
Information Technology and Management Science

97

ISSN 2255-9094 (online)
ISSN 2255-9086 (print)
December 2017, vol. 20, pp. 97–102
doi: 10.1515/itms-2017-0017
https://www.degruyter.com/view/j/itms

©2017 Jānis Cjoskāns, Arnis Lektauers.
This is an open access article licensed under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), in the manner agreed with De Gruyter Open.

An Application of Graphics Processing Units to
Geosimulation of Collective Crowd Behaviour

Jānis Cjoskāns1, Arnis Lektauers2
1 Rural Support Service of the Republic of Latvia, Latvia, 2 Riga Technical University, Latvia

Abstract – The goal of the paper is to assess the ways for
computational performance and efficiency improvement of
collective crowd behaviour simulation by using parallel computing
methods implemented on graphics processing unit (GPU). To
perform an experimental evaluation of benefits of parallel
computing, a new GPU-based simulator prototype is proposed and
the runtime performance is analysed. Based on practical examples
of pedestrian dynamics geosimulation, the obtained performance
measurements are compared to several other available multi-
agent simulation tools to determine the efficiency of the proposed
simulator, as well as to provide generic guidelines for the efficiency
improvements of the parallel simulation of collective crowd
behaviour.

Keywords – Crowd behaviour, geosimulation, GPU computing.

I. INTRODUCTION
Modelling and simulation of collective behaviour today is

important in many areas – including ecology, biology,
sociology, as well as urban planning. A valuable approach to
simulation of collective behaviour is the use of geosimulation.
However, practical implementation of such models is often
difficult because there is a need to define each model element
as a separate entity, as well as to describe complex spatial
relations between the elements. This leads to complex models
containing a large number of model elements, therefore
requiring significant computational resources during simulation
execution.

The goal of the paper is to assess the ways for computational
performance and efficiency improvement of collective crowd
behaviour simulation by using parallel computing methods
implemented on graphics processing unit (GPU).

To perform an experimental evaluation of benefits of parallel
computing, a new GPU-based simulator prototype is proposed
and the runtime performance is analysed. Based on practical
examples of pedestrian dynamics geosimulation, the obtained
performance measurements are compared to several other
available multi-agent simulation tools to determine the
efficiency of the proposed simulator, as well as to provide
generic guidelines for the efficiency improvements of the
parallel simulation of collective crowd behaviour.

A. GPU-based Parallel Computing

Modern graphics processing units (GPUs) can be
programmed using a wide variety of toolchains and frameworks
with a varying level of abstraction. One of the dominating
toolchains for general purpose GPU (GPGPU) computing is
NVIDIA CUDA [1] – C language based toolchain and
development framework for GPUs manufactured by NVIDIA
company. CUDA is intended for development of parallel
computing solutions, using the so-called compute kernels,

intended to be run on GPU hardware. Compared to more cross-
hardware toolchains, such as OpenCL [2], which provide
capability to develop programs that can be executed on a wide
variety of compatible computational devices (CPUs, GPUs,
FPGAs etc.) without significant changes in code, CUDA
provides lower level access to underlying hardware
architecture, giving more control over device-specific functions
and, as a result, higher theoretical performance [3], [4].
However, code written in CUDA is executable only on
NVIDIA GPUs. CUDA toolchain also provides mature
integrated debugging and profiling toolset, allowing for
efficient code debugging and optimisation. CUDA also
provides libraries for solving typical problems (linear algebra,
Fourier transformation, graph analytics etc.) as a drop-in
acceleration for the existing code with minimal code changes.

II. GEOSIMULATION IN THE CONTEXT OF COLLECTIVE CROWD
BEHAVIOUR

Geosimulation is a general concept that specialises on
solving of complex geospatial problems using micro-simulation
of spatially related automata [5] mainly focusing on an
integrated use of cellular automata and agent-based models.

A. Geographic Automata
Geographic automata (GA) define certain behaviour that can

be described by their internal state and spatial relation to other
automata and their surrounding environment. Geographic
automata, by their formal definition presented in [5], are based
on and extend the definition of finite automata by introducing
functionality to enable explicit spatial behaviour and spatial
awareness. Formally, finite automaton can be presented as a set
of finite internal states S = {S1, S2, …, SN}, external information
ܫ and a set of transition rules T: (St, It) → St+1 at any time
moment t [5]:

 A ~ (S, T) (1)
By this definition, geoautomaton can change its internal state

as well as spatial position according to defined state transition
rules, both non-spatial and spatial. Geographic automata also
provide functionality to define a set of neighbours and
neighbourhood rules between automata, enabling application of
state transition rules according to inter-automata dependencies
(neighbourhoods) that are dynamically changing in space and
time.

