementation of such models is often 
difficult because there is a need to define each model element 
as a separate entity, as well as to describe complex spatial 
relations between the elements. This leads to complex models 
containing a large number of model elements, therefore 
requiring significant computational resources during simulation 
execution.  

The goal of the paper is to assess the ways for computational 
performance and efficiency improvement of collective crowd 
behaviour simulation by using parallel computing methods 
implemented on graphics processing unit (GPU). 

To perform an experimental evaluation of benefits of parallel 
computing, a new GPU-based simulator prototype is proposed 
and the runtime performance is analysed. Based on practical 
examples of pedestrian dynamics geosimulation, the obtained 
performance measurements are compared to several other 
available multi-agent simulation tools to determine the 
efficiency of the proposed simulator, as well as to provide 
generic guidelines for the efficiency improvements of the 
parallel simulation of collective crowd behaviour.  

A. GPU-based Parallel Computing 

Modern graphics processing units (GPUs) can be 
programmed using a wide variety of toolchains and frameworks 
with a varying level of abstraction. One of the dominating 
toolchains for general purpose GPU (GPGPU) computing is 
NVIDIA CUDA [1] – C language based toolchain and 
development framework for GPUs manufactured by NVIDIA 
company. CUDA is intended for development of parallel 
computing solutions, using the so-called compute kernels, 

intended to be run on GPU hardware. Compared to more cross-
hardware toolchains, such as OpenCL [2], which provide 
capability to develop programs that can be executed on a wide 
variety of compatible computational devices (CPUs, GPUs, 
FPGAs etc.) without significant changes in code, CUDA 
provides lower level access to underlying hardware 
architecture, giving more control over device-specific functions 
and, as a result, higher theoretical performance [3], [4]. 
However, code written in CUDA is executable only on 
NVIDIA GPUs. CUDA toolchain also provides mature 
integrated debugging and profiling toolset, allowing for 
efficient code debugging and optimisation. CUDA also 
provides libraries for solving typical problems (linear algebra, 
Fourier transformation, graph analytics etc.) as a drop-in 
acceleration for the existing code with minimal code changes. 

II. GEOSIMULATION IN THE CONTEXT OF COLLECTIVE CROWD 
BEHAVIOUR 

Geosimulation is a general concept that specialises on 
solving of complex geospatial problems using micro-simulation 
of spatially related automata [5] mainly focusing on an 
integrated use of cellular automata and agent-based models.  

A. Geographic Automata 
Geographic automata (GA) define certain behaviour that can 

be described by their internal state and spatial relation to other 
automata and their surrounding environment. Geographic 
automata, by their formal definition presented in [5], are based 
on and extend the definition of finite automata by introducing 
functionality to enable explicit spatial behaviour and spatial 
awareness. Formally, finite automaton can be presented as a set 
of finite internal states S = {S1, S2, …, SN}, external information 
ܫ  and a set of transition rules T: (St, It) → St+1 at any time 
moment t [5]: 

       A ~ (S, T)          (1) 
By this definition, geoautomaton can change its internal state 

as well as spatial position according to defined state transition 
rules, both non-spatial and spatial. Geographic automata also 
provide functionality to define a set of neighbours and 
neighbourhood rules between automata, enabling application of 
state transition rules according to inter-automata dependencies 
(neighbourhoods) that are dynamically changing in space and 
time. 

B. Geographic Automata Systems 

Geographic Automata Systems (GASs) can be considered as 
a combination of multi-agent systems (MASs) and cellular 
automata (CA) where each geoautomaton can be simulated as a 
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separate agent [6]. This approach allows for micro-level 
simulation and bottom-up modelling of complex phenomena, 
enabling observation of emergent properties within a system at 
a higher level of scale, which are not directly predictable from 
constituent parts [7], [8]. The emergence of new properties, 
thus, is related to the observation scale and context, and often 
can be observed and identified only within large groups of 
interacting agents. This requirement for a large number of 
agents, together with agent complexity, is often the limiting 
factor for simulating such models. For GA models containing a 
large number of interdependent agents, with their explicit 
requirement to process a large number of interdependent spatial 
relations, achieving adequate simulation performance can 
become a serious implementation challenge, as spatial relation 
operations are often computationally intensive. For some 
models, this can be at least partially mitigated by reduction of 
model detail, at a risk of oversimplification that can lead to 
unexpected and invalid results.  

