
Information Technology and Management Science

40

ISSN 2255-9094 (online)
ISSN 2255-9086 (print)
December 2017, vol. 20, pp. 40–47
doi: 10.1515/itms-2017-0007
https://www.degruyter.com/view/j/itms

©2017 Ivars Namatēvs.
This is an open access article licensed under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), in the manner agreed with De Gruyter Open.

Deep Convolutional Neural Networks: Structure,
Feature Extraction and Training

Ivars Namatēvs
Riga Technical University, Latvia

Abstract – Deep convolutional neural networks (CNNs) are
aimed at processing data that have a known network like topology.
They are widely used to recognise objects in images and diagnose
patterns in time series data as well as in sensor data classification.
The aim of the paper is to present theoretical and practical aspects
of deep CNNs in terms of convolution operation, typical layers and
basic methods to be used for training and learning. Some practical
applications are included for signal and image classification.
Finally, the present paper describes the proposed block structure
of CNN for classifying crucial features from 3D sensor data.

Keywords – Convolution layers, convolution operation, deep
convolutional neural networks, feature extraction.

I. INTRODUCTION

Deep learning has recently given new power that allows
building artificial intelligence (AI) systems that were not
possible a few years ago.

Today, AI is an explosion technology that solves the tasks
which require a huge amount of calculation power executed by
computers. On the other hand, there are problems which can be
solved by people, like recognising drawing in image,
understanding spoken words or considering the direction and
obstacles of traffic on roads, based on their intuition and
experience. This means that with massively-parallel processing
systems and introduction of complex algorithms these solutions
can be figured out much faster and with a higher accuracy. The
computing infrastructure is based on a hierarchy of perceptions.
Each computing layer is characterised in terms of its relation to
concepts where the essential layer consists of simple concepts.
If we draw a graph showing how these concepts are built on top
of each other, the graph is deep, with many layers. For this
reason, we call this approach deep learning covering several
aspects of machine learning [1].

There are two fundamental approaches in the field of AI. The
first approach is based on knowledge engineering systems,
logic programming and logical reasoning. The second approach
covers microscopic biological models [2]. Artificial neural
networks (ANNs) and genetic algorithms are the prime
examples of this later approach. The field of ANNs was initially
configured as an attempt to emulate the way that the brain
performs a particular task, by regarding the brain as a highly
complex, nonlinear, parallel information processing system
[3], [4].

The most notable features of ANNs are: an extensive
interconnection grid of simple processing units, adjustment of
the grid parameters or weights in order to carry out tasks or
adapt itself to its environment through the learning process. In

mathematical terms, an ANN can be seen as a direct graph
where each node implements a neuron model [3].

Deep convolutional neural networks (CNNs) are a
specialised kind of ANNs that use convolution in place of
general matrix multiplication in at least one of their layers [1].
In contrast to simple neural networks that have one or several
hidden layers, CNNs consist of many layers. Such a feature
allows them to compactly represent highly nonlinear and
varying functions [5]. CNNs involve many connections, and the
architecture is typically comprised of different types of layers,
including convolution, pooling and fully-connected layers, and
realise form of regularisation [6]. In order to learn complicated
features and functions that can represent high-level abstractions
(e.g., in vision, language, and other AI-level tasks), CNNs
would need deep architectures. Deep architectures, and CNNs,
consist of a large number of neurons and multiple levels of
latent calculations of non-linearity. According to Bengio [7],
each level of architecture of CNN represents features at a
different level of abstraction defined as a composition of lower-
level features.

CNNs have recently shown remarkable success in image
recognition [8], [9], sentence and text classification [10],
multivariate time series data analysis [11], medicine [12], time
series physiological signals [13], electric machine fault
diagnosis [14], ultrasonic signal classification [15] and
biological image classification [16]. Deep learning techniques
have recently been used by many companies, such as Adobe,
Apple, Baidu, Facebook, Google, IBM, Microsoft, NEC, Netflix,
and NVIDIA [17].

The rest of the article is organised as follows. In section II, a
short historical overview is given referring to the evolution of
convolutional networks. In section III, the definition of
convolution operation is provided. Section IV covers the basic
principles of CNNs, which are necessary to understand in order
to elaborate a deep neural network approach. In section V, the
main principles of CNN learning and training are given. In
section VI, comprehensible deep CNN system architecture
consisting of the proposed convolutional layers for signal data
classification is brought out. Conclusions and proposals for
future research are formulated in Section VII.

II. BRIEF HISTORY OF CNNS

CNNs are biologically inspired by the structure of mammals’
visual cortices and the operation of their vision system as
presented in David Hubel and Torsten Wiesel’s model [18].
Based on their seminal model, the computational deep learning
can be recognised as part of computational intelligence

Information Technology and Management Science
 ___ 2017/20

41

paradigm. The basic idea comes out from their model – using
computing infrastructure, algorithms and labelled data for
learning can simulate the neocortex’s large array of neurons in
an artificial “neural network”.

Their model helped design understanding of many aspects of
brain functions, especially, the primary visual cortex (PVC).
Goodfellow et al. [1], [19] outline three properties of PVC to
design a convolutional network: first, PVC has a 2D structure
and is organised as a spatial map. CNNs capture this property
by having features defined in terms of 2D maps. Second, PVC
contains many simple cells that are characterised by a linear
function of the image in a small, spatially localised receptive
field. The detector units of a convolutional network are
designed to copy these properties of simple cells. Third, PVC
also contains many complex cells and these cells respond to
features. Complex cells are immutable to a small change in the
position of their feature and remaining unchanged regardless of
changes of their conditions of measurement than simple cells.
This inspires the pooling of CNNs.

