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Abstract – A bi-modal routing problem is solved using a 

heuristic approach. Motivated by a recreational hiking 
application, the problem is similar to routing problems in business 
with two transport modes. The problem decomposes into a set 
covering problem (SCP) and an asymmetric traveling salesperson 
problem (ATSP), corresponding to a hiking time objective and a 
driving distance objective. The solution algorithm considers hiking 
time first, but finds all alternate optimal solutions, as inputs to the 
driving distance problem. Results show the trade-offs between the 
two objectives. 
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I. INTRODUCTION 

This paper addresses a combinatorial problem combining the 
classical Set Covering Problem (SCP) and the Traveling 
Salesman Problem (TSP). The problem is termed the Bi-Modal 
Covering Salesman Problem (BCSP). Motivated by a 
mountaineering problem, it has broader application in routing 
& delivery problems involving two modes of transport and the 
possibility of one-way routes while visiting certain nodes. 
Following the introduction, relevant literature is reviewed. The 
mathematical formulation is then developed, followed by 
details of the implementation of the heuristic algorithm, 
computational results, and conclusions with possible 
extensions. 

The motivating application is used to describe the BCSP 
here. Given a set of mountain peaks one wishes to climb, a 
network of trails, a set of parking areas (which serve as 
trailheads), and network of roads connecting trailheads 
determine the set of optimal hikes to perform and sequence the 
hikes so as to minimise an objective involving both hiking and 
driving costs. The idea is that one will park a car at a trailhead, 
perform a hike, and drive to a new hike, eventually climbing all 
mountains (camping is generally needed between hikes and 
sometimes within hikes; this overnight time is not considered 
in the current problem). However, there is another element to 
the trail network. Sometimes it is beneficial and/or necessary to 
have a hike begin and end at different locations (trailheads), 
rather than traverse the same territory twice. These one-way 
hikes are a unique element to this paper, but in a hiking 
application they are very common. Therefore, it is assumed that 
there are at least two persons hiking together (very reasonable 
given safety considerations) as well as two cars. Two cars are 
needed to perform shuttling operations on the one-way hikes. 
The Problem Definition and Formulation Section explains this 
in more detail. The formulation and solution approach are not 
dependent on the need for two cars. 

Specifically, the motivating problem here is the climbing of 
the 48 peaks above 4000 feet in the State of New Hampshire, 
USA [1]. Many hikers aim to become part of the “club” who 
have ascended these mountains. The question addressed in this 
paper is to find the “optimal” tour through these peaks, 
considering both hiking and driving objectives. This paper 
presents a precedence-based dual objective approach, which is 
implemented using a traditional programming language and 
optimisation engine, as well as a spreadsheet-based (with 
additional programming) approach. Because of the bi-modal 
nature of the problem and logistics of performing certain types 
of hikes, the TSP aspect of the problem becomes asymmetric. 

This routing problem has application in other areas. Rather 
than mountain peaks and trailheads, let us consider customers 
and airports. One must visit all customers, having access to both 
flights and rental cars. Sometimes one would fly into a given 
airport, visit several customers, and return to the same airport 
before flying to another airport. Other times it may be beneficial 
to fly into the first airport, visit several customers before driving 
to a different airport (i.e., a one-way trip). In addition, with the 
increased availability of car-sharing services, there are potential 
applications involving driving and walking. Other applications 
are in situations with bi-modal delivery services. 

II. LITERATURE REVIEW 

Routing problems have been studied in the literature for 
many years. For a detailed review of multi-objective problems, 
see Jozefowiez et al. [2]. Excellent references for the Traveling 
Salesman Problem (TSP), the Vehicle Routing Problem (VRP), 
and arc routing problems are by Gutin [3], Applegate et al. [4], 
Golden et al. [5], Dror [6], and Braekers et al. [7]. 

Specific problems with similarities to the BCSP addressed in 
this paper include the Covering Tour Problem (CTP). This was 
introduced by Current & Schilling [8] and further studied by 
Gendreau et al. [9] and Jozefowieza et al. [10]. This problem 
has two node sets as the BCSP does. In the CTP, the goal is to 
find a minimal-length Hamiltonian tour through a subset of the 
nodes of one set, such that every node in the other set will be 
within some critical distance of a visited node. Current & 
Schilling provide an example of visiting health care teams in 
developing countries: only a small number of villages can be 
visited, but villages not visited must be reasonably close to a 
visited village. In the BCSP, the nodes in the second set must 
all be explicitly visited. 