B. Geographic Automata Systems

Geographic Automata Systems (GASs) can be considered as
a combination of multi-agent systems (MASs) and cellular
automata (CA) where each geoautomaton can be simulated as a

Information Technology and Management Science
 ___ 2017/20

98

separate agent [6]. This approach allows for micro-level
simulation and bottom-up modelling of complex phenomena,
enabling observation of emergent properties within a system at
a higher level of scale, which are not directly predictable from
constituent parts [7], [8]. The emergence of new properties,
thus, is related to the observation scale and context, and often
can be observed and identified only within large groups of
interacting agents. This requirement for a large number of
agents, together with agent complexity, is often the limiting
factor for simulating such models. For GA models containing a
large number of interdependent agents, with their explicit
requirement to process a large number of interdependent spatial
relations, achieving adequate simulation performance can
become a serious implementation challenge, as spatial relation
operations are often computationally intensive. For some
models, this can be at least partially mitigated by reduction of
model detail, at a risk of oversimplification that can lead to
unexpected and invalid results.

One of the technical solutions to enable larger models and
thus ability to observe larger-scale emergent properties without
sacrificing model detail is to use high-performance computing
(HPC) for parallel simulation. Since agents in MASs can be
considered autonomous and capable of independent decision
making [6], in many models agent states can be calculated in
parallel and results integrated in the global model state
afterwards. It should be noted though that in some models
parallel processing is not possible or is severely limited in
application, for example, due to requirements for specific agent
processing order [9], so it is critical to determine these factors
during development of model and simulation requirement
specification.

III. PARALLELIZATION OF COLLECTIVE BEHAVIOUR
SIMULATION

In order to assess the potential benefits of parallel crowd
behaviour simulation, the CPU-based open source microscopic
crowd simulation library PEDSIM [10] was adapted for parallel
execution by using the CUDA 8.0 toolkit. The performance for
different implementations was analysed and compared between
implementations. All the development was done using Visual
Studio 2015 and CUDA 8.0 for the 64-bit Windows platform.

Since CUDA as of version 8.0 is mostly tended for the C
language and support for C++ constructs is limited, as the first
step of adaption, the initial PEDSIM implementation was
rewritten using the C language constructs (structures and
functions instead of classes and methods) to derive a C library
implementing the necessary PEDSIM functionality. To
facilitate the development, all the functions and data structures
that did not directly require different implementation for
parallel simulation, were left unchanged between
implementations, providing for easier code maintenance. As a
result, the code was not fully optimised for GPU
implementation and performance obtained was lower than
theoretically achievable – this was considered an acceptable
trade-off for significantly easier and faster development
process.

Initial version of the library uses a single CPU thread to
perform simulation (CPU method), providing strictly sequential
simulation processing. For purposes of the parallel simulation,

two easily available parallel computing approaches were
implemented – using GPU cores (further referenced as GPU
method) and using all available CPU cores (further referenced
as MCPU method). The most notable difference between both
implementations is the agent processing sequence – in the GPU
method, a single core processes a single agent, and all cores
process their own agents in parallel, as limited by a number of
available cores in a device. If the number of available cores is
lower than the agent count, the rest of agents are put in a
“waiting” state, to be processed as cores become available, but
a single core still processes a single agent. In the MCPU
implementation, the agent list is divided equally between CPU
threads (created for each of available physical CPU cores) in
blocks and each CPU thread processes its agent block
sequentially, but multiple threads process their blocks in
parallel. It should be noted that if the agent count is lower than
the available core (CPU or GPU) count, both methods perform
identically, with each core processing a single agent, all cores
processing fully in parallel. Implementations differ mostly to
avoid sequential processing in the GPU cores (GPU execution
thread management is done automatically with minimal
overhead) and lower the overhead associated with launching
and managing execution of the threads on CPU.