One of the technical solutions to enable larger models and 
thus ability to observe larger-scale emergent properties without 
sacrificing model detail is to use high-performance computing 
(HPC) for parallel simulation. Since agents in MASs can be 
considered autonomous and capable of independent decision 
making [6], in many models agent states can be calculated in 
parallel and results integrated in the global model state 
afterwards. It should be noted though that in some models 
parallel processing is not possible or is severely limited in 
application, for example, due to requirements for specific agent 
processing order [9], so it is critical to determine these factors 
during development of model and simulation requirement 
specification. 

III. PARALLELIZATION OF COLLECTIVE BEHAVIOUR 
SIMULATION 

In order to assess the potential benefits of parallel crowd 
behaviour simulation, the CPU-based open source microscopic 
crowd simulation library PEDSIM [10] was adapted for parallel 
execution by using the CUDA 8.0 toolkit. The performance for 
different implementations was analysed and compared between 
implementations. All the development was done using Visual 
Studio 2015 and CUDA 8.0 for the 64-bit Windows platform. 

Since CUDA as of version 8.0 is mostly tended for the C 
language and support for C++ constructs is limited, as the first 
step of adaption, the initial PEDSIM implementation was 
rewritten using the C language constructs (structures and 
functions instead of classes and methods) to derive a C library 
implementing the necessary PEDSIM functionality. To 
facilitate the development, all the functions and data structures 
that did not directly require different implementation for 
parallel simulation, were left unchanged between 
implementations, providing for easier code maintenance. As a 
result, the code was not fully optimised for GPU 
implementation and performance obtained was lower than 
theoretically achievable – this was considered an acceptable 
trade-off for significantly easier and faster development 
process. 

Initial version of the library uses a single CPU thread to 
perform simulation (CPU method), providing strictly sequential 
simulation processing. For purposes of the parallel simulation, 

two easily available parallel computing approaches were 
implemented – using GPU cores (further referenced as GPU 
method) and using all available CPU cores (further referenced 
as MCPU method). The most notable difference between both 
implementations is the agent processing sequence – in the GPU 
method, a single core processes a single agent, and all cores 
process their own agents in parallel, as limited by a number of 
available cores in a device. If the number of available cores is 
lower than the agent count, the rest of agents are put in a 
“waiting” state, to be processed as cores become available, but 
a single core still processes a single agent. In the MCPU 
implementation, the agent list is divided equally between CPU 
threads (created for each of available physical CPU cores) in 
blocks and each CPU thread processes its agent block 
sequentially, but multiple threads process their blocks in 
parallel. It should be noted that if the agent count is lower than 
the available core (CPU or GPU) count, both methods perform 
identically, with each core processing a single agent, all cores 
processing fully in parallel. Implementations differ mostly to 
avoid sequential processing in the GPU cores (GPU execution 
thread management is done automatically with minimal 
overhead) and lower the overhead associated with launching 
and managing execution of the threads on CPU. 

A. Crowd Agent Model 
PEDSIM library implements the concept of a social force 

model as described in [11] and [12]. The behaviour of each 
agent ݆ ∈  is described by three vectorial force functions – a ܬ
motivation function to move towards the destination ݂ , the 
force function ݂  of an interaction with other agents and the 
force function ௦݂ of obstacles ܵ: 

ሬሬԦ࣏ୢ     

ୢ௧
ൌ ܣ ݂  ܣ ∑ ݂ஷ  ௦ܣ ∑ ௦݂ௌ ,    (2) 

where ࣏ሬሬԦ – the agent speed at time moment ݐ; 
 ; – the weight of motivation forceܣ
 ; – the weight of interaction forceܣ

 .௦ – the weight of interaction with obstaclesܣ
The social force model requires calculation of the 

psychological forces exerted on each agent by other agents. The 
simplest way to calculate these forces is to calculate forces 
between agent and every other agent in the model; however, for 
large models this is impractical and computationally expensive. 
Considering that the forces from the agents that are far away are 
very low and their impact is negligible, the library includes only 
the agents that are nearby (located not further than eight meters 
away) and calculates the forces only for those agents.  