The Prize-Collecting Traveling Salesman Problem has some 
similarities. See, for example, Fischetti & Toth [11] and Balas 
[12]. In this problem, a reward is received at each node visited 
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with the objective to find a minimal-length tour, which provides 
a certain level of total rewards. The Orienteering Problem also 
contains rewards at each node; the objective is to maximise the 
total reward collected subject to a time constraint. See, for 
example, Golden et al. [13] and Ramesh et al. [14]. 

Another similar problem is studied by Levy & Bodin [15]. 
They develop an approach for scheduling postal carriers who 
drive to a parking area, complete a walking tour delivering mail, 
return to the vehicle, and either drive to a new parking area or 
complete another walking tour. The problem is termed the 
Walking Line of Travel Problem (WLT) and presents an 
algorithm but no mathematical formulation. The BCSP studied 
in this paper is similar, but more general. The WLT problem 
includes only cyclical trips, whereas the BCSP can include one-
way trips as well. The form of the BCSP studied in this paper 
also allows one to define walking trips a priori. Mail delivery 
problems are also studied by Gussmagg-Pfliegl et al. [16]. 

As the motivating problem for this paper lies in the 
recreational arena, it is fitting that other recreational routing 
problems have also been studied in the literature. Cycle-tourist 
routing is studied by Cerna et al. [17]. Tourist trip design 
problems are studied by Gavalas et al. [18]. 

III. PROBLEM DEFINITION AND FORMULATION

The BCSP occurs on two inter-connected networks. One 
network is a network of parking areas connected by roads. The 
other network is a network of peaks connected by trails. Some 
trails also have connections to parking areas. It is useful to 
define the overall network as G, with two sub-networks G1 
(road network) and G2 (trail network). G1 comprises the set of 
parking areas denoted by V1 = {P1, P2, , Pm}, where Pi is 
parking area i, and E1 the set of roads connecting the parking 
areas. Similarly, G2 is the set of peaks (“customers” in a 
traditional TSP language), each of which must be visited at least 
once. The peaks will be denoted as V2 = {C1, C2, , Cn}, and E2 – 
the trails linking the peaks as well as the parking areas. Figure 1 
displays an example. 

The concept of a trip (or hike in this problem context) should 
be explained. The car is driven to a parking area Pi. A hike is 
performed, defined by visiting one or more peaks. There are two 
possibilities for the end of the hike. A loop or cyclical hike is 
when the hikers return to Pi, and then continue on to another 
parking location (or perform another hike from Pi). A one-way, 
or chain, hike is when the hikers end at a different parking area, 
say Pj. The chain hike is a key aspect of this problem which 
differentiates it from other problems in the literature, yet it is a 
very common occurrence in this application. In order to perform 
a chain hike, both hikers drive to Pj (the endpoint of the hike), 
leaving one car there. Then they drive to Pi, and leave on the hike. 
Finishing the hike at Pj, they drive back to Pi to retrieve the other 
car. Figure 2 illustrates a cyclical hike. Figure 3 illustrates a chain 
hike. 

Practical feasibility of chain hikes depends on the application. 
In the motivating setting, it is common not only to have two 
hikers (from a safety and logistical aspect), but also that some 
hikes are more naturally done as one-way hikes. This has the 
potential to reduce hiking time considerably. Having two cars 
increases the total mileage driven, though not necessarily the 
time. Thus, it depends on the objective whether this is an issue. 
Chain hikes (trips) may be useful in other settings as well, for 
example, if the “parking” areas are airports, and customers are to 
be visited on one-way trips between airports. Another example 
may occur with bike or car sharing programs, where the pick-up 
and drop-off locations can be different. 

Cyclical Trip Illustration

Step 3: Drive 2 Cars

P

C3

C2

C1

Road

Trail Parking Area

Peak

Step 1: Drive 2 Cars

Step 2: Hike

Chain Trip Illustration

Step 5: Drive 2 Cars 
to next hike

P1 (begin of hike)

C3
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Step 1: Drive 2 Cars
from previous hike

Step 3: Hike

P2 (end of hike)

Step 2: Drive 1 Car
to begin of hike

Step 4: Drive 1 Car
to begin of hike

Fig. 1. Illustration of road and trail networks. 

Fig. 2. Illustration of cyclical hike. 

Fig. 3. Illustration of chain hike. 



Information Technology and Management Science 
 _______________________________________________________________________________________________  2017/20 

81 
 

For this paper, possible hiking trips are developed in advance. 
This is reasonable, as there are many hiking guides available and 
there tends to be a finite number of reasonable hikes. Therefore, 
the problem becomes one of selecting which hikes to perform 
(making sure to visit each peak at least once), and then how to 
sequence the hikes so that the overall objective is optimised. The 
objective can be time-based or distance-based, or a weighted 
combination. 

