
Information Technology and Management Science

69

ISSN 2255-9094 (online)
ISSN 2255-9086 (print)
December 2017, vol. 20, pp. 69–73
doi: 10.1515/itms-2017-0012
https://www.degruyter.com/view/j/itms

©2017 Henrihs Gorskis, Ludmila Aleksejeva, Inese Poļaka.
This is an open access article licensed under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), in the manner agreed with De Gruyter Open.

Database Concepts in a Domain Ontology
Henrihs Gorskis1, Ludmila Aleksejeva2, Inese Poļaka3

1–3Riga Technical University, Latvia

Abstract – There are multiple approaches for mapping from a
domain ontology to a database in the task of ontology-based data
access. For that purpose, external mapping documents are most
commonly used. These documents describe how the data
necessary for the description of ontology individuals and other
values, are to be obtained from the database. The present paper
investigates the use of special database concepts. These concepts
are not separated from the domain ontology; they are mixed with
domain concepts to form a combined application ontology. By
creating natural relationships between database concepts and
domain concepts, mapping can be implemented more easily and
with a specific purpose. The paper also investigates how the use
of such database concepts in addition to domain concepts impacts
ontology building and data retrieval.

Keywords – Database, data mapping, ontology.

I. INTRODUCTION

Ontologies are a great tool for describing concepts and their
meaning relative to other concepts. One definition of
ontologies was given by Tom Gruber in 1993. By his
definition, an ontology is a “shared formal specification of a
domain conceptualization” [1]. Ontologies are used to define
terminology for communication, data meta-modelling and
other purposes. This is achieved by defining relations and
meaning in addition to the hierarchy of concepts used within a
certain domain. By sharing this terminology and the implicit
meaning behind the terminology, ontology is knowledge
sharing and communication. The model of concepts provided
by the ontology, which is a meta-model of the underlying data,
allows extending information by adding conceptual
knowledge to the data provided in communication between
two parties.

In the task of ontology-based data access, these
fundamental capabilities of ontology descriptions are used for
the extraction of data from databases. The goal of ontology-
based data access is to be able to use ontology as a
communication layer to the content of a database, to be able to
use the capabilities provided by the ontology on existing data
[2]. By accessing data through ontologies, it is possible to use
the knowledge contained in the ontology on the data from the
database, thereby extending it, as well as filtering it to
conform to the concepts from the ontology. However, before
ontology-based data access has become possible, the task of
mapping ontology concepts to the data should be
accomplished. Since the ontology description is very different
from database schemas, some intermediate mapping is
required. The present paper proposes a novel data mapping
approach that uses the ontology concepts as mapping points to
basic database objects. By using the ontology own elements as
mapping points to the database, better ideological consistency
of the knowledge in the ontology is also observed. This is one

more benefit, in addition to simplicity, this mapping approach
provides.

II. EXISTING APPROACH

Existing mapping solutions rely heavily on external
mapping documents (Fig. 1). These documents contain
mappings as rules and descriptions in additional files [3], [4].
Whichever software tool is used in the task of obtaining data
from the database, it uses these additional files to know how to
create data queries. This leads to unclarity of which ontology
concepts are or are not connected to the database. The
ontology engineer cannot immediately tell this information
without having to consult a separate mapping document first.
Using mapping documents is also conducive to an ontology-
first approach when building an OBDA system. Using a
mapping document is most comfortable when an ontology
already exists. In this case, the mappings are created onto the
existing concept. It is less comfortable when the database has
to have an impact on a newly built ontology for a specific task.
In this situation, the ontology and the mapping file must be
created simultaneously in parallel.

Fig. 1. Ontology to database mapping.

One example of the usage of mapping files is the software
solution called Ontop [5]. Ontop uses a mapping file that
describes how to obtain individuals from the database. The
mapping file defines a target individual with a placeholder
name, the individual’s class, the properties of the individual
with placeholder values and SQL query. The placeholder
name and any values are extended with the values obtained
from the database. This way, Ontop creates a virtual RDF
graph and combines it with the ontology. An example of a
mapping for the IMBD movie ontology can be seen below [6].

mappingId Actor
target imdb:name/{person_id} a dbpedia:Actor .
source select person_id from cast_info where
cast_info.role_id = 1

Information Technology and Management Science
 ___ 2017/20

70

mappingId Person has Birth Name
target imdb:name/{person_id} dbpedia:birthName
{name} .
source select name.id as person_id, name.name as
name from name

mappingId Person has Birth Date
target imdb:name/{person_id} dbpedia:birthDate
{dob}^^xsd:string .
source select person_id, info as dob from
person_info where info_type_id = 21

Sometimes the mapping information is not provided in an
additional mapping file, but using the other storage and usage
solutions. One example is the usage of databases themselves
[7] for the storage of the mapping rules.