The first as we regard as contemporary convolutional
network has been proposed by Fukushima in 1980 and is called
Neocognitron [20]. It perhaps was the first ANN that deserved
the attribute ‘deep’ and the first to incorporate the
neurophysiological model of PVC. Neocognitron is very
similar to the architecture of modern, contest-winning, purely
supervised, feedforward, gradient-based deep network learning
with alternating convolutional and downsampling layers [21].

In 1986, Rumelhart et al. [22] proposed a backpropagation
network to train a neural network with one or two hidden layers.
In 1989, LeCun [23] demonstrated techniques, using a
hierarchy of shift invariant local feature detectors for image
recognition. In 1989, backpropagation was applied [24] to
Neocognitron-like, weight-sharing, convolutional neural layers
with adaptive connections. In 1991, Robinson and Fallside [25]
intended a recurrent neural network (RNN) for speech
recognition. In the same year, Bengio et al. [26] suggested for
speech recognition multilayer perceptron (MLP). However, this
wave of using deep neural networks which started in 1980 as
the connectionist approach ended around 1995.

The current deep learning renaissance began in 2006 when
Hinto et al. [27] demonstrated that a neural network could
outperform the Gaussian or radial basis function (RBF) kernel
on the MNIST benchmark. The year 2006 also saw early
graphic processing units (GPUs) based CNN implementation
up to 4 times faster than computing processing unit (CPU)
CNNs [28] and compared earlier GPU implementations of
standard feedforward neural networks (FNNs) with a reported
speed-up factor of 20 [29]. GPUs or graphics cards, digital
signal processing (DSP), field-programmable gate arrays
(FPGA) and other silicon architectures have become critical
components of computational resources for training and
evaluation when executing the idiosyncratic patterns of deep
CNNs.

Today, deep CNNs are used for many practical applications
due to seminal ideas of Yann LeCun of convolutional networks,
Geofrrey Hinton’s exploring deep learning methods, Jeff
Hawkins’ creating the memory prediction framework theory of

the brain and the described hierarchical temporal memory
(HTM). Maximilian Riesenhuber and Tomas Poggio worked on
the hierarchical model of object recognition (HMAX) which
was based on Poggio’s development of computational model of
brain function to build intelligent machines vision that could
mimic human performance. Finally, Sepp Hochreiter and
Jürgen Schmidhuber worked on recurrent neural networks
(RNN) and Long Short-Term Memory (LSTM) RNN.

It is worth mentioning some global conferences to be
contributed to CNN development. The most noticeable are:

 Annual Conference on Neuron Information Processing
Systems (NIPS);

 The world’s biggest and most important GPU developer
conference (GPU);

 International Conference on Machine Learning
(ICML);

 The conference on Computer Vision and Pattern
Recognition (CVPR);

 International Conference on Computer Vision (ICCV).

III. THE CONVOLUTION OPERATION

In its most general form, the concept of convolution is a
mathematical operation of two functions that produces a new
function. This new function reflects to which extent the original
functions match if their graphs are aligned with each other.

The convolution theorem states that under certain conditions
the Fourier transform of a convolution is a point-wise product
of Fourier transforms. In other words, convolution in one
domain (e.g., time domain) equals point-wise multiplication in
the other domain (e.g., frequency domain).

In one dimension, the convolution between two functions is
defined as follows:

݃ሺݔሻ ൌ ݂ሺݔሻ ⊙ ݄ሺݔሻ ൌ 	න ݂ሺݏሻ	݄ሺݔ െ ሻݏ

∞

െ∞
	dݏ,

 (1)

where f(x) and g(x) are two functions;
s is a dummy variable of integration (takes values 0 or 1).

In two dimensions, the convolution between two functions is

defined as follows:

݃ሺݔ, ሻݕ ൌ ݂ሺݔ, ሻݕ 	⊙ ݄ሺݔ, ሻݕ ൌ					

ൌ ∬ ݂ሺݏ, ݔ݄ሺ	ሻݐ െ ,ݏ ݕ െ ሻݐ
∞
െ∞ 	dݏ	dݐ. (2)

The convolution operation is typically denoted with an
asterisk * and might not to be confused with multiplication.

For example, in one-dimensional applications we have a
signal time domain, x(t) and a frequency domain, w(a), based
on the convolutional theorem, the convolution operation is [1]:

ሻݐሺݏ ൌ ሺݔ ∗ ሻ, (3)ݐሻሺݓ

where x, the first argument is referred to as the input;
 w, the second argument is referred to as the kernel;
 s(t) output is referred to as the feature map or kernel map.

In computer applications, the time series data will be
discretized and the time index t can then take only integer

Information Technology and Management Science
 ___ 2017/20

42

values. Thus, the discrete convolution can be defined as
follows:

ሻݐሺݏ ൌ ሺݔ ∗ ሻݐሻሺݓ ൌ 	∑ ݐሺݓሺܽሻݔ െ ܽሻ∞
െ∞ . (4)

In machine learning applications, the input is usually a
multidimensional array of data and the kernel is usually a
multidimensional array of parameters that are adapted by the
learning algorithm [1]. These multidimensional arrays are
referred as tensors.

