
Information Technology and Management Science

48

ISSN 2255-9094 (online)
ISSN 2255-9086 (print)
December 2017, vol. 20, pp. 48–53
doi: 10.1515/itms-2017-0008
https://www.degruyter.com/view/j/itms

©2017 Oksana Petunova, Solvita Bērziša.
This is an open access article licensed under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), in the manner agreed with De Gruyter Open.

Test Case Review Processes in Software Testing
Oksana Petunova1, Solvita Bērziša2

1, 2 Riga Technical University, Latvia

Abstract – Qualitative system requirements and thoughtful
communication are the key factors to successful implementation of
software development projects. However, errors that occur by
misunderstanding and incomprehension between parties involved
in the project can lead not only to the high cost of the project but
also to a large number of defects discovered only after the system
release, which in turn strongly influences the product quality. The
software review processes are implemented to reduce projects
costs and ensure high product quality. The goal of the present
paper is to identify the role of review processes in software testing.
To achieve this goal, the process of test case review has been
implemented during testing.

Keywords – Communication, inspection, software review process,

software testing, static testing.

I. INTRODUCTION
Successful use of any software depends on users’ satisfaction

and its usefulness. In order to ensure high quality and maximum
efficiency of the daily users’ work, any software should operate
continuously and uninterrupted.

Software testing plays an important role in the software
development lifecycle [2]. Software testing is a process rather
than a single activity. This process starts with test planning,
designing test cases, preparing for execution, evaluating a status
and ends with the test closure. During software testing, the
developed software is tested for compliance with the
international standards, requirements and business needs. If
discrepancy and shortcomings are found in software during the
testing, it means there are defects and errors which should be
fixed.

According to the seven principles of testing, it is irrational
and impossible to check all combinations of software inputs and
preconditions and find all defects in the software product [7].
The software testing can provide an ability to reduce the number
of undetected defects in the developed software. Even if defects
are not found, testing cannot prove that software is 100 % defect
free [6]. In order to organise effective and useful software
testing, it is necessary to choose appropriate testing techniques.
Test cases should also be defined based on project and product
risks [1], [6].

Many errors and defects are discovered at the end of the
testing or are not discovered at all until users find them after the
release of the software [2], [9], [12]. Low software quality can
reduce product reputation and increase the possibility that end
users and customers prefer using competitors’ services [1], [2],
[5], [9].

Defects which are discovered at the end of testing and defects
which are found by software users are much more expensive to
fix than defects which are discovered at the earliest project
phases when, for example, business requirements were defined.

This immediately increases project costs. Fixing such defects is
more expensive and labour-intensive because it is necessary to
fix defects not only in a software code, but also in the
documentation where this functionality is described [2], [5]. In
order to decrease the number of defects detected at the end of
testing or after the release of the software, it is necessary to take
preventive measures starting with the project earliest phases.
One of these preventive measures is static testing [6], [10].

Static testing provides a good opportunity to improve
software quality and reliability. Its techniques provide a
possibility to get early feedback on software quality. The static
testing techniques can be used without a computer because
software testing is performed without software executing. That
is why static testing is convenient to use at the project earliest
phases. One of the static testing techniques is software review
process [6].

The goal of the present paper is to identify the role of
software review processes in software testing. To achieve this
goal, one of the software review types – a test case review – has
been introduced in software testing for the case study project.

The case study has been conducted on the basis of the
following tasks: to identify the role of communication and test
case reviews in the software testing; to find out if timely
information availability and the test case reviews can improve
software quality; to determine if the test case reviews can
reduce total testing time.

The paper is organised as follows: Section 2 describes
theoretical foundation and literature review of related studies.
Section 3 describes case study process, a project used for the
case study and data collected for the analysis. Section 4
summarises the results of the test cases review implementation.
Section 5 describes the implications of these results and the
conclusions that may be drawn.

II. RELATED RESEARCH
In general, software review process is one of the few methods

that can be used for error detection and correction in the
software development process. The achievements of this
process can be associated with a possibility to detect and fix
defects at the projects earliest phases when defect prevention
costs are low in comparison with the projects latest phases [6],
[8], [9], [11].

