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Abstract – Very few models allow expressing European call 
option price in closed form. Out of them, the famous Black– 
Scholes approach sets strong constraints – innovations should be 
normally distributed and independent. Availability of a 
corresponding characteristic function of log returns of underlying 
asset in analytical form allows pricing European call option by 
application of inverse Fourier transform. Characteristic function 
corresponds to Normal Inverse Gaussian (NIG) probability 
density function. NIG distribution is obtained based on 
assumption that time series of log returns follows APARCH 
process. Thus, volatility clustering and leptokurtic nature of log 
returns are taken into account. The Fast Fourier transform based 
on trapezoidal quadrature is numerically unstable if a standard 
cumulative probability function is used. To solve the problem,  
a dampened cumulative probability is introduced. As a 
computation tool Matlab framework is chosen because it contains 
many effective vectorization tools that greatly enhance code 
readability and maintenance. The characteristic function of 
Normal Inverse Gaussian distribution is taken and exercised with 
the chosen set of parameters. Finally, the call price dependence on 
strike price is obtained and rendered in XY plot. Valuation of 
European call option with analytical form of characteristic 
function allows further developing models with higher accuracy, 
as well as developing models for some exotic options. 

 
Keywords – APARCH, European option, Fourier transform, 

normal inverse Gaussian distribution. 

I. INTRODUCTION 
Black–Scholes model (BS) not only offers an elegant way 

for pricing derivatives but also imposes many restrictions. 
Thus, it is not possible to directly improve accuracy of 
calculations. However, the BS model can be used to develop a 
more sophisticated model; therefore, the fact that a 
characteristic function of the log returns can be directly 
calculated is employed.  In the BS approach, there is an asset 
governed by Ito process [1], [2] and [3]: 

ܵሺݐሻ ൌ μܵdݐ  σܵdܹ,                         (1) 

where μ – a drift rate; 
σ – volatility. 

The risk free asset with deterministic rate ݎሺݐሻ also coexists. 
Bond prices are set by the following formula: 

ሻݐሺܤ ൌ exp ݎ
௧


ሺܵሻ݀ܵ.                   (2) 

For numerical purposes, log return at maturity time is used: 

ܺሺܶሻ ൌ log ቀ
ௌሺ்ሻ

ௌሺሻ
ቁ.                        (3) 

Random variable ܺሺܶሻ  is distributed according to true 
measure	ℙ. There is also equivalent measure ℚ, under which 
the discounted price will possess a martingale property. Under 
this risk neutral measure, the price of European call option 
follows: 

ୡܲୟ୪୪ ൌ ሺܶሻॱொmaxሺܵሺܶሻܤ െ ,ܭ 0ሻ.         (4) 

By restriction of BS ℚ  is unique and ܺሺܶሻ	 is normally 
distributed under both measures ℙ	and ℚ [1], [4], [5]. 

II. NOMENCLATURE 
log – natural logarithm; 
S – spot price of underlying asset; 
x – logarithmic spot price; 
K – strike price of European option; 
k – logarithmic strike price of European option; 
T – maturity of European option. 
APARCH  – antisymmetric power autoregressive conditional 
heteroscedastic model; 
BS – Black–Scholes model; 
ℙ– probability measure; 
ℚ – equivalent probability measure; 
φ – characteristic function; 
࣠ – Fourier transformation; 
PDF- probability density function; 
࣠ିଵ –  inverse Fourier transformation; 
t – actual time; 
τ – time to maturity (T – t); 
X – random variable; 
B – price of riskless bond; 
ॱ – expectation value operator; 
W – standard Brownian motion; 
u – variable in the dual space (after direct Fourier 
         transformation). 

III. EQUATIONS 

A. Call Price Calculation by Fourier Transforms 
In the following calculations, the anti-symmetric form of 

Fourier transformation will be used due to a reason that it is 
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implemented in Matlab software package. Thus, multiplicator 
in front of integral will be missing: 

࣠ሾ݂ሿሺݑሻ ൌ φሺݑሻ ൌ  expሺ݅ݔݑሻ݂ሺݔሻ݀ݔ.Թ 		 	(5) 

However, inverse form of Fourier transformation will be 
without square root in front of integral: 

࣠ିଵሾφሿሺݔሻ ൌ ݂ሺݔሻ ൌ
ଵ

ଶగ
 expሺെ݅ݔݑሻφሺݑሻ݀ݑ.Թ        

Logarithmic transformation of strike price and spot price is 
introduced in the following way: 

݇ ൌ logሺܭሻ,                                      
ݔ ൌ logሺܵሻ.                                       

For every probability density function, there is a dual 
function, which uniquely depicts probability distribution. This 
function is called a characteristic function and is obtained by 
direct Fourier transformation of random variable [1]: 
 