B. Spatial Index for Crowd Simulation 
To facilitate faster neighbourhood search and avoid 

unnecessary distance calculations, a spatial index is used. 
Originally library implements the Quad-Tree spatial indexing 
approach [13] with dynamically allocated and removed 
elements. This structure and its existing implementation were 
considered as not well suited for parallel processing as it uses 
intensive global memory allocation (which would require 
excessive thread synchronisation, reducing gains from parallel 
execution) and for large models would tend to exceed 
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maximum technically possible recursion depth [14]; spatial 
index was replaced with a simple static single level grid index.  

The spatial index divides model space into rectangular tiles 
and associates each tile with agents spatially within it as shown 
in Fig. 1, allowing fast search of agents within a specific spatial 
region. Since tile spatial positions are static and known, with 
simple arithmetic operations it is possible to easily determine 
neighbouring tiles and from their associated agent lists quickly 
perform rough neighbourhood search for any agent within a 
model. Combined with secondary filtering by 8 meter distance 
from an agent, this theoretically allows for considerably faster 
force calculation. For code simplicity and performance reasons 
it was assumed that each agent is described only as a simple 
point and as such could only belong to a single tile. This 
simplification, however, has no impact on precision in this case, 
since the spatial index searches are performed by a larger 
distance (10 meters) around an agent. 

Fig. 1. An example of static 4 × 4 single-level spatial index. 

Spatial index implementation for CPU and MCPU 
environments is rather simple – after each simulation step, for 
each agent its spatial position is compared with previously 
known tile and if an agent has left tile boundary, an agent is 
removed from previous tile and added to tile corresponding to 
its current spatial position. This operation, however fast it is on 
CPU, requires sequential agent processing and as such is not 
suitable for GPU implementation. For this reason, for GPU 
spatial index maintenance is implemented as a parallel two-step 
process, with the first step evaluating all spatial tiles in parallel, 
removing agents that are no longer within their previous tile. 
This process requires parallel thread launch for each spatial tile 
and evaluation of each agent within a tile agent list. When all 
tiles have removed those agents from their agent list, the second 
step is performed – also in parallel for each tile – which iterates 
through all agents within a model and if an agent was removed 
in the first step and is within a current tile, it is added to the 
agent list for this tile. This process requires evaluation of each 
agent within a model for each tile and even if tiles are processed 
in parallel is somewhat inefficient, albeit still much faster than 
simple sequential processing on a single GPU core. 

IV. SIMULATION PERFORMANCE ANALYSIS 
The simulation performance comparison was performed 

using a model of a 600-meter long, 100-meter wide tunnel, 
narrowing to 90 meters in the middle. On both sides of the 
tunnel, two groups of agents were placed, starting at the  
160-meter boundary between the two groups, on each side half 
of the total number of agents, in rows of 50 agents per row. Each 
individual agent’s goal is to reach the destination located on the 
opposite side of the tunnel; simulation was finished as soon as 
all agents reached their destinations. Three models with the 
only difference being the number of agents – 1000, 5000 and 
10000 – were used to evaluate implementation scalability 
(Fig. 2). For each model, performance measurements were 
obtained with all three of the implemented simulation 
methods – CPU, GPU and MCPU. For each method, 
simulations were performed using two different precision 
floating point data types (single precision 32-bit FLOAT and 
double precision 64-bit DOUBLE) to determine the 
performance overhead of using floating point data types. 

All the performance measurements were performed on two 
separate desktop computers with 64-bit Windows 10 operating 
system with configurations outlined in Table I. To reduce the 
impact of the operating system background processes, for each 
model and configuration three separate simulation runs were 
performed and the results between the runs were averaged to 
produce the final value. 

Fig. 2. The positions of crowd agents after 1020 simulation steps. 

