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Abstract – Deep convolutional neural networks (CNNs) are 
aimed at processing data that have a known network like topology. 
They are widely used to recognise objects in images and diagnose 
patterns in time series data as well as in sensor data classification. 
The aim of the paper is to present theoretical and practical aspects 
of deep CNNs in terms of convolution operation, typical layers and 
basic methods to be used for training and learning. Some practical 
applications are included for signal and image classification. 
Finally, the present paper describes the proposed block structure 
of CNN for classifying crucial features from 3D sensor data. 

Keywords – Convolution layers, convolution operation, deep 
convolutional neural networks, feature extraction.  

I. INTRODUCTION

Deep learning has recently given new power that allows 
building artificial intelligence (AI) systems that were not 
possible a few years ago.  

Today, AI is an explosion technology that solves the tasks 
which require a huge amount of calculation power executed by 
computers. On the other hand, there are problems which can be 
solved by people, like recognising drawing in image, 
understanding spoken words or considering the direction and 
obstacles of traffic on roads, based on their intuition and 
experience. This means that with massively-parallel processing 
systems and introduction of complex algorithms these solutions 
can be figured out much faster and with a higher accuracy. The 
computing infrastructure is based on a hierarchy of perceptions. 
Each computing layer is characterised in terms of its relation to 
concepts where the essential layer consists of simple concepts. 
If we draw a graph showing how these concepts are built on top 
of each other, the graph is deep, with many layers. For this 
reason, we call this approach deep learning covering several 
aspects of machine learning [1]. 

There are two fundamental approaches in the field of AI. The 
first approach is based on knowledge engineering systems, 
logic programming and logical reasoning. The second approach 
covers microscopic biological models [2]. Artificial neural 
networks (ANNs) and genetic algorithms are the prime 
examples of this later approach. The field of ANNs was initially 
configured as an attempt to emulate the way that the brain 
performs a particular task, by regarding the brain as a highly 
complex, nonlinear, parallel information processing system 
[3], [4].  

The most notable features of ANNs are: an extensive 
interconnection grid of simple processing units, adjustment of 
the grid parameters or weights in order to carry out tasks or 
adapt itself to its environment through the learning process. In 

mathematical terms, an ANN can be seen as a direct graph 
where each node implements a neuron model [3].  

Deep convolutional neural networks (CNNs) are a 
specialised kind of ANNs that use convolution in place of 
general matrix multiplication in at least one of their layers [1]. 
In contrast to simple neural networks that have one or several 
hidden layers, CNNs consist of many layers. Such a feature 
allows them to compactly represent highly nonlinear and 
varying functions [5]. CNNs involve many connections, and the 
architecture is typically comprised of different types of layers, 
including convolution, pooling and fully-connected layers, and 
realise form of regularisation [6]. In order to learn complicated 
features and functions that can represent high-level abstractions 
(e.g., in vision, language, and other AI-level tasks), CNNs 
would need deep architectures. Deep architectures, and CNNs, 
consist of a large number of neurons and multiple levels of 
latent calculations of non-linearity. According to Bengio [7], 
each level of architecture of CNN represents features at a 
different level of abstraction defined as a composition of lower-
level features.  

CNNs have recently shown remarkable success in image 
recognition [8], [9], sentence and text classification [10], 
multivariate time series data analysis [11], medicine [12], time 
series physiological signals [13], electric machine fault 
diagnosis [14], ultrasonic signal classification [15] and 
biological image classification [16]. Deep learning techniques 
have recently been used by many companies, such as Adobe, 
Apple, Baidu, Facebook, Google, IBM, Microsoft, NEC, Netflix, 
and NVIDIA [17]. 

The rest of the article is organised as follows. In section II, a 
short historical overview is given referring to the evolution of 
convolutional networks. In section III, the definition of 
convolution operation is provided. Section IV covers the basic 
principles of CNNs, which are necessary to understand in order 
to elaborate a deep neural network approach. In section V, the 
main principles of CNN learning and training are given. In 
section VI, comprehensible deep CNN system architecture 
consisting of the proposed convolutional layers for signal data 
classification is brought out. Conclusions and proposals for 
future research are formulated in Section VII. 

