
Information Technology and Management Science

54

ISSN 2255-9094 (online)
ISSN 2255-9086 (print)
December 2017, vol. 20, pp. 54–57
doi: 10.1515/itms-2017-0009
https://www.degruyter.com/view/j/itms

©2017 Laila Bergmane, Jānis Grabis, Edžus Žeiris.
This is an open access article licensed under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), in the manner agreed with De Gruyter Open.

A Case Study: Software Defect Root Causes

Laila Bergmane
1
, Jānis Grabis

2
, Edžus Žeiris

3

1, 2
 Riga Technical University, Latvia, 3 ZZ Dats Ltd., Latvia

Abstract – Software quality assurance to comply with user

requirements enables software development companies to be
competitive. Maintaining a high quality level requires continuous
monitoring and development. If there are quality problems, the
company’s reputation is suffering and its costs increase because of
investing in time and eliminating the consequences of the
problems. The aim of the present article is to identify the most
essential root causes of software defect. The e-service “Invoice
Submission” of Riga City Municipality is used as an example. The
results of the study can provide useful information for developing
improvement activities for e-service higher quality. The analysis is
based on the information that is available in the developer’s user
request database. The Ishikawa method is used to analyse the
causes of defects.

Keywords – Defect analysis, defect causes, software quality.

I. INTRODUCTION

A human being can make an error, which produces a defect
in a program code document. If a defect in the code is executed,
the system may fail to function properly causing a failure.
Defects in software, systems or documents may result in
failures, but not all defects do so. Defects occur because human
beings are fallible and because there is time pressure, complex
code, complexity of infrastructure, changing technologies,
and/or many system interactions [12].

Correction of defects is costly and the cost increases
exponentially with every subsequent stage. They also directly
affect software development cycle-time. Therefore, defect
prevention not only enables one to reduce costs but also
minimises the development time [2].

Development organisations that deliver software-based
systems have to face serious problems on how to control the
progress of test activities and quality of software products
throughout the project life cycle in order to estimate test
completion criteria, and if the project will end on time [10].
Testing activities play a major role in quality assurance and
their non-compliance with the requirements is often the reason
why users are dissatisfied with the product.

The quality of software needs to be assured through a proper
development process. The development process must be
improved on a regular basis according to the actual usage
feedback. If a bug is in software, in particular, it is necessary to
investigate a root cause of the bug in order to work out a proper
measure to prevent it from recurring. Many reasons contribute
towards software bugs in the project such as product, process
and project related reasons [3]. Companies that are not good
enough to resolve defect causes, risk with their reputation, loss
of customer loyalty and cost cutting effects. To mitigate these
risks, it is essential to perform improvement activities, which

will improve the quality of the software. This requires a
problem analysis of the causes of product defects.

A defect causal analysis has three key principles:
 reducing defects to improve quality;
 applying local expertise;
 focusing on systematic defects.

The first principle says that we can improve software quality
by focusing on the prevention and early detection of defects.
The second determines that the cause detection must involve a
software development team that can explain why these defects
have occured. The third principle says that, with relatively small
investments, the focus on systemic defects can have a
significant impact on quality [6].

To determine the context in this paper, the definition of the
“defect” of the ISTQB term is used – a flaw in a component or
system that can cause the component or system to fail to
perform its required function, e.g., an incorrect statement or
data definition. A defect, if encountered during execution, may
cause a failure of the component or system [11]. A program is
said to be buggy if that contains a large number of bugs, or bugs
that seriously interfere with its functionality [3].

The quality requirements are determined by standards and
internal quality procedures of companies [8]. Software quality
must meet user requirements. There is no software which does
not have a defect. Even in the case where no defects can be
found in the software, this does not prove that they are not there.
In the software development industry, both nationally and
globally, the competitiveness of a company is closely related to
its ability to develop high quality information technology
solutions. Therefore, quality related issues are important for any
software development company. Maintaining the quality level
according to user requirements requires continuous
management and preventive action.

E-service “Invoice Submission” is a service whose
availability is disturbed due to existing defects. The quality
problems indicate that there are systematic repetitions of
software defects that significantly impact its full use for users.
Misleading software adversely affects the company’s
reputation, and defect fixing and resources spent to fix these
problems increase business costs, and instead of using the
resources to develop new solutions, they are used to resolving
existing software defects. The aim of this study is to investigate
the root causes of defects. The e-service “Invoice Submission”
has been used for a case study. User request database provides
data for identifying the root causes. User requests in the
database are classified information. The causes of the defects
are given in a description way. Results of this paper can be used
for continuous improvement activities in e-service quality
improvement.

Information Technology and Management Science
 ___ 2017/20

55

II. RELATED RESEARCH

There have been several studies which analysed root causes
of defects in different systems using one or more data sources.