 
Notation is as follows: 
i = 1, …, m trip index (hiking trips), 
j = 1, …, n customer (peak) index, 
ci = cost of trip i (e.g., time, distance), 
dik = cost of driving from trip i to trip k (e.g., distance), 
aij = 1 if trip i visits customer (peak) j; 0 otherwise. 

 
The direction of travel may affect the hike cost (e.g., terrain 

features). It is common, therefore, to define a hike in each 
direction, especially for chain hikes (cyclical hikes can be done 
in the fastest way with no impact on driving logistics). The 
driving distance matrix D is a matrix of hike-hike distances. This 
matrix is in general asymmetric, especially in the presence of 
chain hikes. 

Decision variables for the problem are: 
xi = 1 if trip (hike) i is selected; 0 otherwise, 
yik = 1 if trip (hike) k follows trip (hike) i (k ≠ i); 0 otherwise. 
 
The formulation of the problem is: 

 
The objective is the weighted sum of the hiking cost and the 

driving cost. Constraints (1) ensure that every customer (peak) is 
visited at least once. These are the traditional set covering 
constraints. Constraints (2) and (3) make sure that the selected 
hikes are connected to the actual driving network, i.e., if a hike is 
not selected, no drives should be selected to or from that hike. 
Similarly, if a hike is selected, there must be one drive to that hike 
and one drive away from that hike. The subtour elimination 
constraints ensure that the hikes selected form a full cycle. 

Weights on the objective allow for differential importance of 
the hiking and driving objectives. For this paper, the problem is 
solved with the hiking objective taking precedence over the 
driving objective. This allows the problem to be partitioned into 
a Phase I problem, which is essentially a set covering problem to 
 
 

 select the hikes that minimise the hiking objective (or a number 
of possible sets of hikes, within some tolerance of the absolute 
minimum). Then these selected hikes are passed to Phase II, 
which becomes essentially an asymmetric traveling salesperson 
problem. For the motivating application, this partitioning is 
natural, and has the benefit of making the solution approach 
tractable. The next section discusses the heuristic approach to the 
solution. 

IV. IMPLEMENTATION 

The heuristic approach was implemented in two ways. The 
first way was using a traditional programming language (C), 
along with callable optimisation routines (CPLEX). But, because 
of the motivating application and the manageable size of the 
problem, the problem was also developed and addressed 
implementing a spreadsheet-based approach using Excel and 
Visual Basic for Applications (VBA). This latter approach, in 
whole or in part, can be incorporated into classes in Business 
Analytics and similar courses that cover optimisation. Using the 
spreadsheet-based model, students can experiment with different 
solutions and approaches, including side constraints and/or 
different objectives, and also see the benefit in some cases of a 
higher-powered solution approach. 

Figure 4 provides an overview of the heuristic. Possible hiking 
trips are pre-defined by the user. Each node in V2 (i.e., each peak 
or customer) must be in at least one hike to ensure feasibility. 
Then the set covering problem (SCP) is solved (Phase I in Fig. 4) 
to identify the set of hikes that minimises the hiking objective (in 
this paper, total hiking time). These selected hikes are then 
sequenced to minimise the total driving time. This in general is 
an asymmetric traveling salesperson problem (ATSP). In this 
paper, the well-known Cheapest Insertion heuristic was used to 
solve the ATSP to ensure quick solution time with good solution 
quality. This heuristic is sensitive to the starting node, so the 
heuristic was used from each starting node, and the best solution 
kept. 

Input: Network information: parking nodes, distance matrix between 
nodes, customer (peak) nodes, trip (hike) information (peaks covered, 
starting/ending nodes, time), tolerance level for covering problem 
solution. 

Phase I: Determine trips to perform (hiking objective) 

1. Solve Set Covering Problem: find ZSCP. 
2. Find all α-optimal solutions to the SCP. Store in list, say T (depth-

first search, modified branch and bound procedure). 

Phase II: Determine sequence of trips (driving objective) 

1. For a solution in T, create the complete directed network 
G3 = (V3, E3) as follows: V3 contains one node for the depot, and 
one node for every trip in the optimal SCP solution. Edges in E3 
represent the driving distance between trips. Distances between 
trips are not necessarily symmetric. 

2. Solve the asymmetric TSP defined on G3. 
3. Repeat steps 1–2 for every α-optimal SCP solution from Phase I. 

min , 

        subject to 

∑ 1					 1… ,             (1) 

∑ 0					 1… ,         (2) 

∑ 0					 1… ,	         (3) 

subtour elimination constraints 

, ∈ 0, 1 . 