II. BRIEF HISTORY OF CNNS

CNNs are biologically inspired by the structure of mammals’ 
visual cortices and the operation of their vision system as 
presented in David Hubel and Torsten Wiesel’s model [18]. 
Based on their seminal model, the computational deep learning 
can be recognised as part of computational intelligence 
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paradigm. The basic idea comes out from their model – using 
computing infrastructure, algorithms and labelled data for 
learning can simulate the neocortex’s large array of neurons in 
an artificial “neural network”. 

Their model helped design understanding of many aspects of 
brain functions, especially, the primary visual cortex (PVC). 
Goodfellow et al. [1], [19] outline three properties of PVC to 
design a convolutional network: first, PVC has a 2D structure 
and is organised as a spatial map. CNNs capture this property 
by having features defined in terms of 2D maps. Second, PVC 
contains many simple cells that are characterised by a linear 
function of the image in a small, spatially localised receptive 
field. The detector units of a convolutional network are 
designed to copy these properties of simple cells. Third, PVC 
also contains many complex cells and these cells respond to 
features. Complex cells are immutable to a small change in the 
position of their feature and remaining unchanged regardless of 
changes of their conditions of measurement than simple cells. 
This inspires the pooling of CNNs.  

The first as we regard as contemporary convolutional 
network has been proposed by Fukushima in 1980 and is called 
Neocognitron [20]. It perhaps was the first ANN that deserved 
the attribute ‘deep’ and the first to incorporate the 
neurophysiological model of PVC. Neocognitron is very 
similar to the architecture of modern, contest-winning, purely 
supervised, feedforward, gradient-based deep network learning 
with alternating convolutional and downsampling layers [21]. 

In 1986, Rumelhart et al. [22] proposed a backpropagation 
network to train a neural network with one or two hidden layers. 
In 1989, LeCun [23] demonstrated techniques, using a 
hierarchy of shift invariant local feature detectors for image 
recognition. In 1989, backpropagation was applied [24] to 
Neocognitron-like, weight-sharing, convolutional neural layers 
with adaptive connections. In 1991, Robinson and Fallside [25] 
intended a recurrent neural network (RNN) for speech 
recognition. In the same year, Bengio et al. [26] suggested for 
speech recognition multilayer perceptron (MLP). However, this 
wave of using deep neural networks which started in 1980 as 
the connectionist approach ended around 1995.  

The current deep learning renaissance began in 2006 when 
Hinto et al. [27] demonstrated that a neural network could 
outperform the Gaussian or radial basis function (RBF) kernel 
on the MNIST benchmark. The year 2006 also saw early  
graphic processing units (GPUs) based CNN implementation 
up to 4 times faster than computing processing unit (CPU) 
CNNs [28] and compared earlier GPU implementations of 
standard feedforward neural networks (FNNs) with a reported 
speed-up factor of 20 [29]. GPUs or graphics cards, digital 
signal processing (DSP), field-programmable gate arrays 
(FPGA) and other silicon architectures have become critical 
components of computational resources for training and 
evaluation when executing the idiosyncratic patterns of deep 
CNNs. 

Today, deep CNNs are used for many practical applications 
due to seminal ideas of Yann LeCun of convolutional networks, 
Geofrrey Hinton’s exploring deep learning methods, Jeff 
Hawkins’ creating the memory prediction framework theory of 

the brain and the described hierarchical temporal memory 
(HTM). Maximilian Riesenhuber and Tomas Poggio worked on 
the hierarchical model of object recognition (HMAX) which 
was based on Poggio’s development of computational model of 
brain function to build intelligent machines vision that could 
mimic human performance. Finally, Sepp Hochreiter and 
Jürgen Schmidhuber worked on recurrent neural networks 
(RNN) and Long Short-Term Memory (LSTM) RNN. 