A. Crowd Agent Model
PEDSIM library implements the concept of a social force

model as described in [11] and [12]. The behaviour of each
agent ݆ ∈ is described by three vectorial force functions – a ܬ
motivation function to move towards the destination ݂ , the
force function ݂ of an interaction with other agents and the
force function ௦݂ of obstacles ܵ:

ሬሬԦ࣏ୢ

ୢ௧
ൌ ܣ ݂ ܣ ∑ ݂ஷ ௦ܣ ∑ ௦݂ௌ , (2)

where ࣏ሬሬԦ – the agent speed at time moment ݐ;
 ; – the weight of motivation forceܣ
 ; – the weight of interaction forceܣ

 .௦ – the weight of interaction with obstaclesܣ
The social force model requires calculation of the

psychological forces exerted on each agent by other agents. The
simplest way to calculate these forces is to calculate forces
between agent and every other agent in the model; however, for
large models this is impractical and computationally expensive.
Considering that the forces from the agents that are far away are
very low and their impact is negligible, the library includes only
the agents that are nearby (located not further than eight meters
away) and calculates the forces only for those agents.

B. Spatial Index for Crowd Simulation
To facilitate faster neighbourhood search and avoid

unnecessary distance calculations, a spatial index is used.
Originally library implements the Quad-Tree spatial indexing
approach [13] with dynamically allocated and removed
elements. This structure and its existing implementation were
considered as not well suited for parallel processing as it uses
intensive global memory allocation (which would require
excessive thread synchronisation, reducing gains from parallel
execution) and for large models would tend to exceed

Information Technology and Management Science
 ___ 2017/20

99

maximum technically possible recursion depth [14]; spatial
index was replaced with a simple static single level grid index.

The spatial index divides model space into rectangular tiles
and associates each tile with agents spatially within it as shown
in Fig. 1, allowing fast search of agents within a specific spatial
region. Since tile spatial positions are static and known, with
simple arithmetic operations it is possible to easily determine
neighbouring tiles and from their associated agent lists quickly
perform rough neighbourhood search for any agent within a
model. Combined with secondary filtering by 8 meter distance
from an agent, this theoretically allows for considerably faster
force calculation. For code simplicity and performance reasons
it was assumed that each agent is described only as a simple
point and as such could only belong to a single tile. This
simplification, however, has no impact on precision in this case,
since the spatial index searches are performed by a larger
distance (10 meters) around an agent.

Fig. 1. An example of static 4 × 4 single-level spatial index.

Spatial index implementation for CPU and MCPU
environments is rather simple – after each simulation step, for
each agent its spatial position is compared with previously
known tile and if an agent has left tile boundary, an agent is
removed from previous tile and added to tile corresponding to
its current spatial position. This operation, however fast it is on
CPU, requires sequential agent processing and as such is not
suitable for GPU implementation. For this reason, for GPU
spatial index maintenance is implemented as a parallel two-step
process, with the first step evaluating all spatial tiles in parallel,
removing agents that are no longer within their previous tile.
This process requires parallel thread launch for each spatial tile
and evaluation of each agent within a tile agent list. When all
tiles have removed those agents from their agent list, the second
step is performed – also in parallel for each tile – which iterates
through all agents within a model and if an agent was removed
in the first step and is within a current tile, it is added to the
agent list for this tile. This process requires evaluation of each
agent within a model for each tile and even if tiles are processed
in parallel is somewhat inefficient, albeit still much faster than
simple sequential processing on a single GPU core.

IV. SIMULATION PERFORMANCE ANALYSIS
The simulation performance comparison was performed

using a model of a 600-meter long, 100-meter wide tunnel,
narrowing to 90 meters in the middle. On both sides of the
tunnel, two groups of agents were placed, starting at the
160-meter boundary between the two groups, on each side half
of the total number of agents, in rows of 50 agents per row. Each
individual agent’s goal is to reach the destination located on the
opposite side of the tunnel; simulation was finished as soon as
all agents reached their destinations. Three models with the
only difference being the number of agents – 1000, 5000 and
10000 – were used to evaluate implementation scalability
(Fig. 2). For each model, performance measurements were
obtained with all three of the implemented simulation
methods – CPU, GPU and MCPU. For each method,
simulations were performed using two different precision
floating point data types (single precision 32-bit FLOAT and
double precision 64-bit DOUBLE) to determine the
performance overhead of using floating point data types.

All the performance measurements were performed on two
separate desktop computers with 64-bit Windows 10 operating
system with configurations outlined in Table I. To reduce the
impact of the operating system background processes, for each
model and configuration three separate simulation runs were
performed and the results between the runs were averaged to
produce the final value.