 

TABLE I 
COMPUTER CONFIGURATIONS USED FOR ANALYSIS OF SIMULATION 

PERFORMANCE 

No. CPU CPU cores Graphics adapter GPU cores 

1 Intel Core i3-2120 2 GeForce GTX 950 768 

2 Intel Core i7-3770 4 GeForce GT 710 192 

 
Since a simulator was developed for performance 

measurement, it was explicitly adapted for execution time 
measurement and logging. All time periods were measured using 
Windows API function QueryPerformanceCounter with 
sub-microsecond resolution and logged to a separate file for 
further processing. Time periods were later processed to 
microsecond resolution, to give comparable precision on both 
tested configurations. For method comparison, performance 
score was calculated as acceleration – a ratio between simulated 
model time and real time used to simulate the corresponding 
model.  
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As can be seen from Table II, for 1000 agent models, single-
precision MCPU method of configuration 2 scores highest in 
overall performance for this model size; however, for 
configuration 1, which has weakest CPU but more powerful 
GPU, single-precision GPU method scores higher than any of 
CPU-based methods.  

TABLE II 
CROWD SIMULATION PERFORMANCE MEASUREMENT RESULTS 

Method 
 

Agent 
count 

 

Data 
type 

 

Simulated 
time, 

seconds 

Execution time, 
seconds 

Acceleration, 
times 

Config 
1 

Config 
2 

Config 
1 

Config 
2 

CPU 1000 Double 288.8 48.4 37.2 6.0 7.8 
CPU 1000 Float 309.6 45.8 33.8 6.8 9.2 
GPU 1000 Double 300.4 26.4 54.6 11.4 5.5 
GPU 1000 Float 294.4 15.9 28.5 18.5 10.3 
MCPU 1000 Double 288.8 25.9 13.3 11.2 21.8 
MCPU 1000 Float 309.6 25.2 12.8 12.3 24.2 
CPU 5000 Double 584.4 796.1 656.8 0.7 0.9 
CPU 5000 Float 575.2 688.4 542.3 0.8 1.1 
GPU 5000 Double 616.4 294.9 1154.3 2.1 0.5 
GPU 5000 Float 591.6 133.5 441.9 4.4 1.3 
MCPU 5000 Double 584.4 384.5 203.8 1.5 2.9 
MCPU 5000 Float 575.2 344.6 168.0 1.7 3.4 
CPU 10000 Double 1098.4 4495.5 3672.0 0.2 0.3 
CPU 10000 Float 1162.4 4384.0 3475.1 0.3 0.3 
GPU 10000 Double 1216.0 1591.7 7490.5 0.8 0.2 
GPU 10000 Float 1058.8 526.5 2333.9 2.0 0.5 
MCPU 10000 Double 1098.4 2072.1 982.8 0.5 1.1 
MCPU 10000 Float 1162.4 2121.8 970.2 0.5 1.2 

 
For 5000 agent models, single precision GPU score for 

configuration 1 takes leadership, with single-precision MCPU 
score for configuration 2 taking second place, the same being 
true for 10000 agent models, with a score gap between the first 
and the second positions becoming more pronounced showing 
that with an increase in model size, overheads associated with 
GPU execution have less impact on overall performance, 
allowing GPU method to scale better with increasing model 
size. This should be taken into account when deciding on the 
actual simulation method for a real model – impact from 
parallel simulation overhead for small models might negate any 
possible performance gains and so the model size must be taken 
into account during this choice. 

All methods show visible performance gains from using 
single-precision data types – which is to be expected – but it 
should be noted that actual performance drop for GPU based 
models is much more pronounced, when compared to both 
CPU-based methods, and becoming more with an increase in 
the model size. This fact shows impact of differences on GPU 
and CPU core architecture – if CPU cores usually (with very 
few exceptions) contain a double precision arithmetic unit per 
core, GPUs contain a single double precision unit per multiple 
cores – in this case, according to the corresponding GPU 
documentation, a single unit per 32 cores for configuration 1, 
and a single unit per 24 cores for configuration 2, so theoretical 
throughput for double precision arithmetic is up to 24–32 times 
lower than single precision. In practice, however, in this case 

performance drop is lower due to other non-arithmetic 
operations and other overheads offsetting this. This aspect must 
also be considered during model development – a decision to 
use a double-precision data type must be justified by practical 
necessity. In this case, since a distance unit is meter, a single-
precision data type corresponding to the IEEE 754 standard [15] 
allows for figures up to േ	10ସ with precision at least 10ିଶ – it 
is clear that there is no need in this model for higher precision 
or larger numbers, so a single-precision type can be used 
without significantly affecting the results. It should be noted, 
however, that, as shown by results in Table II, simulated time 
to achieve a model goal is dependent on a data type, so there is 
visible, if small, difference in results. 