It is worth mentioning some global conferences to be 
contributed to CNN development. The most noticeable are: 

 Annual Conference on Neuron Information Processing 
Systems (NIPS); 

 The world’s biggest and most important GPU developer 
conference (GPU); 

 International Conference on Machine Learning 
(ICML); 

 The conference on Computer Vision and Pattern 
Recognition (CVPR);  

 International Conference on Computer Vision (ICCV). 

III. THE CONVOLUTION OPERATION 

In its most general form, the concept of convolution is a 
mathematical operation of two functions that produces a new 
function. This new function reflects to which extent the original 
functions match if their graphs are aligned with each other. 

The convolution theorem states that under certain conditions 
the Fourier transform of a convolution is a point-wise product 
of Fourier transforms. In other words, convolution in one 
domain (e.g., time domain) equals point-wise multiplication in 
the other domain (e.g., frequency domain).  

In one dimension, the convolution between two functions is 
defined as follows: 

 
݃ሺݔሻ ൌ ݂ሺݔሻ ⊙ ݄ሺݔሻ ൌ 	න ݂ሺݏሻ	݄ሺݔ െ ሻݏ

∞

െ∞
	dݏ, 

 (1) 

where f(x) and g(x) are two functions; 
s is a dummy variable of integration (takes values 0 or 1). 

 
In two dimensions, the convolution between two functions is 

defined as follows: 

 
݃ሺݔ, ሻݕ ൌ ݂ሺݔ, ሻݕ 	⊙ ݄ሺݔ, ሻݕ ൌ					

ൌ ∬ ݂ሺݏ, ݔ݄ሺ	ሻݐ െ ,ݏ ݕ െ ሻݐ
∞
െ∞ 	dݏ	dݐ.   (2) 

The convolution operation is typically denoted with an 
asterisk * and might not to be confused with multiplication.  

For example, in one-dimensional applications we have a 
signal time domain, x(t) and a frequency domain, w(a), based 
on the convolutional theorem, the convolution operation is [1]: 

ሻݐሺݏ  ൌ ሺݔ ∗  ሻ,  (3)ݐሻሺݓ

where x, the first argument is referred to as the input; 
   w, the second argument is referred to as the kernel; 
   s(t) output is referred to as the feature map or kernel map.  
 

In computer applications, the time series data will be 
discretized and the time index t can then take only integer 
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values. Thus, the discrete convolution can be defined as 
follows: 

ሻݐሺݏ ൌ ሺݔ ∗ ሻݐሻሺݓ ൌ 	∑ ݐሺݓሺܽሻݔ െ ܽሻ∞
െ∞ .  (4)  

In machine learning applications, the input is usually a 
multidimensional array of data and the kernel is usually a 
multidimensional array of parameters that are adapted by the 
learning algorithm [1]. These multidimensional arrays are 
referred as tensors. 

If there is a two dimensional space, for example, image I as 
an input, the two-dimensional kernel K has to be used. The 
convolution for two dimensions is as follows: 

ܵሺ݅, ݆ሻ ൌ ሺܫ ∗ ,ሻሺ݅ܭ ݆ሻ ൌ 	∑݉ ∑ ,ሺ݉ܫ ݊ሻܭሺ݅ െ݉, ݆ െ ݊ሻ݊ .   (5) 

If we assume that there are fewer variations in the range of 
valid values of m compared to n based on assumption that 
convolution is commutative, we can equivalently write (5) as 
follows: 

ܵሺ݅, ݆ሻ ൌ ሺܭ ∗ ,ሻሺ݅ܫ ݆ሻ ൌ 	∑݉ ∑ ሺ݅ܫ െ݉, ݆ െ ݊ሻܭሺ݉,݊ሻ݊ .   (6) 

 In case m increases, the index into the input increases, but 
the index into the kernel decreases, it means we have flipped 
the kernel relative to the input. If the kernel is not flipped we 
use the related function called the cross-correlation: 

ܵሺ݅, ݆ሻ ൌ ሺܭ ∗ ,ሻሺ݅ܫ ݆ሻ ൌ 	∑݉ ∑ ሺ݅ܫ ൅ ݉, ݆ ൅ ݊ሻܭሺ݉, ݊ሻ݊ .  