Fig. 2. The positions of crowd agents after 1020 simulation steps.

TABLE I
COMPUTER CONFIGURATIONS USED FOR ANALYSIS OF SIMULATION

PERFORMANCE

No. CPU CPU cores Graphics adapter GPU cores

1 Intel Core i3-2120 2 GeForce GTX 950 768

2 Intel Core i7-3770 4 GeForce GT 710 192

Since a simulator was developed for performance

measurement, it was explicitly adapted for execution time
measurement and logging. All time periods were measured using
Windows API function QueryPerformanceCounter with
sub-microsecond resolution and logged to a separate file for
further processing. Time periods were later processed to
microsecond resolution, to give comparable precision on both
tested configurations. For method comparison, performance
score was calculated as acceleration – a ratio between simulated
model time and real time used to simulate the corresponding
model.

Information Technology and Management Science
 ___ 2017/20

100

As can be seen from Table II, for 1000 agent models, single-
precision MCPU method of configuration 2 scores highest in
overall performance for this model size; however, for
configuration 1, which has weakest CPU but more powerful
GPU, single-precision GPU method scores higher than any of
CPU-based methods.

TABLE II
CROWD SIMULATION PERFORMANCE MEASUREMENT RESULTS

Method

Agent
count

Data
type

Simulated
time,

seconds

Execution time,
seconds

Acceleration,
times

Config
1

Config
2

Config
1

Config
2

CPU 1000 Double 288.8 48.4 37.2 6.0 7.8
CPU 1000 Float 309.6 45.8 33.8 6.8 9.2
GPU 1000 Double 300.4 26.4 54.6 11.4 5.5
GPU 1000 Float 294.4 15.9 28.5 18.5 10.3
MCPU 1000 Double 288.8 25.9 13.3 11.2 21.8
MCPU 1000 Float 309.6 25.2 12.8 12.3 24.2
CPU 5000 Double 584.4 796.1 656.8 0.7 0.9
CPU 5000 Float 575.2 688.4 542.3 0.8 1.1
GPU 5000 Double 616.4 294.9 1154.3 2.1 0.5
GPU 5000 Float 591.6 133.5 441.9 4.4 1.3
MCPU 5000 Double 584.4 384.5 203.8 1.5 2.9
MCPU 5000 Float 575.2 344.6 168.0 1.7 3.4
CPU 10000 Double 1098.4 4495.5 3672.0 0.2 0.3
CPU 10000 Float 1162.4 4384.0 3475.1 0.3 0.3
GPU 10000 Double 1216.0 1591.7 7490.5 0.8 0.2
GPU 10000 Float 1058.8 526.5 2333.9 2.0 0.5
MCPU 10000 Double 1098.4 2072.1 982.8 0.5 1.1
MCPU 10000 Float 1162.4 2121.8 970.2 0.5 1.2

For 5000 agent models, single precision GPU score for

configuration 1 takes leadership, with single-precision MCPU
score for configuration 2 taking second place, the same being
true for 10000 agent models, with a score gap between the first
and the second positions becoming more pronounced showing
that with an increase in model size, overheads associated with
GPU execution have less impact on overall performance,
allowing GPU method to scale better with increasing model
size. This should be taken into account when deciding on the
actual simulation method for a real model – impact from
parallel simulation overhead for small models might negate any
possible performance gains and so the model size must be taken
into account during this choice.

All methods show visible performance gains from using
single-precision data types – which is to be expected – but it
should be noted that actual performance drop for GPU based
models is much more pronounced, when compared to both
CPU-based methods, and becoming more with an increase in
the model size. This fact shows impact of differences on GPU
and CPU core architecture – if CPU cores usually (with very
few exceptions) contain a double precision arithmetic unit per
core, GPUs contain a single double precision unit per multiple
cores – in this case, according to the corresponding GPU
documentation, a single unit per 32 cores for configuration 1,
and a single unit per 24 cores for configuration 2, so theoretical
throughput for double precision arithmetic is up to 24–32 times
lower than single precision. In practice, however, in this case

performance drop is lower due to other non-arithmetic
operations and other overheads offsetting this. This aspect must
also be considered during model development – a decision to
use a double-precision data type must be justified by practical
necessity. In this case, since a distance unit is meter, a single-
precision data type corresponding to the IEEE 754 standard [15]
allows for figures up to േ	10ସ with precision at least 10ିଶ – it
is clear that there is no need in this model for higher precision
or larger numbers, so a single-precision type can be used
without significantly affecting the results. It should be noted,
however, that, as shown by results in Table II, simulated time
to achieve a model goal is dependent on a data type, so there is
visible, if small, difference in results.