Software review process is one of the most effective and
productive methods how to assess and verify the quality of the
software and its artefacts in the software development lifecycle.
It is one of static testing (verification) techniques, and its main
objective is to find and avoid an error which appears during the
software development process. Software review process can be
applied to any artefact created during the software development

Information Technology and Management Science
 ___ 2017/20

49

lifecycle, for example, business requirements, system designs,
code, test plans, test cases and documentation [10], [12]. A
systematic evaluation of these documents and artefacts occurs
during this process. One of main software review process
benefits is that it can be used at the earliest software
development project phases [1], [5], [6]. There are many types
of software review processes. The most popular types are
formal and informal reviews, inspection, walkthrough,
technical reviews, peer reviews and management reviews.
Despite the fact that all types of the software review have the
same objective, there are differences between their
implementation processes [6].

Software formal reviews follow a formal process, which is
implemented in accordance with a structured and regulated
procedure. The most common type of formal reviews is
software inspection. Software inspection is the most
comprehensive software review process that is implemented in
strict compliance with the procedure, and it is led by the trained
moderators. Software formal reviews, especially software
inspection, consist of six main steps: planning, kick-off,
preparation, review meeting, rework and follow-up [1], [11].
During these six steps, the following activities take place:
review session planning and preparation for it, analysis of the
software artefacts and documents, review meeting, result
analysis and evaluation. More detailed information about
software formal reviews and software inspection can be found
in the article “State-of-the-Art: Software Inspections after 25
Years” [1] and in the ISTQB [6] book.

Software informal reviews, in turn, are not documented and
can be applied many times during the software development
process without any structured preparation and
organisation [6]. The most common type of informal reviews is
a walkthrough. Walkthroughs are led by the software artefacts
or document authors. An author guides the participants through
the documents according to his/her thought process to achieve
a common understanding and gather feedback in order to
improve software product and artefacts [6].

Technical reviews vary from quite informal to very formal
reviews and they are led by a trained moderator or a technical
expert. It is often performed as a peer review without
management participation. Technical reviews have the same
objectives as walkthroughs. In both cases, it is the fastest and
less expensive way how to get feedback about software,
software artefacts and its quality in general [6].

The software reviews are based on communication between
project development team members and all project stakeholders
[1], [6]. Communication and software reviews are the most
important processes which should be taken into account not
only at the software testing phase, but also during the all
software development life cycle. Communication is a “two-
way” process of information exchange, in which information is
received and understood by both participants [6]. Thoughtful
communication is a gold key to successful project
implementation. Poor communication сan lead to confusion and
misunderstanding.

In the software engineering literature, there are articles which
describe software review process as one of the most important

and effective processes in the software development lifecycle.
For example, Frank Elberzhager, Jürgen Münch and Danilo
Assmann in [2] conducted a study to identify relationships
between software reviews and software testing. In the course of
their work, three approaches how to define and direct the testing
process using defect detection at the project earliest phases were
analysed. As a result of this study, it was proved that there were
relationships between software testing and software reviews.
Information obtained in software review can be used to define
and direct the software testing process.

In turn, Anurag Goswami, Gursimran S. Walia and Urvashi
Rathod in [3] described how it was possible to improve an
ability of individual participants involved in the software
review process to detect defects because the success of the
software reviews strictly depended on qualification and skills
of participants involved. As a result of this study, it was proved
that was necessary to keep in mind qualifications and skills of
participants in the software reviews to obtain maximum results.

Aybuke Autum, Hakan Petersson and Claes Wohlim in [1]
summarised theoretical information about software review
process and software inspections within 25 years of its
introduction. They described development areas of software
reviews and inspections, new methods that were invented
during this time, and advantages and disadvantages of the
software inspections. Chris Kemerer and Mark Paukl in [5]
investigated how the software review in the coding phase could
impact and improve quality of the software.