(7)

In the context of machine learning, the algorithm will learn 
the appropriate values of the kernel in the appropriate place [1]. 
In machine learning convolution is not used alone but 
simultaneously with the combination of other functions. Based 
on the principles of convolution CNNs operates. 

IV. CONVOLUTIONAL NEURAL NETWORKS

From the above-mentioned considerations, we can clearly 
recognise that the topology of CNN comparing with other 
traditional neural networks is different. The latter uses a matrix 
product AB that is produced by multiplying two matrices n x m, 
where n is a matrix of parameters and m is a parameter 
describing the interaction between each input unit and each 
output unit [1].  

The main benefit of using CNNs with respect to traditional 
fully-connected neural networks is the reduced number of 
parameters to be learned [30]. The CNN topology is based on 
three main concepts, namely: local receptive fields, shared 
weights and spatial or temporal sampling [31]. It means that 
CNNs are typically comprised of different types of layers called 
convolutional layers, whereas each convolutional layer is made 
of small kernels that allow extracting high-level features in an 
effective way.  The last convolutional layer is fed to fully-
connected layers. As it has been stated before, if CNNs are the 
reduced number of parameters to be learned they caused to have 
much fewer connections and easier to train [8]. Consequently, 

this particular kind of neural networks assumes that we wish to 
learn filters in a data-driven fashion, as a means to extract 
features describing the inputs [6].  

The standard model of CNN has a structure consisting of the 
input layer, alternating convolutional layers, pooling or 
subsampling layers and non-linear layers. The latter consists of 
a small number of fully-connected layers, but the final layer is 
often a sofmax classifier [32].  Accordingly with a complex 
layer terminology, one convolutional net or convolutional layer 
is composed of convolutional stage (e.g., affine 
transformation), detector stage (e.g., rectified linear), and 
pooling stage [1]. This means that each convolutional layer has 
more than one stage. As a result, each stage of the convolutional 
layer can be set apart and every step of processing of it can be 
ruled in its own rights. Typically, convolutional layers are 
interspersed with sub-sampling layers to reduce computational 
time and gradually build up further spatial and configural 
invariance [7]. The basic layers of a CNN are listed below. 

Input layer. The input is usually a multidimensional array of 
data where data are fed to the network [6]. Input data can be, 
i.e., image pixels or their transformation, patterns, time series
or video signals.

Convolutional layers or convolutional stage. It is the main 
building block of CNN. The prime purpose of convolution is to 
extract distinct features from the input. Krig [33] outlines that 
these layers are comprised of a series of filters or learnable 
kernels which aim at extracting local features from the input, 
and each kernel is used to calculate a feature map or kernel map. 

The first convolutional layer extracts low-level meaningful 
features such as edges, corners, textures and lines. Next 
convolutional layer extracts higher-level features, but the 
highest-level features are extracted in the last convolution layer 
[34]. Kernel size refers to the size of the filter, which convolves 
around the feature map while the amount by which the filter 
slides (sliding process) is the stride. It controls how the filter 
convolves around the feature map. Therefore, the filter 
convolves around the different layers of input feature map by 
sliding one unit each time [1]. 

Another essential feature of CNNs is padding that gives 
option to make input data wider with, e.g., elements Vi, j, k. For 
example, if there is a need to control the size of the output and 
the kernel width W independently, the zero padding of input is 
used. 

Non-linear layers or detector stage. The detector stage is 
used to detect each linear activation through nonlinear 
activation function. In other words, linear activation introduces 
the non-linearity into neural networks and allows learning more 
complex models [11].  

There are several nonlinear activation functions. The 
standard way to model a neuron’s output f as a function of its 
input x is with f(x) = tanh(x), sigmoid(x) or Rectified Linear 
Unit (ReLU) [32]. The last one is preferable because it makes 
training several times faster than its equivalents. Some authors 
adopt sigmoid(·) function at all activation stages due to its 
simplicity [11]. ReLU applies the function y = max(x, 0). It 
increases the nonlinear properties of the decision function and 
of the overall network without affecting the receptive fields of 
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the convolutional layer. According to [8], using ReLU it is 
possible to speed up the training of CNNs by keeping up the 
gradient more or less constant at all network layers. 