φሺݐ, ሻݑ ൌ ॱൣexp൫݅ܺݑሺݐሻ൯൧.                   (6) 
 

The main assumption behind is that a characteristic function 
of log returns is available in analytical form. It is possible to 
completely recover PDF from a characteristic function 

 
݂ሺݐ, ሻݔ ൌ

ଵ


 ܴ݁ሾexpሺെ݅ݔݑሻ݂ሺݐ, .ݑሻሿdݑ
ஶ
         (7) 

 
Cumulative density function is then obtained in the following 

way: 
,ݐሺܨ ሻݔ ൌ

ଵ

ଶ
െ

ଵ


 ܴe ቂ

ୣ୶୮ሺି௨௫ሻሺ௧,௨ሻ

௨
ቃ dݑ,

∞
    (8) 

 
but the calculation of corresponding integral is numerically 
unstable; therefore, it is necessary to introduce the 
transformation to avoid numerical difficulties. As a result, 
“dampened” cumulative density has been introduced. 

Dampened cumulative probability: 

,ݐሺܨ ሻݔ ൌ expሺെη݇ሻܲሾܺሺݐሻ   ሿ.          (9)ݔ

Dampened price for call option 

ܲሺ݇ሻ ൌ expሺെη݇ሻ େܲሺ݇ሻ.             (10) 

Fourier transform of the modified call 

        ψሺݐ, ሻݑ ൌ ࣠ሾܲେሿሺݑሻ.	                          (11) 

By substituting riskless bound, we obtain 
 

ψηሺܶ, ሻݑ ൌ ሺܶሻܤ  expሺ݅݇ݑሻܲηCALLሺkሻd݇ ൌ	Թ

ൌ  expሺ݅݇ݑሻൣexpሺηkሻ  ൫expሺݔሻ െ expሺ݇ሻ൯݂ሺܶ, ݇ሻdݔ
∞

݇
൧ൌ
	

Թ

ൌ
ሺܶሻܤ

ሺ݅ݑηሻሺ݅ݑη1ሻ
φ൫ܶ, ݑ െ ݅ሺη  1ሻ൯,

 

(12) 
 

where ݂ሺܶ, ݇ሻ – Normal inverse Gaussian probability function 
(see B. Normal Inverse Gaussian Distribution) [1]. 

The equation for pricing European call option using inverse 
Fourier transformation operator: 
 

େܲሺ݇ሻ ൌ expሺെ݇ηሻ࣠ିଵሾψሺܶ, ;ݑ ηሻሿሺ݇ሻ.									(13) 
 

The equation for pricing European call option where Fourier 
transformation operator is expressed in analytical form [1]: 

େܲሺ݇ሻ ൌ
షೖആ

గ
 ܴ݁ሾexpሺെ݅݇ݑሻψሺܶ, ሻሿݑ
∞

      .ݑ݀

B. Normal Inverse Gaussian Distribution 
Probability density function 

 

݂ሺݔሻ ൌ
ஔభቀඥஔమାሺ௫ିஜሻమቁ

ඥஔమାሺ௫ିஜሻమ
eஔஓାஒሺ௫ିஜሻ,   (14) 

 
where 
 ;ଵ – the modified Bessel function of third order and index 1ܭ
μ – location parameter; 
α – tail heaviness parameter; 
β – asymmetry parameter; 
δ – scale parameter; 
γ ൌ ඥαଶ െ βଶ.………k.…… 
 

Using the corresponding characteristic function [9], it is 
possible to obtain: 

φሺݖሻ ൌ eஜ௭ାஔቀஓିඥ
మିሺஒା௭ሻమቁ.               (15) 

 

C. Time Series Analysis from Simple Models to a Specified ARCH 
Model 
To obtain the corresponding density function (normal inverse 

Gaussian), the historical evolution of time-series is performed. 
APARCH time-series approach is obtained by performing an 

analysis using standard time-series constructs augmented with 
additional elements unless acceptable accuracy is reached (see 
Fig. 1). 
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Fig. 1. Block scheme of APARCH time-series model [8]. 

Let ݎ௧ ൌ log
ௌ
ௌషభ

െ ॱlog
ௌ
ௌషభ

.      (16) 

Let us introduce the following equation: 

௧ݎ ൌ μ௧  ε௧;			ε௧~ܰሺ0, σ௧ଶሻ,     (17) 

where μ௧ – average term; 
ε௧ – error term.           

σ௧
ଶ ൌ ω  ∑ Αε௧ି

ଶ
ୀଵ  ∑ Βσ௧ି

ଶ ,
ୀଵ        (18) 

where ω – constant; 
Α,  . – GARCH model parametersܤ

               If ݍ ൌ 0, this is the ARCH(p) volatility process [10]. 