III. CASE STUDY DESIGN AND COLLECTED DATA
Many studies describe the benefits of the software reviews

which occur during the requirements analysis and development
[3]–[5]. The present paper describes benefits of the test case
reviews which occur in software testing. The following research
questions are raised:
• What role is played by communication and test case

reviews in software testing?
• Can timely information availability and test case reviews

improve software quality?
• Can test case reviews reduce the total testing time?
The case study has been conducted at the company which

deals with the development, support, testing and maintenance
of telecommunication and information technology services in
nine European countries: Latvia, Estonia, Lithuania, Sweden,
the Netherlands, Germany, Austria and Croatia. The study has
been conducted within one department which is responsible for
support and development of billing system “XXX”. New billing
system releases have been discussed and examined in the study.
A new release of the billing system for one country rolls out
every 4–8 months. Since there are nine countries in total, there
is roll-out of one or two new system releases each month. Here
it is useful to note that business requirement analysis, software
testing, installation and software maintenance are performed by
department employees, but software design, development and
coding are implemented by an outsourcing company. The case
study analyses only software testing, including test planning,
analysis of business requirements and solution description, test
case design and testing of new features as well as system

Information Technology and Management Science
 ___ 2017/20

50

preparation for a new release. Figure 1 displays the structure of
software testing phase. For each release, it is planned to carry
out a 4-week testing phase.

Fig. 1. Software testing phase.

The case study has been organised into 3 steps:
1. Collecting statistics of 4 release testing before

introducing the test case review;
2. Implementing the process of test case review;
3. Collecting statistics of 4 release testing when test case

reviews have been used.
The statistics were collected based on communication

between testers and developers, business analysts, support
specialists, and weekly reports that have been delivered to
stakeholders within a year. Detailed summary of case study
steps and collected data are provided further in this section.

Step 1. Collection of Statistics (before)
Table I and Fig. 2 summarise the quantity and complexity of

defects found during testing of four releases before the test case
reviews have been implemented. It is important to note that
Table I contains information about the defects which have been
found in the first new system release testing. It means that if
another country is rolling out a similar system release version,
then only regressive testing is carried out.

All defects are divided into three levels of complexity:
critical defects, major defects and minor defects. A critical level
is assigned to a defect, which completely hampers or blocks the
system functionality. A major level is assigned to a defect,
which occurs when the functionality is functioning grossly
away from the expectations or not doing what it should be
doing, but a minor level is assigned to a graphic or grammatical
defect.

The data analysis of defects shows that a total of 206 defects
have been found, where 25 % of them are critical defects,

62 % – major defects and 13 % – minor defects. The average
number of defects found in the release is 51 defects: 13 critical
defects, 32 major defects and 6 minor defects.

Fig. 2. Defect distribution by complexity, before software review process
implementation.

Step 2. Implementation of the Test Case Review Process
The test cases review process has been implemented in

software testing for the case study project. During the test cases
reviews have been checked if test cases are developed in
accordance with defined requirements and standards. Several
checkpoints have been defined to support the review process.
Example of checkpoints is given in Table II. The test case
reviews are performed by another tester who did not write them,
but who has the same qualification as an author, or even better,
e.g., a test lead or a business analyst.

Table IV summarises defects, errors, gaps and problems and
their occurrence reasons that have been found in the test cases
reviews. Many defects were timely discovered and eliminated
without any extra costs using information discovered in the test
case reviews. The information also enables testers to enhance
their knowledge and better develop future test cases, which also
affect quality and speed of testing in the future software
releases. A total of 17 test case review sessions have been
organised during an evaluation period.

TABLE I
NUMBER OF DEFECTS BEFORE SOFTWARE REVIEW PROCESS IMPLEMENTATION

Release Number of defects and its degree of complexity Total

1 week 2 week 3 week 4 week

XXX 4.8 12 (critical)
20 (major)
3 (minor)

8 (critical)
15 (major)

3 (major)
5 (minor)

2 (minor) 68

XXX 5.2 10 (critical)
18 (major)
1 (minor)

18 (major) 1 (critical)
4 (major)
4 (minor)

3 (major)
2 (minor)

62

XXX 5.3 3 (critical)
12 (major)

7 (major)
2 (minor)

2 (major)
4 (minor)

0 30

XXX 5.4 11 (critical)
10 (major)

6 (critical)
10 (major)