The pooling or downsampling, or subsampling layers. It 
reduces the resolution of the previous feature maps through 
compressing features and computational complexity of the 
network [35]. It adjusts the features robust to noise and disorder. 
Another purpose of the pooling layer is to make it robust to 
small variations for previously learned features. As a result, 
pooling ensures that the network focuses on the most important 
patterns. 

In general, a pooling layer produces downsampled versions 
of the input map and reduces the dimensionality of the feature 
maps used by the following layers [6], [7].  

Pooling splits the inputs into regions with the size of R × R 
to produce one output from each region. If a given input with a 
size of W × W is fed to the pooling layer, the output size P is 
obtained by [36]: 

ܲ ൌ 	 ቔ
ܹ

ܴ
ቕ. 

(8)

Pooling can be max pooling, average of a rectangular 
neighbourhood, and pooling by downsampling. 

The max pooling action addresses the maximum output 
within a rectangular neighbourhood. Max pooling outputs only 
the maximum number in each kernel, thus reducing the feature 
map size. Max pooling introduces invariance. For example, we 
have input feature of size 44 × 44, which is divided into 22 × 
22 regions of size 2 × 2, i.e., we apply max pooling of size 2, 
i.e., output index (2, 2). For maximum pooling, the maximum
value of the four values is selected. For average pooling, the
average of the four values is selected. The result of averaging is
a fraction that has been rounded to the nearest integer.

Each output map may combine convolution with multiple 
input maps. In general, we can write [37]: 

݆ܠ
ܮ ൌ ݂ሺ∑ ݆ܠ

െ1ܮ
݆ܯ	∋	݅

∗ ݆݅ܓ	
ܮ ൅ ܾ݆

 ,ሻܮ  (9) 

where L – the convolutional layer; 
  L−1 – the downsampling layer; 
   xL−1 – input features of L −1 convolutional layer; 
   kij – kernel maps of L convolutional layer; 
   bL – additive bias of L convolutional layer; 

Mj – represents a selection of input maps; 
i-th – input;
j-th –output.

In general, the feature extraction using CNNs consists of 
multiple similar steps and each step is made of three cascading 
layers: convolution layer, activation layer and pooling function.  

Figure 1 exhibits the process of 3D convolution used in 
CNNs. 

The input of size H × H × W is convoluted with p number of 
kernels, where the kernel size is k × k × W. One kernel 
convolving with an input feature map produces one output 
feature map, and p kernel produces independently p feature 
maps. Each kernel is moved starting from top-left corner of the 

input feature map to top-right corner element at a time. Then 
the kernel shifts one element downward, takes left-side position 
and moves towards right-side position. This process is finished 
when the kernel reaches the bottom-right position.  

For example, for the case when we have input H × H = 44 
and k × k = 5, there are 30 unique positions from the left to the 
right, and 30 unique positions from the top to the bottom that 
the kernel can take. Each feature in the convolution output will 
contain 30 × 30, i.e., (H − k + 1) × (H − k + 1) = (44 − 5 + 1) × 
(44 − 5 + 1) elements. To create one element of one output 
feature k × k × W operations are required.  

From the above-mentioned considerations, it can be 
concluded that a new feature map is typically generated by 
sliding a filter over the input and computing the dot product 
(which is similar to the convolution operation), followed by a 
non-linear activation function to introduce non-linearity into the 
model [32]. 

For instance, one convolutional layer consists of the input 
feature map, the kernel and the convolution output. All units 
share the same weights (filters) in each feature map. 

Fig. 1. The convolution process. 

The advantage of sharing weights is the reduced number of 
parameters and the ability to detect the same feature regardless 
of its location in the inputs [36]. Max pooling or average 
pooling is used to convolution output to be an input for the next 
convolution step. 