Fig. 4. Heuristic approach for the BCSP. 
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The SCP may have alternate-optimal solutions. Because each 
of these represents a different set of hikes, it is important to 
consider each solution in order to find the best solution for the 
hiking objective. Actually, the heuristic was implemented in such 
a way to find all SCP solutions within α % of the optimal solution 
(termed α-optimal solutions). By varying α, one can explore the 
trade-offs (essentially the efficient frontier) between the 
objectives and choose a solution satisfying the user. 

To discover all α-optimal solutions, a modified branch-and-
bound approach was used. A binary search tree was created with 
an optimal SCP solution as the root node. Depth-first search was 
used at each node, with each level of the tree representing setting 
one hike (xi) equal to zero (left branch) or to one (right branch). 
If the resulting objective to the SCP is greater than (1 + α) ZSCP 
(where ZSCP is the optimal objective value of the set covering 
problem), or if the SCP is infeasible, that branch of the tree is 
fathomed at that point. In this way, a list of all α-optimal solutions 
of the SCP is found.  

Once an α-optimal trip set is identified, the trips (hikes) must 
be sequenced to minimise the driving objective (Phase II). Let 
G3 = (V3, E3) be the network defined where V3 is a set of nodes 
with one node representing each hike (plus one node for the 
depot), and E3 represents the distances between pairs of hikes.  
The distances for the edges in E3 can be asymmetric, i.e., the 
distance from hike i to hike k (dik) is not necessarily equal to dki. 
This usually occurs in the presence of chain hikes, which start 
and end at different nodes of V1. Recall Fig. 3 and the logistics of 
a chain hike. For a chain hike, the drives from the end of the hike 
to the beginning of the hike are termed intra-hike driving. Driving 
between trips is termed inter-hike driving, and the sequencing 
algorithm seeks to minimise inter-hike driving for a given set of 
hikes (intra-hike driving is a function of the set of hikes, but not 
to their sequencing). 

Let the matrix D = [dik] be the inter-hike driving distances 
between selected hikes (in addition to a home or depot node). In 
general, D is asymmetric. This can be due to normal routing 
reasons (terrain, one-way roads), but mainly in this application 
due to the logistics of chain hikes. Once D is defined, the 
asymmetric TSP is solved to determine the optimal hike 
sequence. For this research, the well-known Cheapest Insertion 
Heuristic (CIH) was used.  This is a construction heuristic which 
builds up a subtour until it contains all nodes. At every iteration, 
it adds the node to the subtour which increases the subtour cost 
by the least amount. Since the CIH is sensitive with respect to the 
node it is started from, it was run starting from every node in V3 

and the best tour was retained. 

V. COMPUTATIONAL RESULTS 

There are 48 peaks above 4000 feet in New Hampshire. Each 
peak has at least one trail leading to the summit. Based on these 
peaks, 42 hikes were defined, covering between 1 and 14 peaks, 
with varying hiking times. Hiking time is expressed in hours. 
Similarly, there are 25 parking areas identified, and the distance 
between parking areas was identified. 

With α = 0 %, we find just the pure optimal solutions to the 
SCP (hiking time objective). For this instance, there are eight 
alternate-optimal solutions to the SCP problem. For each one, the 

ATSP was solved to find the minimum driving distance (i.e., the 
best sequence of the selected hikes). Summary results are shown 
in Table I. The minimal hiking time was found to be  
138.75 hours. The best driving time was found to contain  
301 miles of inter-hike driving (i.e., driving from one hike to the 
next), and 146 miles of intra-hike driving (i.e., driving to 
coordinate the logistics of chain hikes). Considering that two cars 
are used for the inter-hike driving portion, the total driving miles 
is 301 · 2 + 146 = 748 miles. 

TABLE I 

SUMMARY OF RESULTS FOR α = 0 % 

 
Note that even for the same hiking time, there can be 

considerable differences in the driving distance. For the eight 
solutions in Table I, the total weighted driving distance ranges 
from 748 to 918. Expanding upon this, if α is allowed to be non-
zero, we can relax the hiking time objective in an effort to 
reduce the driving distance. A set of computational experiments 
was run at different levels of α in order to determine how small 
chances in the hiking time can affect the minimal driving 
distance. In effect, this is mapping out the efficient frontier 
between these objectives, i.e., considering Pareto-optimal 
solutions. 