Another approach to database mapping is to recreate the
database structure as an ontology [8], [9]. In this approach, the
database is taken as the basis of the ontology description
(Fig. 2). The created ontology mimics the database. This has
the advantage that data will fit well onto the ontology
concepts. The downside to this approach is that the created
ontology is mostly a database structure and provides little
domain definitions. This is sometimes done not specifically
for the task of ontology-based data access, but also for
merging multiple databases [10], [11] or for other data
migration and data validation [12] tasks.

Fig. 2. Ontology creation from database structures.

One related approach that has some similarity to the
approach proposed in the present paper is the use of concept
annotations as indicators and instructions on how to obtain
data from a database [13], [14]. In this approach, the mapping
is performed by asserting annotations on ontology concepts.
The annotations contain database queries as a plain text and
they can be executed by a data retrieval engine. The data
obtained by the query are individuals and values. This
approach allows storing both domain and mapping
information in the same location, namely the ontology. The
approach described in the paper differs from all the related
approaches.

III. DATABASE CONCEPTS

The present paper proposes the usage of special database
concepts alongside natural domain concepts within a
combined application ontology. These database concepts
themselves are to be used as mapping points to database

objects. This can be done using only the concept names
provided as IRI strings. These IRI strings are able to contain
sufficient information to point to database objects. Mapping
can be implemented by correctly interpreting these IRI strings.

The proposed method provides three types of mapping
concepts – table or view concepts, column concepts, and table
relations. Table or view concepts are mapped by using classes.
A table or view class points to a database table or view.
Database records found in these tables can be interpreted as
individuals of the respective class. Any database table record
can be obtained as an individual of the table class. Database
columns are mapped by using data properties. If the record
itself (the fact of existence of the record) is an individual, then
the columns of the table are data properties with specific
values. An individual uses these special database data
properties to indicate that the values were obtained from the
database. Relations between tables are mapped by using object
properties. The mapping of tables to class concepts, or table
columns to data properties is not a new idea [15], [16];
however, the use of just the concept names themselves without
additional mapping rules is novel.

These special database concepts are used to create a link to
a database to obtain individuals and values. To be able to
implement this, they must be distinguishable from the other
non-database linked domain concept. This is done with the use
of prefixes. A mapped ontology will have multiple different
prefixes. All domain concepts use one or more domain
prefixes. Additionally, a database prefix is created, for every
separate database used in the mappings. For example, let us
say that the ontology describes one domain and all the domain
concepts are created within this ontology. Therefore, all
domain concepts shall begin with the prefix
“http://example.com/ontology/”. This ontology is also mapped
to and references one database. Therefore, all database
concepts in the domain shall begin with the prefix
“http://example.com/database/”. The prefixes may also
indicate the type of a concept. This can be done using the
following example prefixes:

“http://example.com/OBDA/database1/table/”,
“http://example.com/OBDA/database2/table/”,
“http://example.com/OBDA/database1/view/”,
“http://example.com/OBDA/database1/column/”,
“http://example.com/OBDA/database1/relation/”.

Apart from indicating the query creation system, the type of
database object, the use of prefixes has another advantage. By
using prefixes, it is possible to have multiple concepts with the
same name. The ontology may contain a domain concept, a
table concept, and a column concept, all with the same name,
but different meanings. For example, when multiple databases
are mapped to the ontology, they may contain tables with the
same name. Providing the database name in the prefix of the
IRI allows depreciating between multiple data sources.
Another example is the case of a database table “person” that
may contain a multitude of records related to people, including
some test record, change tracking records or other records,
which are stored in the same table, but do not describe real

Information Technology and Management Science
 ___ 2017/20

71

persons. There may also be a column in one or more tables
with the name of a person. These columns may indicate a
relation to the table person. Finally, the concept of person may
also exist in the domain. The domain concept description of
what a “person” is may differ from the data in the table
person. Therefore, it is important to distinguish these concepts.
The use of different prefixes makes this possible. This allows
database concepts to be freely inserted into an ontology at any
point in their respective element hierarchy, without disturbing
the domain concepts.