A study published in 2001 investigated 40 incident cases of
web site functionality failures and found out that 80 % of all
failures were software failures and human errors. A large
number of failures occured during routine maintenance,
software upgrades and system integration. The authors of the
paper could not find out whether these failures wetr mainly due
to system complexity, inadequate testing and/or poor
understanding of system dependecies. They also indicated that
other significant causes of software failure were system
overload, resource exhaustion and complex fault recovery
routines [5].

In a study about software development companies, in which
36 highly-qualified quality assurance testers and developers
from open source projects were interviewed, it was concluded
that the most common quality problems were due to the fact that
the tester did not have enough information about the software
to be tested. It was also mentioned that testing was rigorous,
and no fair software quality assurance policy was available in
written form [8].

In a study, using the defect classification approach, algorithm
and functional type defects during the development process
were found late – during system integration and testing. The
mistakes were related to human factors – individual errors and
lack of domain knowledge about a specific industry and system
[1].

A case study about C compiler from the GNU Compiler
Collection, which is an application consisting of over
300 000 lines of codes and can be divided based on
functionality into 13 well-defined components, showed that a
significant percentage of software failures were associated with
changes that spread across the system, i.e., were due to
nonlocalized faults. The authors of the study also analysed fligh
software failures of NASA mission. The software includes
multiple software applications, consisting of millions of lines of
code in over 8000 files. The authors of the paper states that the
most common sources of failures were requirements and coding
faults, each contributing to about 33 percent of the failures.
Requirement faults included incorrect, changed and missing
requirements. The third largest fault type was related to data
problems and it contributed to 14 percent of the failures. Design
faults led to less than 6 percent of the failures. Additionally,
4 percent of failures were due to process or procedural issues,
2 percent – due to integration faults, and 1 percent – due to
simulation or testing problems [9].

A study, which focused only on failures caused by defects in
data-parallel programs, showed that most failures (84.5 %)
were caused by defects in data processing rather than defects in
code logic. The authors emphasised, “the tremendous data
volume and various dynamic data sources make data processing
error-prone”. They also concluded that 22.5 % of failures are
table-level and their major reasons were programmers’
mistakes and frequent changes of data schema. There were also
62 % of row-level failures and most of them were caused by

exceptional data. The authors concluded that programmers
could not know all of exceptional data in advance [7].

Almost all of the studies under review [1], [8], [9] indicated
that the revealed defects were related to testing problems. Other
reasons were related with change management, lack of
knowledge, requirements faults, data processing problems, and
defects in code logic. Testing problems are typically related to
testing process improvement activities. One of the most popular
options how to improve this process at companies is to use one
of the test maturity models, such as TPI Next, CMMI or TMMi,
which helps companies evaluate the current testing situation
and, based on the recommendations or guidelines suggested by
the models, move towards improving the testing process at the
company [14].

III. RESEARCH METHODOLOGY

The e-service “Invoice Submission” of Riga City Municipality
was selected for the case study.

The e-service “Invoice Submission” is an online service that
offers its users an electronic submission of invoices via the web
service API, XML file uploads or manual invoice information
entry. The invoice data validation is against the XSD scheme,
which provides solutions for expanding or limiting input data at
different levels.

The development of the e-service project started in 2011 and
its development till today has been carried out in ten phases.
The project team consists of project manager, tester, system
analyst and programmer. The project manager is the only one
who works on the project from its beginning, but other team
members have changed several times.

Within the present research, several questions have been
formulated:

 Why do the same defects repeat systematically?
 Does the technology used in the example solution affect

the quality of e-service?
 What are the most common causes of defects in the

production environment?

The data analysed were obtained from the supplier quality

management information system. All defect requests received
from users that were classified as a “defect” were selected from
the database. The selected requests in the database were
registered in the period of 5 April 2017–7 July 2017–. A total
of 102 defect requests were received during this period. For
analysis, the authors used the resolved defects and the
information provided by the programmer and tester about the
progress of defect handling and their causes. Each defect
mentioned in the request was assigned to an apropriate category
(Table I). IEEE Standard Software Anomaly was used to
categorise the defects. They were classified by considering
impact on requirement classes [4]. Functional defects were
subdivided into the subcategories (categories 1–3). Thereafter,
the number of defects in each category was determined.

Information Technology and Management Science
 ___ 2017/20

56

TABLE I

DEFECT CATEGORIES

No. Category Description

1. Development
process

Actual or potential cause of
failure is due to deficiencies in
the requirements analysis,
development, testing,
implementation or maintenance
process

2. Integration with
other systems

Actual or potential cause of
failure is related to
interoperability

3. Data processing Actual or potential cause of
failure is any defect affecting data
integrity

4. Usability Actual or potential cause of
failure is related to usability (ease
of use) requirements.

5. Security Actual or potential cause of
failure is related to security
requirements, such as those for
authentication, authorisation,
privacy/confidentiality,
accountability (e.g., audit trail or
event logging), etc.