TABLE II  

SUMMARY RESULTS FOR DIFFERENT VALUES OF α 

(tolerance above optimal hiking time; best solution based on total weighted 

driving distance) 

 
Table II displays summary results from the computational 

experiments. As the hiking objective is relaxed (higher values 
tolerated), it is possible to reduce the driving objective. Initially 
there is a large benefit to this. For example, at α = 0.5 %, the 
hiking objective is allowed to be as large as 138.750 · 1.005 = 
139.440 hours. Solving the problem by using this parameter 
results in 124 α-optimal SCP solutions. Solving the associated 

Solution 
Hike 

Time, hrs 
Intra-Hike 
Driving, mi 

Inter-Hike 
Driving, mi 

Total 
Driving, mi 

1 138.75 146 307 760 

2 138.75 180 362 904 

3 138.75 146 301 748 

4 138.75 180 368 916 

5 138.75 170 303 776 

6 138.75 204 351 906 

7 138.75 170 303 776 

8 138.75 204 357 918 

α, % 

Number 
SCP 

Solutions 

Hike 
Time, 

hrs 

Percent 
above 

Optimal 
Hiking 

Time, % 

Intra-
Hike 

Driving, 
mi 

Inter-
Hike 

Driving, 
mi 

Total 
Weighted 
Driving, 

mi 

0.0 8 138.75 0.00 146 301 748 

0.5 124 139.34 0.43 158 264 686 

1.0 558 139.91 0.84 146 255 656 

2.0 2146 141.33 1.86 146 236 618 

3.0 5708 142.08 2.40 146 217 580 

4.0 14 894 144.25 3.96 140 220 580 
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ATSP for each one leads to the least-distance driving solution 
shown. The best solution found has a hiking time of 
139.34 hours, and a total weighted driving distance of 
686 miles. Comparing to α = 0 % results, allowing for a 0.5 % 
increase in the hiking objective allows one to reduce the driving 
objective by (748 – 686) / 768 = 8.3 %. Further improvements 
in the driving objective are possible, at a diminishing rate as α 
increases. For example, going from α = 3 % to 4 % no longer 
allows an improvement in the driving objective. Thus, Table II 
essentially maps out alternatives along the efficient frontier of 
the two objectives. See Fig. 5 for an illustration of this. Figure 6 
shows the relative change in the two objectives as a function of 
α. For some people, it may be worthwhile to relax the hiking 
objective somewhat in order to reduce the driving objective. 
One other noteworthy item from Table II is the number of 
α-optimal solutions as α increases. Not surprisingly, for higher 
values, the number of α-optimal solutions to the SCP increases 
dramatically. 

VI. CONCLUSIONS AND POSSIBLE EXTENSIONS

This paper introduces a new covering/routing problem termed 
the Bi-Modal Covering Salesman Problem (BCSP). It is stated as 
a multi-objective problem, with walking/hiking “cost” (here, 
time) and driving “cost” (here, distance) as the two objectives. It 
is similar to, but distinct from, other problems in the literature. 
The problem was motivated and illustrated based on a hiking 
problem, but has application to business routing problems as 
well. 

A mathematical programming formulation was given, and a 
solution algorithm developed using essentially a preemptive goal 
programming approach. Implementation was done both with 
C/CPLEX and with Excel/VBA, to allow more accessible usage 
of the model in introductory Business Analytics courses. In the 
implementation, the hiking objective is given first priority, and is 
addressed as a set covering problem (i.e., all peaks/customers 
must be visited). Once all alternate-optimal (or α-optimal 
solutions) are found using a depth-first, branch and bound 
procedure, the trips (hikes) are sequenced by solving an 
asymmetric traveling salesman problem. 

Results are presented for the base case of α = 0 %, and then 
summary result are presented for non-zero values of α. As α 
increases, the hiking time objective worsens, but the driving 
objective gets better. Essentially, this maps out the efficient 
frontier between these two objectives, and the user can decide the 
best trade-off between the two objectives. 

There are a couple of possible extensions. Obviously one could 
use different heuristics for the ATSP. Given the relative small 
size of the problem, the one used here is deemed adequate. 
Another option is to consider a possibility when performing a 
chain hike. Let us suppose two hikers perform a chain hike, but 
before driving from the end of the hike back to the beginning, 
they perform one or more cyclical hikes, starting from the 
endpoint of the chain hike. This has the potential to decrease the 
total driving required. The formulation would need to account for 
these possibilities, and the solution approach altered.  

Treating the two objectives simultaneously is another 
possibility. The problem becomes considerably more complex in 
this case, because there is no longer the clean decomposition into 
the SCP and ATSP. For the current application the 
decomposition makes sense, as there is a relatively small universe 
of reasonable hikes. Embedding the trip-definition into the 
formulation and algorithm may yield somewhat better solutions, 
at the expense of a more complex problem with higher solution 
difficulty. This is a promising area of future research. 
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