If there is a two dimensional space, for example, image I as
an input, the two-dimensional kernel K has to be used. The
convolution for two dimensions is as follows:

ܵሺ݅, ݆ሻ ൌ ሺܫ ∗ ,ሻሺ݅ܭ ݆ሻ ൌ 	∑݉ ∑ ,ሺ݉ܫ ݊ሻܭሺ݅ െ݉, ݆ െ ݊ሻ݊ . (5)

If we assume that there are fewer variations in the range of
valid values of m compared to n based on assumption that
convolution is commutative, we can equivalently write (5) as
follows:

ܵሺ݅, ݆ሻ ൌ ሺܭ ∗ ,ሻሺ݅ܫ ݆ሻ ൌ 	∑݉ ∑ ሺ݅ܫ െ݉, ݆ െ ݊ሻܭሺ݉,݊ሻ݊ . (6)

 In case m increases, the index into the input increases, but
the index into the kernel decreases, it means we have flipped
the kernel relative to the input. If the kernel is not flipped we
use the related function called the cross-correlation:

ܵሺ݅, ݆ሻ ൌ ሺܭ ∗ ,ሻሺ݅ܫ ݆ሻ ൌ 	∑݉ ∑ ሺ݅ܫ ൅ ݉, ݆ ൅ ݊ሻܭሺ݉, ݊ሻ݊ .

(7)

In the context of machine learning, the algorithm will learn
the appropriate values of the kernel in the appropriate place [1].
In machine learning convolution is not used alone but
simultaneously with the combination of other functions. Based
on the principles of convolution CNNs operates.

IV. CONVOLUTIONAL NEURAL NETWORKS

From the above-mentioned considerations, we can clearly
recognise that the topology of CNN comparing with other
traditional neural networks is different. The latter uses a matrix
product AB that is produced by multiplying two matrices n x m,
where n is a matrix of parameters and m is a parameter
describing the interaction between each input unit and each
output unit [1].

The main benefit of using CNNs with respect to traditional
fully-connected neural networks is the reduced number of
parameters to be learned [30]. The CNN topology is based on
three main concepts, namely: local receptive fields, shared
weights and spatial or temporal sampling [31]. It means that
CNNs are typically comprised of different types of layers called
convolutional layers, whereas each convolutional layer is made
of small kernels that allow extracting high-level features in an
effective way. The last convolutional layer is fed to fully-
connected layers. As it has been stated before, if CNNs are the
reduced number of parameters to be learned they caused to have
much fewer connections and easier to train [8]. Consequently,

this particular kind of neural networks assumes that we wish to
learn filters in a data-driven fashion, as a means to extract
features describing the inputs [6].

The standard model of CNN has a structure consisting of the
input layer, alternating convolutional layers, pooling or
subsampling layers and non-linear layers. The latter consists of
a small number of fully-connected layers, but the final layer is
often a sofmax classifier [32]. Accordingly with a complex
layer terminology, one convolutional net or convolutional layer
is composed of convolutional stage (e.g., affine
transformation), detector stage (e.g., rectified linear), and
pooling stage [1]. This means that each convolutional layer has
more than one stage. As a result, each stage of the convolutional
layer can be set apart and every step of processing of it can be
ruled in its own rights. Typically, convolutional layers are
interspersed with sub-sampling layers to reduce computational
time and gradually build up further spatial and configural
invariance [7]. The basic layers of a CNN are listed below.

Input layer. The input is usually a multidimensional array of
data where data are fed to the network [6]. Input data can be,
i.e., image pixels or their transformation, patterns, time series
or video signals.

Convolutional layers or convolutional stage. It is the main
building block of CNN. The prime purpose of convolution is to
extract distinct features from the input. Krig [33] outlines that
these layers are comprised of a series of filters or learnable
kernels which aim at extracting local features from the input,
and each kernel is used to calculate a feature map or kernel map.

The first convolutional layer extracts low-level meaningful
features such as edges, corners, textures and lines. Next
convolutional layer extracts higher-level features, but the
highest-level features are extracted in the last convolution layer
[34]. Kernel size refers to the size of the filter, which convolves
around the feature map while the amount by which the filter
slides (sliding process) is the stride. It controls how the filter
convolves around the feature map. Therefore, the filter
convolves around the different layers of input feature map by
sliding one unit each time [1].

Another essential feature of CNNs is padding that gives
option to make input data wider with, e.g., elements Vi, j, k. For
example, if there is a need to control the size of the output and
the kernel width W independently, the zero padding of input is
used.

Non-linear layers or detector stage. The detector stage is
used to detect each linear activation through nonlinear
activation function. In other words, linear activation introduces
the non-linearity into neural networks and allows learning more
complex models [11].

There are several nonlinear activation functions. The
standard way to model a neuron’s output f as a function of its
input x is with f(x) = tanh(x), sigmoid(x) or Rectified Linear
Unit (ReLU) [32]. The last one is preferable because it makes
training several times faster than its equivalents. Some authors
adopt sigmoid(·) function at all activation stages due to its
simplicity [11]. ReLU applies the function y = max(x, 0). It
increases the nonlinear properties of the decision function and
of the overall network without affecting the receptive fields of

Information Technology and Management Science
 ___ 2017/20

43

the convolutional layer. According to [8], using ReLU it is
possible to speed up the training of CNNs by keeping up the
gradient more or less constant at all network layers.

The pooling or downsampling, or subsampling layers. It
reduces the resolution of the previous feature maps through
compressing features and computational complexity of the
network [35]. It adjusts the features robust to noise and disorder.
Another purpose of the pooling layer is to make it robust to
small variations for previously learned features. As a result,
pooling ensures that the network focuses on the most important
patterns.

In general, a pooling layer produces downsampled versions
of the input map and reduces the dimensionality of the feature
maps used by the following layers [6], [7].