D. APARCH Model 
It is possible to show that   

σ௧ଶ ൌ ω  Βσ௧ିଵଶ  Ασ௧ିଵଶ ݂ሺݖ௧ିଵሻ,     (19) 

where ݂ሺݖ௧ିଵሻ is an innovation function [10], [6]. 

The most popular innovation function of GARCH models 

݂ሺݖ௧ିଵሻ ൌ 

ൌ

ە
ۖ
۔

ۖ
ۓ

௧ିଵଶݖ 		Simple;
ሺݖ௧ିଵ െ θሻଶ	Leverage;

௧ିଵݖ| െ θ| െ ݇ሺݖ௧ିଵ െ θሻଶ	News;
ሺݖ௧ିଵ െ θሻଶஓ	Power;

௧ିଵݖ| െ θ| െ ௧ିଵݖሺߢ െ θሻଶஓ	News	and	power,

(20) 

where θ – shifts the innovation function; 
 ;news parameter tilts the innovation – ߢ
γ	and	ψ	– flatten or steepen innovation function. 

The task of the innovation function is to model asymmetry 
and news impact [10]. 

The GARCH models can be generalised by means of Box–
Cox transformation: 

σ௧
ந ൌ ω  Βσ௧ିଵ

ந  Ασ௧ିଵ
ந ݂ሺݖ௧ିଵሻ,				with	݂ሺݖ௧ିଵሻ ൌ 

ൌ ሺݖ௧ିଵ െ θሻଶந,	         (21) 

where θ – shifts the innovation function; 
 ;news parameter tilts the innovation – ߢ
γ	and	ψ	–	flatten or steepen innovation function; 
ω, 	Α, Β – the remaining GARCH model parameters. 

The APARCH (m, n) is written in the following way [10]: 

ܺ௧ ൌ ε௧, ε௧ ൌ 	σ௧ݖ௧;							ݖ௧~	݅. ݅. dሺ0,1ሻ	  (22) 

σ௧ ൌ 	ω  ∑ Αሺ|ε௧ି| െ γε௧ିሻ  ∑ Β

ୀଵ


ୀଵ σ௧ି

 , (23) 

with constraints ω  0; 			Δ  0;	 	Α  0;			െ1 ൏ ߛ ൏
1, for	݅ ൌ 1,… ., ݉, 	Β  0, for	݆ ൌ 1,… , ݊	 and 

∑ ݇  ∑ Α ൏ 1,



 where	݇ ൌ αΑሺ|ε௧ି| െ γε௧ିሻ.   (24) 

E. Generalised Hyperbolic Distribution 
Definition (Generalised Hyperbolic distribution)

ୋ݂ୌሺݔ; 	α, β, δ, μ, λሻ ൌ
ሺஓ ஔ⁄ ሻಓ

√ଶಓ


ಓష

భ
మ
ቀඥஔమାሺ௫ିஜሻమቁ

ቆ
ඥஔమାሺ௫ିஜሻమ

ൗ ቇ

భ
మషಓ

eஒሺ௫ିஜሻ,	

where γଶ ൌ αଶ െ βଶ and ܭ is a modified Bessel function of 
the third kind, with the index λ 

if  ܺ~GHቀെ ଵ

ଶ
, α, β, δ, μቁ,	   (25) 

then it has normal inverse Gaussian distribution [10]. 

F. Emergence of APARCH from Historical Consideration 
Stochastic basis ൫Ω, ࣠, ሺृ௧ሻ௧∈ሾ,்ሿ, ℙ൯ is introduced. ℙ is an

original physical probability measure and ृ௧  represents the 
information flow governed by Brownian motion ܤ ൌ
ሺܤ௧ሻ௧∈ሾ,்ሿ  and Levi process ܮ ൌ ሺࣦ௧ሻ௧∈ሾ,்ሿ.  Stock price is   
adopted to natural filtration ृ௧[3]. Daily return is defined as 
follows: 

 ܺ௧ ൌ log
ௌ
ௌషభ

.	    (26) 

Using the considerations above, it is possible to prove 
that spot price dynamics of underlying asset can be well 
described with normal inverse Gaussian distribution.  [7], 
[11], [12]. 

AR(p) MA(q) 

ARMA(p, q) 

GARCH(p, q) 

ARCH(p = 0, q) 

εt = σt · zt 
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IV. NUMERICAL ALGORITHM FOR VALUATION
OF EUROPEAN CALL OPTION 

A. Description of Steps 
∗ – element by element vector multiplication.

Example: 
ሬሬԦࢇ ∗ ሬሬԦ࢈ ൌ ሺܽଵ, ܽଶ, … . . , ܽሻ ∗ 	ሺܾଵ, ܾଶ, … . . , ܾሻ ൌ 

					ൌ ሺܽଵܾଵ, ܽଶܾଶ,… . . , ܾܽሻ.				(27) 

/ – element by element vector division.