Fully connected layers. This is the last stage of topology of 
CNNs consisting of a generic multi-layer network. The last few 

Pooling
a)) max pooli
b)) average pooli

Input feature map 
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layers will be fully connected 1D layers to all activations in the 
previous layer [7]. From these layers it is possible to extract 
features to train another classifier. To specify how the network 
training penalizes the deviation between the predicted and the 
true labels, various loss functions can be used, e.g., softmax, 
sigmoid cross-entropy or Euclidean loss [6]. 

V. TRAINING AND LEARNING CNNS 

Training deep architectures is a challenging task, and 
traditional methods that have proved effective when applied to 
uncomplicated neural network architectures are not as effective 
when applied to deep architecture. The training function means 
to use an overall algorithm that is used to train a neural network 
to recognise a certain input and map it to a certain output. The 
most expensive part of CNNs training is learning the features 
and accessibility to labelled data.  

A learning function in deep neural networks requires 
computing the gradients of complicated functions and decides 
how those would be manipulated [1]. CNNs are usually trained 
by backpropagation (BP) and Stochastic Gradient Descent 
(SGD) to find weights and biases that minimise certain loss 
function in order to map the arbitrary inputs to the targeted 
outputs as closely as possible [3]. BP algorithm refers only to 
the method for computing the gradient, while SGD algorithm is 
used to perform learning using this gradient [1]. However, BP 
technique can make training gradient 10 million times faster 
relative to naive implementation techniques [22]. 

There are two central challenges in machine learning: 
underfitting and overfitting [38]. Overfitting occurs when the 
gap between the training error and test error is too large. 
Underfitting occurs when the model is not able to obtain a 
sufficiently low error on the training set. In CNNs, there are two 
primary ways to combat overfitting: dropout and data 
augmentation. Dropout is a cheap, powerful regularization 
strategy that can be seen as a process of constructing new inputs 
by multiplication by noise [8]. It is a method of adaptive 
reparametrization, motivated by the difficulty of training very 
deep neural network models. Data augmentation is to 
artificially enlarge the dataset using label-preserving 
transformations [12].  

Another challenge in machine learning is: regularisation and 
optimisation. The optimisation perspective suggests that the 
weights should be large enough to propagate information 
successfully, but some regularisation concerns encourage 
making them smaller. Unless your training set contains tens of 
millions of examples or more, you should include some mild 
form of regularisation from the start [1]. 

According to [7], the parameter update includes: feedforward 
pass, backpropagation pass and the gradient applied. The aim 
of feedforward pass is to determine the predicted output CNN 
on input vector. Specifically, it computes feature maps from 
layer to layer and stage from stage until obtaining the output. 
The backpropagation pass means that backpropagation starts at 
the last layer of a neural network, recursively applies the chain 
rule to compute the gradients and go backwards to the inputs of 
a neural network. 

Finally, to obtain optimal performance of CNNs we can tune 
three options: regularisation, momentum and leaning rate. 
Regularisation is the function to prevent overfitting of the data. 
Regularisation can be improved by adjusting a weight decay 
coefficient or by adding a regularisation strategy such as drop 
out or data augmentation [12].  Momentum is the function to 
control how fast or slow the network learn during training. 
Learning rate is the function to help in the convergence of the 
data. 

VI. ARCHITECTURE 

In this section, some architecture and methodologies are 
considered for image and signal detection.  

The architecture of CNN contains many (several) layers. 
Krizhevsky et al. [8] offer CNN that contains eight learned 
layers with weights. The first five are convolutional and the 
remaining three are fully-connected layers [39]. For example, 
the first convolutional layer consists of 224 × 224 × 3 pixels 
input map and is convolved with 96 kernels of the size 
11 × 11 × 3, where the stride is 4 pixels. The second 
convolutional layer takes as input (response normalized and 
pooled) the output of the first convolutional layer and filters it 
with 256 kernels of size 5 × 5 × 48. The fully-connected layer 
has 4096 neurons. The training of the model has been done 
using stochastic gradient descent with a batch size of  
128 examples, momentum of 0.9, and the weight decay of 
0.0005. An equal learning rate was used for all layers, which 
was adjusted manually through training. The learning rate was 
initialised at 0.01 and reduced three times prior to termination. 
NVIDIA GTX 580 3GB GPUs were used for training the 
network. 