Pooling splits the inputs into regions with the size of R × R
to produce one output from each region. If a given input with a
size of W × W is fed to the pooling layer, the output size P is
obtained by [36]:

ܲ ൌ 	 ቔ
ܹ

ܴ
ቕ.

(8)

Pooling can be max pooling, average of a rectangular
neighbourhood, and pooling by downsampling.

The max pooling action addresses the maximum output
within a rectangular neighbourhood. Max pooling outputs only
the maximum number in each kernel, thus reducing the feature
map size. Max pooling introduces invariance. For example, we
have input feature of size 44 × 44, which is divided into 22 ×
22 regions of size 2 × 2, i.e., we apply max pooling of size 2,
i.e., output index (2, 2). For maximum pooling, the maximum
value of the four values is selected. For average pooling, the
average of the four values is selected. The result of averaging is
a fraction that has been rounded to the nearest integer.

Each output map may combine convolution with multiple
input maps. In general, we can write [37]:

݆ܠ
ܮ ൌ ݂ሺ∑ ݆ܠ

െ1ܮ
݆ܯ	∋	݅

∗ ݆݅ܓ	
ܮ ൅ ܾ݆

 ,ሻܮ (9)

where L – the convolutional layer;
 L−1 – the downsampling layer;
 xL−1 – input features of L −1 convolutional layer;
 kij – kernel maps of L convolutional layer;
 bL – additive bias of L convolutional layer;

Mj – represents a selection of input maps;
i-th – input;
j-th –output.

In general, the feature extraction using CNNs consists of
multiple similar steps and each step is made of three cascading
layers: convolution layer, activation layer and pooling function.

Figure 1 exhibits the process of 3D convolution used in
CNNs.

The input of size H × H × W is convoluted with p number of
kernels, where the kernel size is k × k × W. One kernel
convolving with an input feature map produces one output
feature map, and p kernel produces independently p feature
maps. Each kernel is moved starting from top-left corner of the

input feature map to top-right corner element at a time. Then
the kernel shifts one element downward, takes left-side position
and moves towards right-side position. This process is finished
when the kernel reaches the bottom-right position.

For example, for the case when we have input H × H = 44
and k × k = 5, there are 30 unique positions from the left to the
right, and 30 unique positions from the top to the bottom that
the kernel can take. Each feature in the convolution output will
contain 30 × 30, i.e., (H − k + 1) × (H − k + 1) = (44 − 5 + 1) ×
(44 − 5 + 1) elements. To create one element of one output
feature k × k × W operations are required.

From the above-mentioned considerations, it can be
concluded that a new feature map is typically generated by
sliding a filter over the input and computing the dot product
(which is similar to the convolution operation), followed by a
non-linear activation function to introduce non-linearity into the
model [32].

For instance, one convolutional layer consists of the input
feature map, the kernel and the convolution output. All units
share the same weights (filters) in each feature map.

Fig. 1. The convolution process.

The advantage of sharing weights is the reduced number of
parameters and the ability to detect the same feature regardless
of its location in the inputs [36]. Max pooling or average
pooling is used to convolution output to be an input for the next
convolution step.

Fully connected layers. This is the last stage of topology of
CNNs consisting of a generic multi-layer network. The last few

Pooling
a)) max pooli
b)) average pooli

Input feature map
size H × H × W

Kernel

H

FINISH

D

H

W

k

k

W
H – input heigh and width
W – input depth, kernel width
k – kernel high and width

s – kernel stride
n – number of kernels
D – #output feature maps

START

0.0
ReLU

Convolution output

a b

filter of size
k × k × W

Information Technology and Management Science
 ___ 2017/20

44

layers will be fully connected 1D layers to all activations in the
previous layer [7]. From these layers it is possible to extract
features to train another classifier. To specify how the network
training penalizes the deviation between the predicted and the
true labels, various loss functions can be used, e.g., softmax,
sigmoid cross-entropy or Euclidean loss [6].

V. TRAINING AND LEARNING CNNS

Training deep architectures is a challenging task, and
traditional methods that have proved effective when applied to
uncomplicated neural network architectures are not as effective
when applied to deep architecture. The training function means
to use an overall algorithm that is used to train a neural network
to recognise a certain input and map it to a certain output. The
most expensive part of CNNs training is learning the features
and accessibility to labelled data.

A learning function in deep neural networks requires
computing the gradients of complicated functions and decides
how those would be manipulated [1]. CNNs are usually trained
by backpropagation (BP) and Stochastic Gradient Descent
(SGD) to find weights and biases that minimise certain loss
function in order to map the arbitrary inputs to the targeted
outputs as closely as possible [3]. BP algorithm refers only to
the method for computing the gradient, while SGD algorithm is
used to perform learning using this gradient [1]. However, BP
technique can make training gradient 10 million times faster
relative to naive implementation techniques [22].

There are two central challenges in machine learning:
underfitting and overfitting [38]. Overfitting occurs when the
gap between the training error and test error is too large.
Underfitting occurs when the model is not able to obtain a
sufficiently low error on the training set. In CNNs, there are two
primary ways to combat overfitting: dropout and data
augmentation. Dropout is a cheap, powerful regularization
strategy that can be seen as a process of constructing new inputs
by multiplication by noise [8]. It is a method of adaptive
reparametrization, motivated by the difficulty of training very
deep neural network models. Data augmentation is to
artificially enlarge the dataset using label-preserving
transformations [12].

Another challenge in machine learning is: regularisation and
optimisation. The optimisation perspective suggests that the
weights should be large enough to propagate information
successfully, but some regularisation concerns encourage
making them smaller. Unless your training set contains tens of
millions of examples or more, you should include some mild
form of regularisation from the start [1].