The results also show that the difference in simulated time is 
also dependent on the method used – CPU and MCPU methods 
both show equal time for each model size, but GPU method 
differs visibly even when the same data types are used. This is 
due to the fact that although in theory both CPU and GPU 
implement arithmetic according to IEEE 754 standard, the 
standard is loose on technical implementation details, so each 
manufacturer can implement arithmetic in a slightly different 
way, leading to small differences in results, which are becoming 
more visible in iterative calculations, as in this case. This must 
mostly be considered when comparing simulation output data – 
although for all methods the results are likely to be principally 
correct, it can turn out to be difficult to compare results between 
them, especially for mathematically complex or long-running 
models where these small differences accumulate. In this case, 
this shows another point – since for CPU and MCPU simulated 
times are equal, it can be assumed that sequential and parallel 
implementations perform exactly alike on the same hardware 
and so the order of agent processing sequence is not essential – 
which is also observed by comparing actual simulation output 
data. 

Simulator implementation can also be used to collect more 
detailed performance data, splitting each step time into times 
for each sub-step used to calculate a single simulation step.  

Figure 3 shows time in microseconds for most 
computationally complex steps – force calculation – for GPU 
method. For clarity, results for other methods are not shown, 
but they follow the same pattern with most differences being at 
the vertical scale.  

 

Fig. 3. Execution time of static 4 × 4 single-level spatial index. 
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It can be observed that force calculation time is not constant 
but varies during simulation. After correlating calculation time 
with simulation results, it is clear that force calculation time is 
dependent on agent density – after initial placement in rows 
next to each other, pedestrians initially scatter to their 
“comfortable” distance from each other while also moving 
forward, gradually reducing density up to simulation step 165 
(Fig. 4). After this step agent density is gradually increasing 
again because both opposing groups are closing in to each other, 
forcing agents to “work” more in search for ways around other 
agents, forming trapezoidal lanes through crowd. This increase 
in density – and thus calculation time – continues 
approximately to simulation step 1020, when lanes have 
stabilised and both groups are moving past each other. Density 
starts to gradually decrease with more agents passing through 
crowd and approaching destination, up to step 2040, when both 
groups mostly have passed each other and agents start to 
concentrate around destination, forming two smaller crowds 
near each destination and forcing density and calculation time 
to increase. 

Fig. 4. Time dynamics of a single simulation step for a model containing 
10000 agents. 

This variation in calculation time according to density is 
mostly the result of the need to calculate forces exerted on each 
agent by other agents in its vicinity, so the higher the density of 
the agents, the more agents are nearby, the more forces must be 
calculated. As mentioned before, PEDSIM limits forces 
calculated to agents within distance limit of eight meters and 
can use a spatial index to reduce a list of agents for which 
distance is calculated. Since it is clear that the spatial index 
itself requires maintenance (constantly changing agent 
positions require updates to the spatial index after every 
simulation step) and is associated with overheads, it is advisable 
to determine efficiency of current spatial index implementation. 

To evaluate spatial index performance, two metrics were 
used – spatial index maintenance time and performance gained 
by using the spatial index. To measure an increase in force 
calculation times, initial 32 × 32 spatial index was substituted 
by 1 × 1, i.e., a single tile, essentially disabling spatial index 
assistance in the force calculation, but leaving rest of the code 
for spatial index search and maintenance in use. It was observed 
that for 1000-agent models, gains from using the spatial index 
were negligible, if any. With an increase in model size, gains 
from the spatial index were becoming more pronounced, 
resulting in up to two times lower calculation times for 
10000 agent models. It can also be noted that for more powerful 

CPU and GPU configurations, a spatial index gain is lower, 
suggesting that with enough computing power distance 
calculation for every agent is fast enough to offset overheads 
from spatial index maintenance and use. This means that benefit 
from the spatial index will still be available, albeit will become 
more pronounced with even a larger number of agents. 