IV. ONTOLOGY BUILDING WITH MIXED CONCEPTS

The availability of the proposed database concepts has also
an effect on the process of ontology building. The database
concepts can be used as a basis for the whole domain
ontology. The available data from the database can shape how
the ontology should be built. The ontology building process is
modified to first inspect and analyse the available data and the
structure of the database. Next, important tables, views,
columns and values are identified. Based on these insights
from the database, database-concepts are created in the
ontology. After important database concepts are found and
added to the ontology, the ontology can be extended by adding
domain concepts above and below the database concepts in
their hierarchy. Since all concepts from the database or
another data source are distinguishable from domain concepts,
the ontology engineer is free to use any domain terminology in
the process of extending the knowledge contained in the
ontology. Seeing the database concept in the same place as
domain concepts helps create meaningful concepts and
relation to the data. The creation of domain concepts that are
not related to database concepts can indicate that these domain
concepts may not be needed.

It is important to understand that the database concepts are
not to be interpreted and used in the same way as domain
concepts are. For example, a table concept, which is added to
the ontology in the form of a class, represents the set of all
known records in the table. No more and no less. It does not
matter what the table is called or what use it is supposed to
fulfil. The table “persons” is still just the set of records from
the database providing information about people; it is not the
representation of the concepts describing what a person is. If
the actual concept of a person is needed, it must be added
separately to the ontology as a domain concept. However, the
concept of a person will be related, in some way, to the
database table concept. Depending on how strongly the
ontology is related to the database, the database concept may
be above or below the domain concept. For example, if the
database concept of the table “person” is above the domain
concept of a “person”, the relation to the database is strong.
This indicates that according to this ontology nothing can be a
person without also being a record in the database table of all
persons. It also means that there may be records in the table
that are not real persons. If the database concept is below the
domain concept, the connection to the database is weak. A
record from the database table about persons is to be
considered a person; it inherits all qualities of a person.

However, there may be persons who do not have records in
the database.

Fig. 3. Mixed concept ontology fragment.

Figure 3 shows part of the class hierarchy of an example
ontology built with mixed concepts. The blue class concepts
represent database-connected classes. They are identifiable by
the prefix they have. The green concepts are domain concepts.
This example contains two different kinds of domain class
concepts. The classes below the database concepts are strictly
related to the database. This example ontology is constructed
such that each example (instance) of a Cardiologist must also
necessarily be a record in the database table “Doctor”. This is
implied by the class “Cardiologist” being below the class of
all “Doctor” records. The domain class “Person” is more
general. It combines records from two different database
tables. The hierarchy also states that both patients and doctors
are people. In this example, the class “Person” also leaves the
possibility of other instances of the class “Person” existing,
without being either a patient or a doctor.

Fig. 4. Stricter mixed concept ontology.

If there is a need for a concept that combines records from
multiple tables but is also strongly related to the database, it
may be defined using a union. For example, if it is necessary
to state that both “Patient” and “Doctor” are people and also
that instances of people can only be from these database
tables, the ontology engineer can define a union of “Patient”

Information Technology and Management Science
 ___ 2017/20

72

and “Doctor” and equate the class “Person” to this union. Such
an ontology can be seen in Fig. 4. Any union or other
grouping concept consisting only of concepts related to a
database is therefore strongly related to the database itself.

Column concepts are very similar. Instead of being added to
the class hierarchy, they are added to the data property
hierarchy. They may also have domain concepts describing
data properties above and below them. During ontology
building, these database data properties may be used for the
definition of complex domain classes.

Fig. 5. Complex database concepts.

Figure 5 shows an example of complex class definitions
using a database column for criteria. When a complex class
uses a database column of a certain table in its definition, it
also should be a subclass of the concept of that table. This is
because only individuals of this table class (database records)
will have this particular column. In the example above, the
complex classes provide sufficient criteria for the further
classification of records as being cardiologists or surgeons. If
there are multiple columns in different database tables, all
having the same meaning, a domain data property may be
introduced as a super concept to these data properties. Using
such a super data property in the definition of a complex class
would yield the same outcome, in this case.

Object properties are the only database concepts that require
exceptional naming. Since they relate two tables, they must
contain the names of both tables. The IRI of such object
properties consists of a prefix indicating the ratio to a
database, followed by the two database table names separated
by a double dash. Such an IRI may look like this
“…/database1/relation/Patient--Doctor”.