Archarya et al. [12] report using CNN for automated 
detection of myocardial infarction using the electrocardiogram 
(ECG) in the diagnosis of myocardial infarction. In pre-
processing process, all ECG signals are segmented using the R-
peak detection using Pan–Tompkins algorithm. To eliminate 
the outweigh before feeding the ECG segments and to address 
the problem of amplitude scaling into deep CNN for training 
and testing each segment should be normalized with z score 
[40]. The architecture of the proposed CNN consists of  
11 layers where the last three are fully-connected layers. For 
example [41], the input layer (layer 0) is convolved with a 
kernel size 102 to form the first layer (layer 1). After which, a 
max pooling of size 2 is applied to every feature map. After 
performing the max pooling operation, the number of neurons 
reduces from 550 × 3 to 275 × 3. Finally, layer 10 is connected 
to the last layer with 2 output neurons. The training has been 
executed by using standard backpropagation with a batch size 
of 10 [40]. The regularisation, momentum and learning rate 
parameters are set to 0.2, 3 × 10−4, and 0.7 respectively.  
A proportion of all ECG data has been 70 % for training, 20 % 
for validation and 10 % for testing of CNN. The final layer of 
the fully-connected network is a softmax layer with an output 
of X dimensional vector where X is the number of classes that 
we desire to have. 
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Ferreira and Giraldi [6] apply the application of CNN to 

granite image classification using learning discriminate 

features, instead of relying on feature engineering. Each image 

is converted to R, G and B colour channels and also converted 

to grey-level. These are used as input to the network. After the 

patching the images have been divided into tiles of interest, i.e., 

28 × 28 images and 32 × 32 colour images. In the next step, 

different CNNs were used to recognise patterns of image. 

The number of networks used was 4 and their architecture 

was as follows: MNIST1 network consisted of one input layer, 

four convolutional layers, two pooling layers, one ReLU layer 

and one fully-connected layer. MNIST2 network consisted of 

one input layer, five convolutional layers, three pooling layers, 

one ReLU layer and a final fully-connected layer. MNIST3 

network consists of one input layer, six convolutional layers, 

four pooling layers, one ReLU layer and a final fully-connected 

layer. CIFAR network consists of one input layer, five 

convolutional layers, three pooling layers, four ReLU layers 

and one fully-connected layer. These networks generated 

feature vectors with 500, 256, 256 and 64 dimensions, 

respectively. Finally, the image patch classification was done 

by choosing the 1st Nearest Neighbour (1NN) classifier, the 

tiny image blocks from input images. 

The MNIST based networks were trained using a learning 

rate fixed on 0.001, SGD with momentum to 0.9 and weight 

decay to 0.0005 without dropout. The CIFAR was trained using 

SDG with momentum equal to 0.9 and the weight decay to 

0.0001. Experiments were performed on a cluster node with  

11 processors and 131 GB RAM and graphics card NVIDIA 

GeForce 210.  

Zheng et al. [11] modify CNN and apply it to multivariate 

time series classification task (the input of multivariate time 

series classification is multiple 1D subsequences, but not  

2D image pixels) separating multivariate time series into 

univariate ones. The feature learning is individually carried out 

on each univariate time series. The architecture consist of three 

input channels, two filter layers, two pooling layers, and two 

fully-connected layers. To update the parameters, the stochastic 

gradient descend method has been used instead. The reason for 

that was that SGD could converge faster for large scale data 

instead of full-batch version. 

Wang et al. [13] focused on evaluating the efficacy of using 

CNN to construct a model of physiological signal anomaly 

detection and tested algorithm on eight physiological signals. 

The DEAP dataset, a dataset for emotion analysis using EEG, 

physiological, and video signals was used [42]. CNN 

transforms the raw unlabelled time series signals into a reduced 

set of features. Before the signals enter the model, the time 

series physiological signals were normalized. The deep CNN 

architecture contains two convolutional layers, two pooling 

layers and a multivariate Gaussian anomaly detection model.  