5 (major)
2 (minor)

1 (critical)
1 (major)

46

4

9

6

1515

25
23

31

3
5 6

1

0

5

10

15

20

25

30

35

XXX 5.5 XXX 5.6.1 XXX 5.6.2 XXX 5.7

Q
u

an
it

y

Release

Critical Major Minor

Testing
planning

Analysis of
business

requirements
and solution
description

Test case
desing

Test execution

Information Technology and Management Science
 ___ 2017/20

51

TABLE II
CHECKLIST FOR TEST CASE REVIEW

No. Checklist Assessment (Yes/No) Remarks

1. Is the correct test case template being used?

2. Is the following information correct?

• References to business requirements;

• information about the author;

• creation time;

• an idea on the test cases;

• preconditions for test cases execution.

3. Was a product risk factor taken into account when test case execution conditions were defined?

4. Are the test cases able to cover all defined requirements?

5. Are external areas, which could affect the implementation of the requirement, identified and
included in the test cases?

6. Are equivalence classes identified? Are all possible equivalence classes included in the test
cases?

7. Are test data identified and included in the test cases?

8. Are boundary values, negative and invalid values identified and included in the test cases?

9. Are negative scenarios included in the test cases?

10. Are test steps defined in a correct and logical sequence?

11. Are the expected results defined for all test steps?

12. Is the expected result correctly identified?

13. Are test cases free of grammatical errors?

14. Are test cases developed consistently with use cases?

Step 3. Collection of Statistics (After)
Table III and Fig. 3 summarise the number of defects and

complexity of release testing after the test cases review process
has been implemented.

Fig. 3. Defect distribution by complexity, after software review process
implementation.

The data analysis of defects shows that 145 defects have been
found, 23 % of them are critical defects, 65 % – major defects
and 11 % – minor defects. The average number of defects found
in the release is 36 defects: 8 critical defects, 24 major defects
and 4 minor defects.

IV. RESULTS

Statistical data analyses before and after implementation of
the test case review process show that the total number of
defects has been reduced by 30 %. The approximate percentage
of critical, major and minor defects did not change but
decreased a possibility of finding defects at the end of the
testing when test execution was almost completed. Most of
defects are found during the first 2 weeks. Further, in this
section the results of the formulated research questions are
discussed.

A. What Role Is Played by Communication and Test Case Reviews
in Software Testing?
The reviews are based on communication among not only

project development team members, but also among all project
stakeholders. In testing, the test case reviews can help detect
errors in the test cases and also business requirements.

Timely elimination of defects reduces total project costs
because finding and fixing defects at the earliest project phases
are much cheaper than fixing such defects at the latest project
phases [2]. During the test case review, many problems with
business requirements were found. As the errors in the business
requirements are defect occurrence reasons in later software
products, it is necessary to think of a possibility of organising
business requirements reviews. If the developer has the
opportunity to check the test cases while implementing a code,

20

11

3

18

38

43

21

26

10
7 6

2

0

5

10

15

20

25

30

35

40

45

50

XXX 4.8 XXX 5.2 XXX 5.3 XXX 5.4

Q
u

an
it

y

Release

Critical Major Minor

Information Technology and Management Science
 ___ 2017/20

52

it is possible that this will help implement codes that may cause
potential defects. During the test case reviews, problems with
communication between testers and developers were found. As
developers were external service providers and communication
was held in English and mostly by emails, sometimes it took
more time to explain to developers where defects and problems
were. Table IV shows defects and mistakes found during the
test case reviews and their occurrence. Many defects are fixed
without any additional costs.

B. Can Timely Information Availability and Test Case Reviews
Improve Software Quality?

Information is the main exchange material in the project and
team interaction. The ongoing exchange of information allows
quickly finding necessary solutions and taking important
decisions. Lack of information or incorrect information can
cause misunderstanding among project team members.
Misunderstanding of information increases the possibility of
taking an incorrect decision or leads to errors in many project
documents. Therefore, the lack of communication and
information is one of the defect occurrence reasons in the
software development.