The data retrieval engine can determine the case of a
database table relation from the concept prefix. By splitting
the object property concept name, using the double dash as a
delimiter, and combining both parts with the common prefix,
the IRI of both tables involved in this relation is obtained. This
relation is to be considered directional. The relation goes from
the first table to the second table. Any specifics about the
nature of this relation are unfortunately lost.

The database concepts should be extended and related to as
many domain concepts as possible. Any knowledge describing
the domain must be added to the ontology. The database
concepts should not be the most important part of any
ontology. They may be used as a basis and a backbone of the
ontology not only to map to data, but also to indicate what
concept definitions are missing from a full ontology.
However, database concepts that are not extended to more
specific or more generic domain concepts serve very little
purpose. The ontology should be richer and contain more
knowledge than just the database structure.

V. CONCLUSION

The present paper proposed a novel approach to database to
ontology mapping and ontology building. The presented
approach provided an uncomplicated and comprehensible way
to map information sources to domain concepts. Mapping is
implemented in a way, which is more in line with the ontology
itself. Instead of relying on an external tool, the ontology itself
defines how the mapping impacts the concepts it contains. An
external tool may rely on additional reasoning or calculation
rules that have nothing to do with the capabilities and the
methodology of the ontology. This means that, potentially, the
ontology engineer should define the combined ontology using
three different technologies. The engineer should consider the
relational database, the ontology, and the rules of the mapping
engine separately. In the proposed approach, the relations
between database concepts and domain concepts are
determined using standard ontology reasoning and do not
require any additional tasks. A database concept will
perpetuate its properties naturally within the concept hierarchy
using the ontology internal reasoning. This approach is only
capable of mapping directly to database objects. It does not
have the expressiveness of other mapping approaches.
Mappings defined in external files or in annotations may
contain complex data queries. The degree to which this
characteristic is assumed as a weakness is debatable. On the
one hand, this approach seems to be lacking functionality. On
the other hand, it is questionable if there should be complex
queries contained in the ontology. If complex queries are
needed, a view within the database may be created, and a
database concept mapped to this view. Simplicity may be of
value when creating a complex ontology. The ontology
engineer should be concerned with the validity and usability of
the ontology and not with complex data queries.

The use of the database concepts as an anchor point to a
database can have a positive effect on ontology building. In
the case when an ontology is built from the ground up,
database concepts serve as a foundation for the domain
concepts. The database concept is fleshed out with domain
concepts related to them. The relations of domain concepts to
database object concepts serve as indicators as to how well the
ontology is. When domain concepts are not related to database
concepts, these domain concepts may never have individuals.
In this case, the question arises of how important these
concepts are. When a database concept does not have any
related domain concept, it simply describes the database

Information Technology and Management Science
 ___ 2017/20

73

structure without any additional information or knowledge. In
this case, it is questionable if the ontology is a correct tool for
describing database structures and whether the ontology
should contain such a concept.

An ontology created using this approach is usable with any
other ontology editor or tool. The proposed mapping approach
has such little impact on the ontology and does not intrude on
any existing ontology specifications or the methodology of
ontology definition. Any additional tool may be used to work
with such an ontology, without losing the mapping
information contained in it.

REFERENCES
[1] T. R. Gruber, “A translation approach to portable ontology

specifications,” Knowledge Acquisition, vol. 5, no. 2, pp. 199–220, Jun.
1993. https://doi.org/10.1006/knac.1993.1008

[2] M. G. Skjæveland, M. Giese, D. Hovland, E. H. Lian, and A. Waaler,
“Engineering ontology-based access to real-world data sources,” Web
Semantics: Science, Services and Agents on the World Wide Web,
vol. 33, pp. 112–140, Aug. 2015.
https://doi.org/10.1016/j.websem.2015.03.002

[3] E. Kharlamov, D. Hovland, M. G. Skjæveland, et al., “Ontology Based
Data Access in Statoil,” Web Semantics: Science, Services and Agents
on the World Wide Web, Jul. 2017.
https://doi.org/10.1016/j.websem.2017.05.005

[4] N. Konstantinou, D.-E. Spanos and N. Mitrou, “Ontology and database
mapping: a survey of current implementations and future directions,”
Journal of Web Engineering, vol. 7, no. 1, pp. 1–24, March 2008.