6. Performance Actual or potential cause of
failure is related to performance
requirements (e.g., capacity,
computational accuracy, response
time, throughput, or availability).

7. Serviceability Actual or potential cause of
failure is related to requirements
for reliability, maintainability, or
supportability (e.g., complex
design, undocumented code,
ambiguous or incomplete error
logging, etc.).

8. Other Would not cause any of the
effects above

To analyse the causes of software defects, the Ishikava

method was used [13]. Based on the examples of method
approach, four categories of causes were identified [6]:

 methods, which might be incomplete, ambiguous,
wrong, or unenforced;

 tools and environment, which might be clumsy,
unreliable, or defective;

 people, who might lack adequate training or
understanding;

 input and requirements, which might be incomplete,
ambiguos, or defective.

As a result of the analysis, the most important and most
common causes were summarised and grouped by cause
categories, depicting them in the form of Ishikawa diagram.

IV. RESULTS

In 2015, 17 defect requests were received from e-service
users and this number increased to 64 in the subsequent year.
Compared with 2015, it is at least three times more. The trend
of 2017 in the first three months shows that the number of
requests does not decrease significantly, but rather increases.
Their number at the moment of the study has already reached
21 defect requests.

The number of defect requests obtained by classifying all
defects by category is given in Table II.

TABLE II

TOTAL DEFECTS BY CATEGORY

No. Category
Number of

defects

1. Development process 59

2. Integration with other systems 10

3. Data processing 20

4. Usability 1

5. Security 0

6. Performance 1

7. Serviceability 0

8. Other 11

According to the results provided in Table II, the missed

defects in the production environment are due to deficiencies in
the development process. Among all user requests, in 74 cases
of defect causes, it was mentioned that they had not been found
during testing. Part of the defects could have been discovered
earlier if the test method based on testing the characteristics had
been used.

In some cases, the nature of the defects makes it clear that the
tester lacks general knowledge about the e-service solution
architecture and it is not enough to do integrity tests. In four
cases, defects were reported in the e-service because the tester
had not notified about new software defect removals that would
require testing. Other five cases showed that defects occurred
because functionality had been changed in another part of the
system. Several defect requests showed that in many cases the
tester and the system analyst had not been informed about
changes implemented in functionality, thus creating situations
where the described functional requirements were not actual in
documents. All of these cases indicate problems in the change
management process.

The second highest number of defects is related to data
processing. These defects relate to generation of a PDF
document that is affected by the degree of complexity of
invoices. These problems cannot be completely avoided due to
the technology used in the solution. Because the number of
functionality defects is significantly higher than in other
categories, this proportion indicates that the shortcomings of the
development process and the problems with generating PDF
documents most significantly affect the quality of the e-service.
According to the defect rate, the third largest defect category is
defects that have various other reasons, such as the temporary
unavailability of a web service or a server. Some of the cases
are affected by the human factor.

As a result of the analysis, the main causes of the defects are
summarised in Fig. 1. It shows that the main causes of problems
include categories “methods” and “human”. It demonstrates
that there is an opportunity to improve software development
process.

The study identified that systematic repetition of defects was
due to the fact that the solution used restrictive technologies that
could affect the quality of the service.

Information Technology and Management Science
 ___ 2017/20

57

Fig. 1. Defect causes.

The results of the analysis show that functionality defects are
the most common ones in the production environment, a total
of 89 out of 102. The main causes of defects are related to
problems in the development process, the technologies used in
the solution, insufficient testing and lack of knowledge of the
solution architecture.

V. CONCLUSION

The results of the study have confirmed the causes of the
defects mentioned in the related studies; namely, the most
common causes of defects are related to testing problems [9]
and awareness of changes in software [8].

The main conclusions of the research are as follows:
 the example studied shows that the technology used in

the solution may limit the choices of quality
improvements, but does not prove that this is a common
problem;

 one of the most common root causes of defects is related
to deficiencies in the development process, which is
also confirmed by the example under consideration;

 the used example shows that it is necessary to create
new defect cause categories, which is useful for a
systematic defect identification step in the defect cause
analysis process;

 defect cause classification will help more precisly
identify if the problems in the development process are
related to design/analysis, coding, testing or
infrastructure fields;

 in the example above, 71 % of all defects were not
found during testing and this was mentioned in the
related studies as one of the main causes of failures.

The limitation of the present study is related to the fact that
the causes of the example software defects are identified based
on the information provided in defect requests, the number of
which may not be sufficient to ensure more objective
determination of their causes.

Future research may be devoted to the implementation of
new software defect cause classification at the company in
order to support the defect cause analysis process.