The availability of information can reduce confusion among
project team members and reduce the possibility of taking
incorrect decisions. Software reviews are based on
communication and availability of information. Timely
detection of errors and failures and their elimination during
software reviews increase software quality by reducing the
possibility of finding defects after software release.

During test case reviews, problems with information
availability were found. Often important information is not
timely passed to the tester, so many errors and defects in the test
cases occur in that regard. Testers sometimes use incorrect and
outdated requirements and solution description versions, which
in turn can result in some mistakes.

C. Can Software Reviews Reduce the Total Testing Time?
Partially, software reviews can reduce the testing time which

is required to verify if defects are fixed because many errors and
failures are already eliminated during the test case reviews. The
total testing time is influenced not only by the test cases
reviews, but also by the human factor, force majeure,
emergency situations, the delivery time of new
functionality etc.

TABLE III
NUMBER OF DEFECTS, AFTER SOFTWARE REVIEW PROCESS IMPLEMENTATION

Release Number of defects and its degree of complexity Total

1 week 2 week 3 week 4 week

XXX 5.5 4 (critical)
6 (major)

9 (major)
2 (minor)

1 (minor) 0 22

XXX 5.6.1 9 (critical)
11 (major)

10 (major) 4 (major)
2 (minor)

3 (minor) 39

XXX 5.6.2 5 (critical)
12 (major)

1 (critical)
11 (major)

5 (minor) 1 (minor) 35

XXX 5.7 10 (critical)
16 (major)

5 (critical)
13 (major)

1 (minor)
2 (major)

0 47

TABLE IV
MOST OFTEN DETECTED DEFECTS AND THEIR OCCURRENCE REASONS

Defect Occurrence reason

Incomplete test cases Insufficient knowledge of the developed functionality or software

Lack of negative test cases Insufficient knowledge of the software testing (methods, techniques, principles etc.)

Lack of data in the requirements

Changes to the requirements after test case development was finished

Lack of test data Lack of data in the requirements

Inappropriate and incorrect test data Insufficient knowledge of the developed functionality or software

Incorrect expected results Insufficient knowledge of the developed functionality or software

Grammatical mistakes No check of the existence of grammatical errors was made

Incomplete test execution results Data about the expected results and defects are not updated after each test execution

Information about defects is not updated Data about the expected results and defects are not updated after each test execution

Test cases are not updated if changes are made to requirements Lack of communication. Information about changes in requirements is not passed to
testers

Information Technology and Management Science
 ___ 2017/20

53

V. CONCLUSION
In this case study, the test case review process has been

organised and implemented in software testing. Implementation
of software reviews is one of the project success factors. During
the test cases reviews, many errors are detected and corrected
not only in the test cases, but also in the requirements and
software code, which in turn affect software quality and project
costs. As a result, the number of critical defects and a total
number of defects for separate system releases are reduced [2],
[5], [12].

The review process of project documents (requirements,
system designs, software code, test plans, management plans
etc.) helps improve and achieve maximum results. Defects
found during test case reviews helped localise problematic
areas in the software development lifecycle [3]–[5].

To obtain a maximal result from reviews, it is necessary to
take into account participants’ skills and knowledge, especially
qualifications, skills and knowledge when selecting reviewers.
The reviewers who are inexperienced, i.e., do not know
business logic and system functionality, cannot find errors and
can even make new mistakes. Similar conclusions are made in
[3], [9], [11].

In general, the results and the accuracy of analysis obtained
in the paper are limited to the defined case study. To interpret
the obtained knowledge as a general approach that can be used
in software testing, additional case studies on other projects are
necessary. Regarding this case study, in future the reviews are
planned to be implemented in the business requirement analysis
and development processes.