According to [7], the parameter update includes: feedforward
pass, backpropagation pass and the gradient applied. The aim
of feedforward pass is to determine the predicted output CNN
on input vector. Specifically, it computes feature maps from
layer to layer and stage from stage until obtaining the output.
The backpropagation pass means that backpropagation starts at
the last layer of a neural network, recursively applies the chain
rule to compute the gradients and go backwards to the inputs of
a neural network.

Finally, to obtain optimal performance of CNNs we can tune
three options: regularisation, momentum and leaning rate.
Regularisation is the function to prevent overfitting of the data.
Regularisation can be improved by adjusting a weight decay
coefficient or by adding a regularisation strategy such as drop
out or data augmentation [12]. Momentum is the function to
control how fast or slow the network learn during training.
Learning rate is the function to help in the convergence of the
data.

VI. ARCHITECTURE

In this section, some architecture and methodologies are
considered for image and signal detection.

The architecture of CNN contains many (several) layers.
Krizhevsky et al. [8] offer CNN that contains eight learned
layers with weights. The first five are convolutional and the
remaining three are fully-connected layers [39]. For example,
the first convolutional layer consists of 224 × 224 × 3 pixels
input map and is convolved with 96 kernels of the size
11 × 11 × 3, where the stride is 4 pixels. The second
convolutional layer takes as input (response normalized and
pooled) the output of the first convolutional layer and filters it
with 256 kernels of size 5 × 5 × 48. The fully-connected layer
has 4096 neurons. The training of the model has been done
using stochastic gradient descent with a batch size of
128 examples, momentum of 0.9, and the weight decay of
0.0005. An equal learning rate was used for all layers, which
was adjusted manually through training. The learning rate was
initialised at 0.01 and reduced three times prior to termination.
NVIDIA GTX 580 3GB GPUs were used for training the
network.

Archarya et al. [12] report using CNN for automated
detection of myocardial infarction using the electrocardiogram
(ECG) in the diagnosis of myocardial infarction. In pre-
processing process, all ECG signals are segmented using the R-
peak detection using Pan–Tompkins algorithm. To eliminate
the outweigh before feeding the ECG segments and to address
the problem of amplitude scaling into deep CNN for training
and testing each segment should be normalized with z score
[40]. The architecture of the proposed CNN consists of
11 layers where the last three are fully-connected layers. For
example [41], the input layer (layer 0) is convolved with a
kernel size 102 to form the first layer (layer 1). After which, a
max pooling of size 2 is applied to every feature map. After
performing the max pooling operation, the number of neurons
reduces from 550 × 3 to 275 × 3. Finally, layer 10 is connected
to the last layer with 2 output neurons. The training has been
executed by using standard backpropagation with a batch size
of 10 [40]. The regularisation, momentum and learning rate
parameters are set to 0.2, 3 × 10−4, and 0.7 respectively.
A proportion of all ECG data has been 70 % for training, 20 %
for validation and 10 % for testing of CNN. The final layer of
the fully-connected network is a softmax layer with an output
of X dimensional vector where X is the number of classes that
we desire to have.

Information Technology and Management Science

 ___ 2017/20

45

Ferreira and Giraldi [6] apply the application of CNN to

granite image classification using learning discriminate

features, instead of relying on feature engineering. Each image

is converted to R, G and B colour channels and also converted

to grey-level. These are used as input to the network. After the

patching the images have been divided into tiles of interest, i.e.,

28 × 28 images and 32 × 32 colour images. In the next step,

different CNNs were used to recognise patterns of image.

The number of networks used was 4 and their architecture

was as follows: MNIST1 network consisted of one input layer,

four convolutional layers, two pooling layers, one ReLU layer

and one fully-connected layer. MNIST2 network consisted of

one input layer, five convolutional layers, three pooling layers,

one ReLU layer and a final fully-connected layer. MNIST3

network consists of one input layer, six convolutional layers,

four pooling layers, one ReLU layer and a final fully-connected

layer. CIFAR network consists of one input layer, five

convolutional layers, three pooling layers, four ReLU layers

and one fully-connected layer. These networks generated

feature vectors with 500, 256, 256 and 64 dimensions,

respectively. Finally, the image patch classification was done

by choosing the 1st Nearest Neighbour (1NN) classifier, the

tiny image blocks from input images.

The MNIST based networks were trained using a learning

rate fixed on 0.001, SGD with momentum to 0.9 and weight

decay to 0.0005 without dropout. The CIFAR was trained using

SDG with momentum equal to 0.9 and the weight decay to

0.0001. Experiments were performed on a cluster node with

11 processors and 131 GB RAM and graphics card NVIDIA

GeForce 210.

Zheng et al. [11] modify CNN and apply it to multivariate

time series classification task (the input of multivariate time

series classification is multiple 1D subsequences, but not

2D image pixels) separating multivariate time series into

univariate ones. The feature learning is individually carried out

on each univariate time series. The architecture consist of three

input channels, two filter layers, two pooling layers, and two

fully-connected layers. To update the parameters, the stochastic

gradient descend method has been used instead. The reason for

that was that SGD could converge faster for large scale data

instead of full-batch version.

Wang et al. [13] focused on evaluating the efficacy of using

CNN to construct a model of physiological signal anomaly

detection and tested algorithm on eight physiological signals.

The DEAP dataset, a dataset for emotion analysis using EEG,

physiological, and video signals was used [42]. CNN

transforms the raw unlabelled time series signals into a reduced

set of features. Before the signals enter the model, the time

series physiological signals were normalized. The deep CNN

architecture contains two convolutional layers, two pooling

layers and a multivariate Gaussian anomaly detection model.