REFERENCES
[1] M. Leszak, D. E. Perry, and D. Stoll, “A Case Study in Root Cause Defect

Analysis,” Proceedings of the 22nd international conference on Software
engineering – ICSE ’00, pp. 433–434, Jun. 2000.
https://doi.org/10.1145/337180.337232

[2] A. A. Shenvi, “Defect Prevention with Orthogonal Defect Classification,”
Proceeding of the 2nd annual conference on India software engineering
conference – ISEC ’09, p. 83, 2009. https://doi.org/10.1145/1506216.1506232

[3] V. Gupta, N. Ganeshan, and T. Singhal Kumar, “Determining the Root
Causes of Various Software Bugs Through Software Metrics”, 2015 2nd
International Conference on Computing for Sustainable Global
Development (INDIACom), 11–13 March, New Delhi, p. 1212, 2015.

[4] “IEEE Standard Classification for Software Anomalies,” Revision of IEEE
Std 1044-2009, p. 8, 2010. https://doi.org/10.1109/ieeestd.2010.5399061

[5] S. Pertet and P. Narasimhan, Causes of Failure in Web Applications.
Parallel Data Laboratory Carnegie Mellon University Pittsburgh, PA
15213-3890, CMU-PDL-05-109, pp. 3–8, Dec. 2005 [Online]. Aviable:
http://www.cs.cmu.edu/~priya/PDL-CMU-05-109.pdf

[6] D. N. Card, “Learning from Our Mistakes with Defect Causal Analysis,”
IEEE Software, vol. 15, no. 1, pp. 56–63, 1998.
https://doi.org/10.1109/52.646883

[7] S. Li, H. Zhou, T. Xiao, H. Lin, W. Lin, and T. Xie, “A characteristic
study on failures of production distributed data-parallel programms,”
Proceeding of the 2013 International Conference on Software
Engineering, p. 963–972, 2013. https://dl.acm.org/citation.cfm?id=
2486921&CFID=1010944701&CFTOKEN=99591560

[8] N. Nuzhat, K. Aihab, and K. Ahmed, “Survey to Improve Software
Quality Assurance in Developing Countries,” International Journal of
Technology and Research, Islamabad 3.1 1–6, pp. 3–5, 2015.

[9] M. Hamill and K. Goseva-Popstojanova, “Common Trends in Software
Fault and Failure Data,” IEEE Transactions on Software Engineering,
vol. 35, no. 4, pp. 484–496, Jul. 2009. https://doi.org/10.1109/tse.2009.3

[10] N. Hrgarek, “Fabasoft Best Practices and Test Metrics Model,” Journal
of Information and Organizational Sciences, vol 31, no 1, Austria, pp. 75,
2007 [Online]. Available:
http://jios.foi.hr/index.php/jios/article/view/31/29

[11] “ISTQB Glossary” [Online]. Available: http://glossary.istqb.org/search/defect
[12] ISTQB, “Why is Testing Necessary,” Certified Tester, Foundation Level

Syllabus, p. 11, 2012 [Online]. Available:
http://www.istqb.org/downloads/send/2-foundation-level-documents/3-
foundation-level-syllabus-2011.html4

[13] D. Dhandapani, “Applying the Fishbone diageam and Pareto principle to
Domino,” 2004 [Online]. Available:
https://www.ibm.com/developerworks/lotus/library/fishbone/

[14] ISTQB, “Types of Process Improvement,” Certified Tester, Advanced
Level Syllabus Test Manager, p. 60, 2012 [Online]. Available:
http://www.istqb.org/downloads/send/10-advanced-level-syllabus-
2012/54-advanced-level-syllabus-2012-test-manager.html

Laila Bergmane is a student at the professional Master study programme
“Information Technology” at the Institute of Information Technology of Riga
Technical University (Latvia). She holds ISTQB certificate. This is her first
publication. She also works as a Software Tester at ZZ Dats Ltd.
E-mail: Laila.Bergmane@edu.rtu.lv

Jānis Grabis holds a Doctoral degree and is a Professor at Riga Technical
University (Latvia) as well as the Head of the Institute of Information
Technology. His main research interests lie within the application of
mathematical programming methods in information technology, enterprise
applications and system integration. He has published more than 60 scientific
papers, including a monograph on supply chain configuration. He has led a
number of national projects and participated in five projects in collaboration
with the University of Michigan-Dearborn (USA) and funded mainly by
industrial partners, such as SAP America and Ford Motor Company.
E-mail: Grabis@rtu.lv

Edžus Žeiris holds a Doctoral degree and is a Deputy Director at the ZZ Dats
Ltd. He holds CISM and PMP certificates. Research interests include design of
e-services, security and evaluation of electronic services.
E-mail: Edzus.Zeiris@zzdats.lv