REFERENCES
[1] A. Aurum, H. Petersson, and C. Wohlin, “State-of-the-art: software

inspections after 25 years,” Software Testing, Verification and Reliability,
vol. 12, no. 3, pp. 133–154, 2002. https://doi.org/10.1002/stvr.243

[2] F. Elberzhager, J. Münch, and D. Assmann, “Analyzing the relationships
between inspections and testing to provide a software testing focus,”
Information and Software Technology, vol. 56, no. 7, pp. 793–806, Jul.
2014. https://doi.org/10.1016/j.infsof.2014.02.007

[3] A. Goswami, G. S. Walia, and U. Rathod, “Using Learning Styles to Staff
and Improve Software Inspection Team Performance,” 2016 IEEE
International Symposium on Software Reliability Engineering Workshops
(ISSREW), Oct. 2016. https://doi.org/10.1109/issrew.2016.38

[4] K. Holl and F. Elberzhager, “Mobile Application Quality Assurance:
Reading Scenarios as Inspection and Testing Support,” 2016 42th
Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), Aug. 2016. https://doi.org/10.1109/seaa.2016.11

[5] C. F. Kemerer and M. C. Paulk, “The Impact of Design and Code Reviews
on Software Quality: An Empirical Study Based on PSP Data,” IEEE
Transactions on Software Engineering, vol. 35, no. 4, pp. 534–550, Jul.
2009. https://doi.org/10.1109/tse.2009.27

[6] A. Spillner, T. Linz and H. Schaefer, Software Testing Foundations:
A Study Guide for the Certified Tester Exam, Rocky Nook, 2007.

[7] “What are the principles of testing?” [Online]. Available:
http://istqbexamcertification.com/what-are-the-principles-of-testing/

[8] Q. Shan, G. Rong, H. Zhang, G. Liu, and D. Shao, “An Empirical
Evaluation of Capture-Recapture Estimators in Software Inspection,”
2015 24th Australasian Software Engineering Conference, Sep. 2015.
https://doi.org/10.1109/aswec.2015.17

[9] H. Potter, M. Schots, L. Duboc, and V. Werneck, “InspectorX: A game
for software inspection training and learning,” 2014 IEEE 27th
Conference on Software Engineering Education and Training (CSEE&T),
Apr. 2014. https://doi.org/10.1109/cseet.2014.6816782

[10] F. Salger, G. Engels, and A. Hofmann, “Inspection effectiveness for
different quality attributes of software requirement specifications: An
industrial case study,” 2009 ICSE Workshop on Software Quality, May
2009. https://doi.org/10.1109/wosq.2009.5071552

[11] N. Hashemitaba and S. H. Ow, “Generative Inspection: An Intelligent
Model to Detect and Remove Software Defects,” 2012 Third
International Conference on Intelligent Systems Modelling and
Simulation, Feb. 2012. https://doi.org/10.1109/isms.2012.48

[12] D. L. Parnas and M. Lawford, “The role of inspection in software quality
assurance,” IEEE Transactions on Software Engineering, vol. 29, no. 8,
pp. 674–676, Aug. 2003. https://doi.org/10.1109/tse.2003.1223642

Oksana Petunova has earned her BSc. degree in Information Technology from
Riga Technical University, Latvia (2015). The current position is Information
System Test Specialist at Tele2 SSC. She holds ISTQB Certified Tester
certificate.
E-mail: milisenta@inbox.lv

Solvita Bērziša holds a Doctoral Degree and is an Assistant Professor at the
Institute of Information Technology of Riga Technical University (Latvia). She
obtained her Dr. sc. ing. (2012), BSc. (2005) and MSc. (2007) degrees in
Computer Science and Information Technology from Riga Technical
University. Her main research fields are IT project management,
implementation and application of project management information systems, as
well as project data analytics, big data and data science. She also works as a
Team Lead at Accenture Latvia. She holds a PMP and CBAP certificates and
was awarded the IPMA Outstanding Research Contribution of a Young
Researcher 2013. She is a Member of PMI and Latvian National Project
Management Association.
E-mail: Solvita.Berzisa@rtu.lv

https://doi.org/10.1002/stvr.243
https://doi.org/10.1016/j.infsof.2014.02.007
https://doi.org/10.1109/issrew.2016.38
https://doi.org/10.1109/seaa.2016.11
https://doi.org/10.1109/tse.2009.27
https://doi.org/10.1109/aswec.2015.17
https://doi.org/10.1109/cseet.2014.6816782
https://doi.org/10.1109/wosq.2009.5071552
https://doi.org/10.1109/isms.2012.48
https://doi.org/10.1109/tse.2003.1223642