VII. IMPLEMENTATION OF CNN FOR 3D SENSOR DATA

At a high level, the block diagram of the proposed algorithm

consists of data from sensors, pre-processing (normalization,

filtering, linearization), CNN (feature extraction), classification

(pattern recognition), results (classification). The algorithm

performs the following steps to learn features:

1) Classifying sensor signals as data array into number of

segments as labelled training data.

2) Filtering and normalizing segments of the raw sensor

data (pre-processing step).

3) Extracting features using CNN.

4) Detecting patterns and creating classification.

Data are often corrupted by interfering noise. In order to

decrease that noise we use reduction, label, scaling and

normalization of the data in the pre-processing stage. In our

case, we normalise the sensor data by subtracting the mean

sensor data value and dividing it by the standard deviation.

For the feature extraction we use CNN. We take the sensor

data as a second-order tensor matrix. The sensor data has c

channels. Convolution operation is represented by C(*)

throughout the network.

The convolution layer_1 (CL_1). The labelled input sensor

data are convoluted with Kn kernel maps with dimension of,

k1 × k1 × W1, respectively, one kernel map at a time, with kernel

stride s1 and zero padding. A bias b is added to each convolution

operation between sensor data and a kernel map. The scored

result then goes through the non-linear activation function

ReLU1 to generate CL_1. The dimensions of the resulting CL_1

are [(W/s1) × (H/s1) × K1]. The number of kernel maps

represents the depth, dn of the convolution operation or number

of extracted features that the network will extract after the

convolution.

The convolution layer_2 (CL_2). The operation is exactly

similar to the previous measure, if the input labelled sensor data

are replaced by the CL_1 instead. The CL_1 is convoluted with

kernel maps, k2, with the kernel stride s2 and the same zero

padding as it has been for the first convolutional layer. A bias

is added to each convolution operation. The result goes through

the non-linear activation function ReLU2 to generate the CL_2.

The dimensions of the resulting CL_2 are [(W/(s1 × s2)) × (H ×

(s1 × s2)) × K2]. We must take into consideration that the total

depth of convoluted layer is K2 at this point, which is the

number of extracted features that have from the original sensor

data so far. Generally, convolution process goes through five

convolutional layers because typically CNNs to be deep use 5

to 25 distinct layers of pattern recognition.

Finally, the CL_5 is fully connected to a hidden layer of r

number of weight arrays or neurons. The dimension of each

weight array is equal to [W/(s1 × s2 × s3 × s4 × s5) × H/(s1 × s2 ×

s3 × s4 × s5) × K5].

A bias is added to each product of CL_5 with a weight array,

which then goes through the activation function ReLU6.

A softmax layer with m classifiers is used to yield the resulting

final output.

VIII. DISCUSSION

The aim of this study has been to show the basic theoretical

concepts and applicability of CNNs for construction of the deep

neural networks.

Information Technology and Management Science

 ___ 2017/20

46

The study of the theoretical assumptions and some practical

application of CNNs has shown that the main benefit of using

CNNs with respect to standard fully-connected neural networks

is the reduced number of parameters to be learned. Decreasing

the number of the parameters leads to less noise during the

training process. The reason is that the number of parameters

depends on the kernel width. The wider the kernel width, the

lager the number of parameters in the model.

On the other hand, CNNs normally need thousands or even

millions of labelled data. The model parameters become larger

if the weight decay parameters are decreased. Dropout rate

should be decreased to avoid an increase in the number of

iterations to converge.

Learning rate should be tuned optimally. Very high or very

low rate will lead to optimisation problems and the decrease in

effective capacity of the network. Increasing the number of

hidden units increases the representation capacity of the model.

Using zero padding before convolution keeps the representation

size large.

Finally, it can be considered that the proposed algorithm

diagram should be adapted using real sensor data as

performance modelling and identification of classes.

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (Adaptive

Competition and Machine Learning). The MIT Press, p. 779, 2016.
[2] T. Munakata, Fundamentals of the New Artificial Intelligence: Neural,

Evolutionary, Fuzzy and More, 2nd Edition. Springer-Verlag, London.

p. 225, 2008.
[3] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: From

Architectures to Learning,” Evolutionary Intelligence, vol. 1, no. 1,

pp. 47–62, Jan. 2008. https://doi.org/10.1007/s12065-007-0002-4

[4] A. Prieto, M. Atencia, and F. Sandoval, “Advances in Artificial Neural

Networks and Machine Learning,” Neurocomputing, vol. 121, pp. 1–4,

Dec. 2013. https://doi.org/10.1016/j.neucom.2013.01.008
[5] M. Dalto, “Deep Neural Networks for Time Series Prediction with

Application in Ultra-Short-Term Wind Forecasting,” IEEE, pp. 1657–

1663, 2015.
[6] A. Ferreira and G. Giraldi, “Convolutional Neural Network Approaches

to Granite Tiles Classification,” Expert Systems with Applications,

vol. 84, pp. 1–11, Oct. 2017. https://doi.org/10.1016/j.eswa.2017.04.053
[7] Y. Bengio, “Learning Deep Architectures for AI,” Foundations and

Trends® in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

https://doi.org/10.1561/2200000006
[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification

with Deep Convolutional Neural Networks,” In proceedings of Neural

Networks (NIPS), Nevada, USA, pp. 1106–1114, 2012.
[9] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for

Large-scale Image Recognition,” Published as a conference paper at

ICLR, Cornel University Library, 2015.
[10] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, “Very Deep