VII. IMPLEMENTATION OF CNN FOR  3D SENSOR DATA 

At a high level, the block diagram of the proposed algorithm 

consists of data from sensors, pre-processing (normalization, 

filtering, linearization), CNN (feature extraction), classification 

(pattern recognition), results (classification). The algorithm 

performs the following steps to learn features: 

1) Classifying sensor signals as data array into number of 

segments as labelled training data. 

2) Filtering and normalizing segments of the raw sensor 

data (pre-processing step). 

3) Extracting features using CNN. 

4) Detecting patterns and creating classification. 

 

Data are often corrupted by interfering noise. In order to 

decrease that noise we use reduction, label, scaling and 

normalization of the data in the pre-processing stage. In our 

case, we normalise the sensor data by subtracting the mean 

sensor data value and dividing it by the standard deviation. 

For the feature extraction we use CNN. We take the sensor 

data as a second-order tensor matrix. The sensor data has c 

channels. Convolution operation is represented by C(*) 

throughout the network.  

The convolution layer_1 (CL_1). The labelled input sensor 

data are convoluted with Kn kernel maps with dimension of, 

k1 × k1 × W1, respectively, one kernel map at a time, with kernel 

stride s1 and zero padding. A bias b is added to each convolution 

operation between sensor data and a kernel map. The scored 

result then goes through the non-linear activation function 

ReLU1 to generate CL_1. The dimensions of the resulting CL_1 

are [(W/s1) × (H/s1) × K1]. The number of kernel maps 

represents the depth, dn of the convolution operation or number 

of extracted features that the network will extract after the 

convolution.  

The convolution layer_2 (CL_2). The operation is exactly 

similar to the previous measure, if the input labelled sensor data 

are replaced by the CL_1 instead.   The CL_1 is convoluted with 

kernel maps, k2, with the kernel stride s2 and the same zero 

padding as it has been for the first convolutional layer. A bias 

is added to each convolution operation. The result goes through 

the non-linear activation function ReLU2 to generate the CL_2. 

The dimensions of the resulting CL_2 are [(W/(s1 × s2)) × (H × 

(s1 × s2)) × K2]. We must take into consideration that the total 

depth of convoluted layer is K2 at this point, which is the 

number of extracted features that have from the original sensor 

data so far. Generally, convolution process goes through five 

convolutional layers because typically CNNs to be deep use 5 

to 25 distinct layers of pattern recognition. 

Finally, the CL_5 is fully connected to a hidden layer of r 

number of weight arrays or neurons. The dimension of each 

weight array is equal to [W/(s1 × s2 × s3 × s4 × s5) × H/(s1 × s2 × 

s3 × s4 × s5) × K5]. 

A bias is added to each product of CL_5 with a weight array, 

which then goes through the activation function ReLU6.  

A softmax layer with m classifiers is used to yield the resulting 

final output.  

VIII. DISCUSSION 

The aim of this study has been to show the basic theoretical 

concepts and applicability of CNNs for construction of the deep 

neural networks.  
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The study of the theoretical assumptions and some practical 

application of CNNs has shown that the main benefit of using 

CNNs with respect to standard fully-connected neural networks 

is the reduced number of parameters to be learned. Decreasing 

the number of the parameters leads to less noise during the 

training process. The reason is that the number of parameters 

depends on the kernel width. The wider the kernel width, the 

lager the number of parameters in the model.  

On the other hand, CNNs normally need thousands or even 

millions of labelled data. The model parameters become larger 

if the weight decay parameters are decreased. Dropout rate 

should be decreased to avoid an increase in the number of 

iterations to converge. 

Learning rate should be tuned optimally. Very high or very 

low rate will lead to optimisation problems and the decrease in 

effective capacity of the network. Increasing the number of 

hidden units increases the representation capacity of the model. 

Using zero padding before convolution keeps the representation 

size large.  

Finally, it can be considered that the proposed algorithm 

diagram should be adapted using real sensor data as 

performance modelling and identification of classes. 
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