[5] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti,
M. Rezk, M. Rodriguez-Muro, and G. Xiao, “Ontop: Answering
SPARQL queries over relational databases,” Semantic Web, vol. 8, no. 3,
pp. 471–487, Dec. 2016. https://doi.org/10.3233/sw-160217

[6] “MovieOntology scenario,” Aug. 8, 2017. [Online]. Available:
https://github.com/ontop/ontop/wiki/attachments/Example_MovieOntolo
gy/movieontology.obda. [Accessed: Sep. 10, 2017].

[7] G. Bumans, “Mapping between Relational Databases and OwL
Ontologies: an example,” Computer Science and Information Technologies,
vol. 756, pp. 99–117, 2010.

[8] C. Martínez-Cruz, J. M. Noguera, and M. A. Vila, “Flexible queries on
relational databases using fuzzy logic and ontologies,” Information
Sciences, vol. 366, pp. 150–164, Oct. 2016.
https://doi.org/10.1016/j.ins.2016.05.022

[9] Y. An and T. Topaloglou, “Maintaining Semantic Mappings between
Database Schemas and Ontologies,” Lecture Notes in Computer Science,
pp. 138–152. https://doi.org/10.1007/978-3-540-70960-2_8

[10] G. Mecca, G. Rull, D. Santoro, and E. Teniente, “Ontology-based
mappings,” Data & Knowledge Engineering, vol. 98, pp. 8–29, Jul.
2015. https://doi.org/10.1016/j.datak.2015.07.003

[11] C. D. C. Ta and T. P. Thi, “Improving the Algorithm for Mapping of
OWL to Relational Database Schema,” Lecture Notes in Computer
Science, pp. 130–139, 2015. https://doi.org/10.1007/978-3-319-21024-7_9

[12] D. Ouyang, X. Cui, and Y. Ye, “Mapping integrity constraint ontology
to relational databases,” The Journal of China Universities of Posts and
Telecommunications, vol. 17, no. 6, pp. 113–121, Dec. 2010.
https://doi.org/10.1016/s1005-8885(09)60534-3

[13] K. Čerāns and G. Būmans, “RDB2OWL: A Language and Tool for
Database to Ontology Mapping,” In Databases and Information Systems
VI, IOS Press, 2011, pp. 139–152.
https://doi.org/10.3233/978-1-60750-688-1-139

[14] K. Čerāns and G. Būmans, “Database to Ontology Mapping Patterns in
RDB2OWL Lite,” Databases and Information Systems, pp. 35–49,
2016. https://doi.org/10.1007/978-3-319-40180-5_3

[15] M. A. G. Hazber, R. Li, X. Gu, and G. Xu, “Integration Mapping Rules:
Transforming Relational Database to Semantic Web Ontology,” Applied
Mathematics & Information Sciences, vol. 10, no. 3, pp. 881–901, May
2016. https://doi.org/10.18576/amis/100307

[16] B. Motik, I. Horrocks, and U. Sattler, “Bridging the gap between OWL
and relational databases,” Web Semantics: Science, Services and Agents
on the World Wide Web, vol. 7, no. 2, pp. 74–89, Apr. 2009.
https://doi.org/10.1016/j.websem.2009.02.001

Henrihs Gorskis is a Researcher in the field of information technology at
Riga Technical University (RTU). He received his Mg. sc. ing. degree in
2013. He is currently working on finalising his Doctoral Thesis. His research
interests include data mining, ontology engineering, ontology-based database
access and evolutionary computing and programming. He is especially fond of
the Java programming language and uses it for both work and personal
application development.
E-mail: henrihs.gorskis@rtu.lv

Ludmila Aleksejeva received her Dr. sc. ing. degree from Riga Technical
University in 1998. She is an Associate Professor at the Department of
Modelling and Simulation, Riga Technical University. Her research interests
include decision making techniques and decision support system design
principles, as well as data mining methods and tasks, and especially
collaboration and cooperation of the mentioned techniques.
E-mail: ludmila.aleksejeva@rtu.lv

Inese Poļaka received her Dr. sc. ing. degree from Riga Technical University
in 2014. She works as a Lecturer at the Institute of Information Technology of
Riga Technical University (Latvia) and Leading Researcher at the Faculty of
Medicine, University of Latvia. The main research interests include data
mining, machine learning, classifiers, evolutionary algorithms and their
applications, as well as bioinformatics and biostatistics.
E-mail: inese.polaka@rtu.lv