The results also show that the difference in simulated time is
also dependent on the method used – CPU and MCPU methods
both show equal time for each model size, but GPU method
differs visibly even when the same data types are used. This is
due to the fact that although in theory both CPU and GPU
implement arithmetic according to IEEE 754 standard, the
standard is loose on technical implementation details, so each
manufacturer can implement arithmetic in a slightly different
way, leading to small differences in results, which are becoming
more visible in iterative calculations, as in this case. This must
mostly be considered when comparing simulation output data –
although for all methods the results are likely to be principally
correct, it can turn out to be difficult to compare results between
them, especially for mathematically complex or long-running
models where these small differences accumulate. In this case,
this shows another point – since for CPU and MCPU simulated
times are equal, it can be assumed that sequential and parallel
implementations perform exactly alike on the same hardware
and so the order of agent processing sequence is not essential –
which is also observed by comparing actual simulation output
data.

Simulator implementation can also be used to collect more
detailed performance data, splitting each step time into times
for each sub-step used to calculate a single simulation step.

Figure 3 shows time in microseconds for most
computationally complex steps – force calculation – for GPU
method. For clarity, results for other methods are not shown,
but they follow the same pattern with most differences being at
the vertical scale.

Fig. 3. Execution time of static 4 × 4 single-level spatial index.

0
200000
400000
600000
800000

1000000
1200000
1400000

0 500 1000 1500 2000 2500 3000

Ex
ec

ut
io

n
tim

e,
 µ

s

Simulation step

Config 1, GPU Config 2, GPU

Information Technology and Management Science
 ___ 2017/20

101

It can be observed that force calculation time is not constant
but varies during simulation. After correlating calculation time
with simulation results, it is clear that force calculation time is
dependent on agent density – after initial placement in rows
next to each other, pedestrians initially scatter to their
“comfortable” distance from each other while also moving
forward, gradually reducing density up to simulation step 165
(Fig. 4). After this step agent density is gradually increasing
again because both opposing groups are closing in to each other,
forcing agents to “work” more in search for ways around other
agents, forming trapezoidal lanes through crowd. This increase
in density – and thus calculation time – continues
approximately to simulation step 1020, when lanes have
stabilised and both groups are moving past each other. Density
starts to gradually decrease with more agents passing through
crowd and approaching destination, up to step 2040, when both
groups mostly have passed each other and agents start to
concentrate around destination, forming two smaller crowds
near each destination and forcing density and calculation time
to increase.

Fig. 4. Time dynamics of a single simulation step for a model containing
10000 agents.

This variation in calculation time according to density is
mostly the result of the need to calculate forces exerted on each
agent by other agents in its vicinity, so the higher the density of
the agents, the more agents are nearby, the more forces must be
calculated. As mentioned before, PEDSIM limits forces
calculated to agents within distance limit of eight meters and
can use a spatial index to reduce a list of agents for which
distance is calculated. Since it is clear that the spatial index
itself requires maintenance (constantly changing agent
positions require updates to the spatial index after every
simulation step) and is associated with overheads, it is advisable
to determine efficiency of current spatial index implementation.

To evaluate spatial index performance, two metrics were
used – spatial index maintenance time and performance gained
by using the spatial index. To measure an increase in force
calculation times, initial 32 × 32 spatial index was substituted
by 1 × 1, i.e., a single tile, essentially disabling spatial index
assistance in the force calculation, but leaving rest of the code
for spatial index search and maintenance in use. It was observed
that for 1000-agent models, gains from using the spatial index
were negligible, if any. With an increase in model size, gains
from the spatial index were becoming more pronounced,
resulting in up to two times lower calculation times for
10000 agent models. It can also be noted that for more powerful

CPU and GPU configurations, a spatial index gain is lower,
suggesting that with enough computing power distance
calculation for every agent is fast enough to offset overheads
from spatial index maintenance and use. This means that benefit
from the spatial index will still be available, albeit will become
more pronounced with even a larger number of agents.