Convolutional Networks for Text Classification,” Proceedings of the 15th

Conference of the European Chapter of the Association for
Computational Linguistics, vol. 1, Long Papers, 2017.

https://doi.org/10.18653/v1/e17-1104

[11] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, “Time Series
Classification Using Multi-Channels Deep Convolutional Neural

Networks,” Lecture Notes in Computer Science, pp. 298–310, 2014.

https://doi.org/10.1007/978-3-319-08010-9_33
[12] U. R. Acharya, H. Fujita, S. L. Oh, Y. Hagiwara, J. H. Tan, and M. Adam,

“Application of Deep Convolutional Neural Network for Automated

Detection of Myocardial Infarction Using ECG Signals,” Information
Sciences, vol. 415–416, pp. 190–198, Nov. 2017.

https://doi.org/10.1016/j.ins.2017.06.027

[13] K. Wang, Y. Zhao, Q. Xiong, M. Fan, G. Sun, L. Ma, and T. Liu,

“Research on Healthy Anomaly Detection Model Based on Deep
Learning from Multiple Time-Series Physiological Signals,” Scientific

Programming, vol. 2016, pp. 1–9, 2016.

http://dx.doi.org/10.1155/2016/5642856
[14] R. Liu, G. Meng, B. Yang, C. Sun, and X. Chen, “Dislocated Time Series

Convolutional Neural Architecture: An Intelligent Fault Diagnosis

Approach for Electric Machine,” IEEE Transactions on Industrial
Informatics, vol. 13, no. 3, pp. 1310–1320, Jun. 2017.

https://doi.org/10.1109/tii.2016.2645238

[15] M. Meng, Y. J. Chua, E. Wouterson, and C. P. K. Ong, “Ultrasonic Signal
Classification and Imaging System for Composite Materials via Deep

Convolutional Neural Networks,” Neurocomputing, vol. 257, pp. 128–

135, Sep. 2017. https://doi.org/10.1016/j.neucom.2016.11.066
[16] C. Affonso, A. L. D. Rossi, F. H. A. Vieira, and A. C. P. de L. F. de

Carvalho, “Deep Learning for Biological Image Classification,” Expert

Systems with Applications, vol. 85, pp. 114–122, Nov. 2017.
https://doi.org/10.1016/j.eswa.2017.05.039

[17] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.

Guadarrana, and T. Darell, “Caffe: Convolutional Architecture for Fast
Feature Embedding”, Cornel University Library, Jun. 2014.

[18] D. H. Hubel and T. N. Wiesel, “Receptive Fields and Functional

Architecture of Monkey Striate Cortex,” The Journal of Physiology, vol.
195, no. 1, pp. 215–243, Mar. 1968.

https://doi.org/10.1113/jphysiol.1968.sp008455
[19] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y.

Bengio, “Maxout networks,” S. Dasgupta and D. McAllester, eds.,

ICML’13, pp. 1319–1327, 2013.
[20] K. Fukushima, “Neocognitron. “A Self-Organizing Neural Network

Model for a Mechanism of Pattern Recognition Unaffected by Shift in

Position”, Biological Cybernetics, vol. 36, no. 4, pp. 193–202, 1980.
[21] J. Schmidhuber, “Deep Learning in Neural Networks: An Overview,”

Neural Networks, vol. 61, pp. 85–117, Jan. 2015.

https://doi.org/10.1016/j.neunet.2014.09.003
[22] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning

Representations by Back-Propagating Errors,” Nature, vol. 323, no. 6088,

pp. 533–536, Oct. 1986. https://doi.org/10.1038/323533a0
[23] Y. LeCun, “Generalization and Network Design Strategies”, Technical

Report, University of Toronto, 1989.

[24] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.

Hubbard, and L. D. Jackel, “Backpropagation Applied to Handwritten Zip

Code Recognition,” Neural Computation, vol. 1, no. 4, pp. 541–551, Dec.

1989. https://doi.org/10.1162/neco.1989.1.4.541
[25] T. Robinson and F. Fallside, “A Recurrent Error Propagation Network

Speech Recognition System,” Computer Speech & Language, vol. 5,

no. 3, pp. 259–274, Jul. 1991.
https://doi.org/10.1016/0885-2308(91)90010-n

[26] Y. Bengio, R. De Mori, G. Flammia, and R. Kompe, “Phonetically

Motivated Acoustic Parameters for Continuous Speech Recognition
Using Artificial Neural Networks,” Speech Communication, vol. 11,

no. 2–3, pp. 261–271, Jun. 1992.

https://doi.org/10.1016/0167-6393(92)90020-8
[27] G. E. Hinton, “To Recognize Shapes, First Learn to Generate Images,”

Technical Report UTML TR 2006-003, University of Toronto, 2006.

[28] K. Chellapilla, S. Puri, and P. Simard, “High Performance Convolutional
Neural Networks for Document Processing,” Tenth International

Workshop on Frontiers in Handwriting Recognition, La Baule (France),

Université de Rennes 1, Suvisoft, 2006.
[29] K.-S. Oh and K. Jung, “GPU Implementation of Neural Networks,”

Pattern Recognition, vol. 37, no. 6, pp. 1311–1314, Jun. 2004.

https://doi.org/10.1016/j.patcog.2004.01.013
[30] S.-H. Zhong, J. Wu, Y. Zhu, P. Liu, J. Jiang, and Y. Liu, “Visual

Orientation Inhomogeneity Based Convolutional Neural Networks,” 2016

IEEE 28th International Conference on Tools with Artificial Intelligence
(ICTAI), Nov. 2016. https://doi.org/10.1109/ictai.2016.0079