Spatial index maintenance overhead for both index sizes was 
also measured and compared. For CPU and MCPU methods, 
use of 1 × 1 index resulted in a drop in maintenance times to 
half of that observed for 32 × 32 index and became constant, 
which was expected. For GPU method situation was reversed – 
maintenance times increased more than twofold. This increase 
is due to fact that, even if no agent ever leaves or enters another 
tile, maintenance code still has to go through each tile’s agent 
list twice to verify that. Since there is only one tile, with a large 
agent list (containing all the agents in the model), this forces 
single thread on GPU to scan a full agent list twice, which leads 
to a large waste of computational resources on a weaker GPU 
core. This is one of the significant mistakes that can be made 
while developing a code meant for both sequential and parallel 
execution – assuming that parallel implementation will behave 
like sequential implementation in every situation, without 
taking into account specifics of parallel implementation and 
leading to unexpected sequential execution on GPU. 

The final step – output of simulator results – was, as 
expected, linearly dependent on agent count for all methods. 
However, since simulation results were written to file and GPU 
does not have access to the file system, for the GPU method an 
additional step was required – copying agent data from the 
GPU-accessible memory to the CPU-accessible memory. This 
operation is done through the peripheral bus and requires 
additional time that also grows with an increase in the amount 
of the transferrable data. For the largest model with the slowest 
GPU, this time approached nine milliseconds for each step. 
Since in this case this transfer was unavoidable, its impact could 
be considered acceptable, but overheads were noticeable 
enough as to suggest that they should be avoided if possible. 
For instance, copying agent data from GPU to CPU for 
purposes of simply displaying them on a screen might be 
counterproductive since it might be possible to display them 
directly from GPU memory; however, this also might lead to 
unnecessary complexity if copying overhead could be tolerated. 
By copying agent data from CPU to GPU and back, it is also 
possible to perform simulation for models larger than GPU 
memory, with acceptable performance penalty, so careful 
evaluation on a case-by-case basis is needed.  

V. CONCLUSION

In general, the results indicate that parallel computing 
solutions are very valuable tools for increasing the performance 
of simulation. Results also indicate that GPUs can be 
considered a significant alternative to expensive high-
performance CPUs. GPU parallel computing solutions also 
have potential to scale better for larger model sizes even 
considering their usually limited available memory. However, 
when flexibility in an execution platform is needed, parallel 
computing using all available CPU cores is relatively easy to 
implement and readily available, since modern CPUs, even 
entry-level, usually contain at least 2–4 powerful cores. It 
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should be noted, as shown in case of spatial index performance, 
that implementing and optimising multiple simulation methods 
might lead to code base divergence and need to support multiple 
versions of the same functionality, greatly increasing 
development and code maintenance complexity. 

Based on the analysis of performance results, it is possible to 
draw the following conclusions that can be used as guidelines 
for the geosimulation of multi-agent systems: 
 It is important to choose the optimal simulation method 

depending on the number of agents and the complexity of the 
model. For simple models with a small number of agents, the 
overhead of the parallel simulation may turn out to be greater 
than the benefit. With an increase of parallel operation, 
overheads tend to be masked out and become less noticeable. 
 It is crucial to choose the most appropriate data types for 

the model. Too low precision will have a significant impact on 
the accuracy of simulation results, while using high-precision 
types can greatly affect the simulation performance without 
giving additional benefits to simulation results. 
 The technical differences between the arithmetic modules 

should be taken into account when comparing results between 
different platforms – the results obtained with different 
equipment may vary even in the case of identical models and it 
may be difficult to determine which of the results is more 
accurate. 
 The simulation time may depend not so much on the total 

number of agents as on the density of the agents in the model. 
This factor must be considered when determining an optimal 
simulation method for long-running models by running a 
limited number of steps and comparing execution times – 
during simulation, due to changes of density, the chosen method 
might become inefficient. 
 Sequential processing on GPU cores must be avoided 

whenever possible. It is also extremely important to always take 
into account the differences in sequential and parallel 
algorithms and to avoid assumptions that during the parallel 
execution a simulator will behave exactly the same as during 
sequential execution, even if the model itself will. 
 Correct spatial index size, type and implementation must 

be chosen – inefficient spatial index might even lead to lower 
performance rather than its absence. 
 It is recommended to avoid memory copying between 

CPU and GPU as this operation is relatively slow, but possible 
functional benefits when using copying must also be 
considered. 
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