Spatial index maintenance overhead for both index sizes was
also measured and compared. For CPU and MCPU methods,
use of 1 × 1 index resulted in a drop in maintenance times to
half of that observed for 32 × 32 index and became constant,
which was expected. For GPU method situation was reversed –
maintenance times increased more than twofold. This increase
is due to fact that, even if no agent ever leaves or enters another
tile, maintenance code still has to go through each tile’s agent
list twice to verify that. Since there is only one tile, with a large
agent list (containing all the agents in the model), this forces
single thread on GPU to scan a full agent list twice, which leads
to a large waste of computational resources on a weaker GPU
core. This is one of the significant mistakes that can be made
while developing a code meant for both sequential and parallel
execution – assuming that parallel implementation will behave
like sequential implementation in every situation, without
taking into account specifics of parallel implementation and
leading to unexpected sequential execution on GPU.

The final step – output of simulator results – was, as
expected, linearly dependent on agent count for all methods.
However, since simulation results were written to file and GPU
does not have access to the file system, for the GPU method an
additional step was required – copying agent data from the
GPU-accessible memory to the CPU-accessible memory. This
operation is done through the peripheral bus and requires
additional time that also grows with an increase in the amount
of the transferrable data. For the largest model with the slowest
GPU, this time approached nine milliseconds for each step.
Since in this case this transfer was unavoidable, its impact could
be considered acceptable, but overheads were noticeable
enough as to suggest that they should be avoided if possible.
For instance, copying agent data from GPU to CPU for
purposes of simply displaying them on a screen might be
counterproductive since it might be possible to display them
directly from GPU memory; however, this also might lead to
unnecessary complexity if copying overhead could be tolerated.
By copying agent data from CPU to GPU and back, it is also
possible to perform simulation for models larger than GPU
memory, with acceptable performance penalty, so careful
evaluation on a case-by-case basis is needed.

V. CONCLUSION

In general, the results indicate that parallel computing
solutions are very valuable tools for increasing the performance
of simulation. Results also indicate that GPUs can be
considered a significant alternative to expensive high-
performance CPUs. GPU parallel computing solutions also
have potential to scale better for larger model sizes even
considering their usually limited available memory. However,
when flexibility in an execution platform is needed, parallel
computing using all available CPU cores is relatively easy to
implement and readily available, since modern CPUs, even
entry-level, usually contain at least 2–4 powerful cores. It

0

500000

1000000

1500000

2000000

2500000

3000000

0 500 1000 1500 2000 2500 3000

Ex
ec

ut
io

n
tim

e,
 µ

s

Simulation step

Configuration 1, CPU

Configuration 2, GPU

Configuration 2, CPU

Configuration 1, MCPU

Configuration 1, GPU

Configuration 2, MCPU

Information Technology and Management Science
 ___ 2017/20

102

should be noted, as shown in case of spatial index performance,
that implementing and optimising multiple simulation methods
might lead to code base divergence and need to support multiple
versions of the same functionality, greatly increasing
development and code maintenance complexity.

Based on the analysis of performance results, it is possible to
draw the following conclusions that can be used as guidelines
for the geosimulation of multi-agent systems:
 It is important to choose the optimal simulation method

depending on the number of agents and the complexity of the
model. For simple models with a small number of agents, the
overhead of the parallel simulation may turn out to be greater
than the benefit. With an increase of parallel operation,
overheads tend to be masked out and become less noticeable.
 It is crucial to choose the most appropriate data types for

the model. Too low precision will have a significant impact on
the accuracy of simulation results, while using high-precision
types can greatly affect the simulation performance without
giving additional benefits to simulation results.
 The technical differences between the arithmetic modules

should be taken into account when comparing results between
different platforms – the results obtained with different
equipment may vary even in the case of identical models and it
may be difficult to determine which of the results is more
accurate.
 The simulation time may depend not so much on the total

number of agents as on the density of the agents in the model.
This factor must be considered when determining an optimal
simulation method for long-running models by running a
limited number of steps and comparing execution times –
during simulation, due to changes of density, the chosen method
might become inefficient.
 Sequential processing on GPU cores must be avoided

whenever possible. It is also extremely important to always take
into account the differences in sequential and parallel
algorithms and to avoid assumptions that during the parallel
execution a simulator will behave exactly the same as during
sequential execution, even if the model itself will.
 Correct spatial index size, type and implementation must

be chosen – inefficient spatial index might even lead to lower
performance rather than its absence.
 It is recommended to avoid memory copying between

CPU and GPU as this operation is relatively slow, but possible
functional benefits when using copying must also be
considered.