[31] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based

Learning Applied to Document Recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998. https://doi.org/10.1109/5.726791

[32] S. Albelwi and A. Mahmood, “A Framework for Designing the

Architectures of Deep Convolutional Neural Networks,” Entropy, vol. 19,
no. 6, p. 242, May 2017. https://doi.org/10.3390/e19060242

[33] S. Krig, Computer Vision Metrics. Survey, Taxonomy and Analysis of

Computer Vision, Visual Neuroscience, and Deep Learning. Springer,
p. 637, 2016. https://doi.org/10.1007/978-3-319-33762-3

https://doi.org/10.1007/s12065-007-0002-4
https://doi.org/10.1016/j.neucom.2013.01.008
https://doi.org/10.1016/j.eswa.2017.04.053
https://doi.org/10.1561/2200000006
https://doi.org/10.18653/v1/e17-1104
https://doi.org/10.1007/978-3-319-08010-9_33
https://doi.org/10.1016/j.ins.2017.06.027
https://doi.org/10.1109/tii.2016.2645238
https://doi.org/10.1016/j.neucom.2016.11.066
https://doi.org/10.1016/j.eswa.2017.05.039
https://doi.org/10.1113/jphysiol.1968.sp008455
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1038/323533a0
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1016/0885-2308(91)90010-n
https://doi.org/10.1016/0167-6393(92)90020-8
https://doi.org/10.1016/j.patcog.2004.01.013
https://doi.org/10.1109/ictai.2016.0079
https://doi.org/10.1109/5.726791
https://doi.org/10.3390/e19060242
https://doi.org/10.1007/978-3-319-33762-3

Information Technology and Management Science
 ___ 2017/20

47

[34] J. S. Ren, W. Wang, J. Wang, and S. Liao, “An Unsupervised Feature
Learning Approach to Improve Automatic Incident Detection,” 2012 15th
International IEEE Conference on Intelligent Transportation Systems,
Sep. 2012. https://doi.org/10.1109/itsc.2012.6338621

[35] C. Affonso, A. D. Rossi, F. H. A. Vieira, and A. C. P. de L. F. de
Carvalho, “Deep Learning for Biological Image Classification”, Expert
Systems with Applications, vol. 85, pp. 114–122, 2017.

[36] T. Chen, R. Y. He, and X. Wang, “A Gloss Composition and Context
Clustering Based Distributed Word Sense Representation Model,”
Entropy, vol. 17, no. 9, pp. 6007–6024, Aug. 2015.
https://doi.org/10.3390/e17096007

[37] J. Bouvrie, Notes on Convolutional Neural Networks, Nov. 2006 [Online].
Available: http://cogprints.org/5869/1/cnn_tutorial.pdf

[38] I. Song, H.-J. Kim, and P. B. Jeon, “Deep Learning for Real-Time Robust
Facial Expression Recognition on a Smartphone,” 2014 IEEE
International Conference on Consumer Electronics (ICCE), Jan. 2014.
https://doi.org/10.1109/icce.2014.6776135

[39] H. Tabia and H. Laga, “Learning Shape Retrieval from Different
Modalities,” Neurocomputing, vol. 253, pp. 24–33, Aug. 2017.
https://doi.org/10.1016/j.neucom.2017.01.101

[40] U. R. Acharya, H. Fujita, O. S. Lih, Y. Hagiwara, J. H. Tan, and M. Adam,
“Automated Detection of Arrhythmias Using Different Intervals of
Tachycardia ECG Segments with Convolutional Neural Network,”
Information Sciences, vol. 405, pp. 81–90, Sep. 2017.
https://doi.org/10.1016/j.ins.2017.04.012

[41] U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, and H. Adeli, “Deep
Convolutional Neural Network for the Automated Detection and
Diagnosis of Seizure Using EEG Signals,” Computers in Biology and
Medicine, Sep. 2017. https://doi.org/10.1016/j.compbiomed.2017.09.017

[42] S. Guzel Aydin, T. Kaya, and H. Guler, “Wavelet-Based Study of
Valence–Arousal Model of Emotions on EEG Signals with LabVIEW,”
Brain Informatics, vol. 3, no. 2, pp. 109–117, Jan. 2016.
https://doi.org/10.1007/s40708-016-0031-9

Ivars Namatēvs holds Mg. sc. ing. from Riga Technical University and MBA
degree from Riga Business School. His research interests include deep artificial
intelligence, especially deep convolutional networks and data mining methods
and their application, as well as genetic algorithms. The most important
publications: I. Namatēvs. “Concept Analysis of Complex Adaptive Systems,”
International Scientific Forum: Proceedings of XVI International Scientific
Conference: Towards Smart, Sustainable and Inclusive Europe: Challenges
for Future Development. Riga, Latvia, 28–30 May 2015. Namatēvs, I.,
Aleksejeva, L., Poļaka, I. “Neural Network Modelling for Sports Performance
Classification as a Complex Socio-Technical System,” Information Technology
and Management Science, vol. 19. pp. 45–52. 2016. Available from
doi: 10.1515/itms-2016-0010. Namatēvs, I., “Exploring Model-Driven Domain
Analysis for Software Engineering,” Proceedings of XVI International
Scientific Conference. Turība University, Riga, Latvia, 18 May 2017.
Namatēvs, I., Aleksejeva, L. “Decision Algorithm for Heuristic Donor-
Recipient Matching,” Mendel Soft Computing Journal, vol. 23, No. 1,
pp. 33–40, June 2017. ISSN:1803-3814.
E-mail: ivars@turiba.lv