Example: 
	ሬሬԦࢇ / ሬሬԦ࢈ ൌ ሺܽଵ, ܽଶ, … . . , ܽሻ	 / 	ሺܾଵ, ܾଶ, … . . , ܾሻ ൌ 

ൌ ቀ
భ
భ
,
మ
మ
, … . . ,



ቁ.	    (28) 

1. Input the step sizes ∆ݑ (for grid in the dual space) and
ݔ∆  (for grid in the original space), as well as the
number of integration points N (identical in both 
spaces). Make sure that they satisfy	∆ݑ∆ݔ ൌ ଶ

ே
. Input 

also the “dampening parameter” η  for the modified 
call. 

2. Construct the vectors containing grid nodes
in the dual space

ሬሬԦ࢛ ൌ ሼሺ݆ െ 1ሻΔݑ:	݆ ൌ 1,…ܰሽ.       (29) 

  and in the original space 
ሬሬԦ࢞ ൌ ቄ

ே

ଶ
Δݔ  ሺ݉ െ 1ሻ:݉ ൌ 1,… ,ܰቅ.      (30) 

3. Construct the Fourier transform of the modified call

ૐሬሬሬԦ ൌ expሺെܶݎሻφ൫ܶ, ሬሬԦ࢛ െ ݅ሺη  1ሻ൯ / ሾሺ࢛݅ሬሬԦ 
ηሻ ∗ 	ሺ࢛݅ሬሬԦ  η  1ሻሿ.	   (31) 

4. Compute the vector
ሬԦࢠ  ൌ expሺെ݅ݔଵ࢛ሬሬԦሻ ∗ ψ.    (32) 

5. For the trapezoidal rule set ݖଵ ൌ
௭భ
ଶ

 and ݖே ൌ
௭ಿ
ଶ
. 

Trapezoidal rule (in Fig. 2): 

Fig. 2. Scheme of the iteration process (figure from [13]). 

 ݂ሺݔሻdݔ ൎ
ି


ቀݕଵ  ଶݕ  ଷݕ  ⋯ .ିଵݕ 

௬బା௬
ଶ

ቁ .

     

6. Run the FFT on ࢠሬԦ ࢠሬԦ∗ ൌ .ሬԦሻࢠሺܶܨܨ

7. Compute option values

ሬሬԦ࢟ ൌ
ଵ


expሺെη࢞ሬሬԦሻ ∗ ܴ݁ሾࢠሬԦ∗ሿ.						 	(33) 

8. Output the pair ሺ࢞ሬሬԦ,  is a call option thatݕ ሬሬԦሻ the value࢟
corresponds to an option with log strike price ݔ, for
݆ ൌ 1,… ,ܰ [1]. 

FFT is numerical routine that simultaneously 
calculates N sums 

ݖ
∗ ൌ ∑ exp ൬െ

ଶ

ே
ሺ݆ െ 1ሻሺ݇ െ 1ሻ൰ ,ݖ

ே
ୀଵ 				 			(34) 

 for ݇ ൌ 1,… ,ܰ. 

The order of numerical algorithm is ሺܰlogܰሻ [1]. 
The above-mentioned algorithm is illustrated in Fig. 3. 

I I 
I I 

I 

I I 
I 

I I I I 

I 
I I 

I I I 

I 
I I 

I I I 

I 
I I 

I I I 

I 
I I 

I I I 

I 
I I 

I I I 

I
I I 

I I I 

 _____ I 
I I I 

--- ---- --- -----

a 



Information Technology and Management Science 
 _______________________________________________________________________________________________  2017/20 

95 

B. Flow Chart 

If we fix the parameter k, then we can obtain call price 
dependence on time until maturity. 

V. RESULTS

A. Entry Parameters 
The numerical simulation is performed with the following

parameters: 

characteristic function parameters 
pcf= 

struct('t',10,'r',6.1,'delta',0.3,'alpha',
6,'beta',-4.52). 

B. Output 

Figure 4 shows call price dependence on strike price when 
maturity time is fixed with parametric dependence on NIG 
parameters, which describes historical dynamics of underlying 
asset. There is also explicit dependence on technical parameters 
(grid parameters). 

Now it is possible to evaluate price of call option for a selling 
purpose. When sold, further hedging action should be 
introduced to avoid financial loses. 

VI. DISCUSSION

The developed Matlab code provides a quick valuation 
possibility of European call options. Next step is to increase 
accuracy of the algorithm by investigating and tuning 
distribution and technical parameters to obtain maximal 
accuracy. It could also be inevitable that further modification of 
distribution function itself is required. When accuracy 
requirements are met, it is possible to start developing a user-
friendly interface. Besides, it would be very beneficial to apply 
the algorithm for cases of exotic options involved. 
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