REFERENCES
[1] “Parallel Programming and Computing Platform, CUDA” [Online].

Available: http://www.nvidia.com/object/cuda_home_new.html
[2] “OpenCL - The open standard for parallel programming of heterogeneous

systems” [Online]. Available: https://www.khronos.org/opencl
[3] C.-L. Su, P.-Y. Chen, C.-C. Lan, L.-S. Huang, and K.-H. Wu, “Overview

and comparison of OpenCL and CUDA technology for GPGPU,” 2012
IEEE Asia Pacific Conference on Circuits and Systems, Dec. 2012.
https://doi.org/10.1109/apccas.2012.6419068

[4] “PTX ISA: Parallel Thread Execution ISA Version 5.0,” 2017. [Online].
Available: http://docs.nvidia.com/cuda/parallel-thread-execution

[5] I. Benenson and P. M. Torrens, Geosimulation: Automata-based
modelling of Urban Phenomena. Chichester: John Wiley & Sons Ltd,
2004.

[6] M. Smith, P. Longley and M. Goodchild, “Geospatial Analysis: A
comprehensive guide,” 2015. [Online]. Available:
http://www.spatialanalysisonline.com

[7] W. E. Easterling and K. Kok, “Emergent Properties of Scale in Global
Environmental Modeling – Are There Any?,” Integrated Assessment, vol.
3, no. 2–3, pp. 233–246, Jun. 2002.
https://doi.org/10.1076/iaij.3.2.233.13576

[8] R. L. Goldstone and M. A. Janssen, “Computational models of collective
behavior,” Trends in Cognitive Sciences, vol. 9, no. 9, pp. 424–430, Sep.
2005. https://doi.org/10.1016/j.tics.2005.07.009

[9] M. Lysenko and R. D’Souza, “A Framework for Megascale Agent Based
Model Simulations on Graphics Processing Units,” Journal of Artificial
Societies and Social Simulation, vol. 11, no. 4, p. 10, 2008.

[10] “PEDSIM – A Pedestrian Crowd Simulation” [Online]. Available:
http://PEDSIM.silmaril.org

[11] D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,”
Physical Review E, vol. 51, no. 5, pp. 4282–4286, May 1995.
https://doi.org/10.1103/physreve.51.4282

[12] M. Moussaid, D. Helbing, S. Garnier, A. Johansson, M. Combe and G.
Theraulaz, “Experimental study of the behavioural mechanisms
underlying self-organization in human crowds,” Proceedings of the Royal
Society B: Biological Sciences, vol. 276, no. 1668, pp. 2755–2762, May
2009. https://doi.org/10.1098/rspb.2009.0405

[13] D. P. Ames, K. Asch, N. Bartelme, M. Becker and E. Al, Springer
Handbook of Geographic Information, 1st ed. Würzburg: Springer-
Verlag Berlin Heidelberg, 2012.

[14] R. Ding, X. Meng and Y. Bai, “Efficient index update for moving objects
with future trajectories,” in Proceedings – 8th International Conference
on Database Systems for Advanced Applications, DASFAA 2003, 2003,
pp. 183–191. https://doi.org/10.1109/dasfaa.2003.1192382

[15] “IEEE Standard for Floating-Point Arithmetic” [Online]. Available:
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

Jānis Cjoskāns graduated from Riga Technical University in 2017 with a
Master degree in Information Technology. At present, he is the Head of
Information Technology Division at Rural Support Service of the Republic of
Latvia. His main areas of research include process anomaly detection and
adaptive closed-loop process control algorithms and performance assessment.
E-mail: janis.cjoskans@lad.gov.lv

Arnis Lektauers, Dr. sc. ing., is an Associate Professor at the Department of
Modelling and Simulation of Riga Technical University (RTU). He has 16 years
of professional experience delivering undergraduate and graduate courses at
RTU, as well as developing more than 20 industrial and management
information systems. His main scientific interests include the development of
high performance interactive hybrid modelling and simulation solutions with
the application of complex systems analysis and the research of industrial,
economic, ecological and sustainable development problems. A. Lektauers is a
member of the Latvian Simulation Society; the author of 1 textbook and more
than 45 papers in scientific journals and conference proceedings in the field of
information technology.
E-mail: arnis.lektauers@rtu.lv

