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Abstract – Classical cluster analysis or clustering is the task of 
grouping of a set of objects in such a way that objects in the same 
group are more similar to each other than to those in other groups 
or clusters. There are many clustering algorithms for solving 
different tasks. In the research, an interesting method – Cassini 
oval – has been identified. The ovals of Cassini are defined to be 
the sets of points in the plane for which the product of the distances 
to two fixed points is constants. Cassini ovals are named after the 
astronomer Giovanni Domenico Cassini who studied them in 1680. 
Cassini believed that the Sun travelled around the Earth on one of 
these ovals, with the Earth at one focus of the oval. Other names 
include Cassinian ovals. A family of military applications of 
increasing importance is detection of a mobile target intruding 
into a protected area potentially well suited for this type of 
application of Cassini style method. The hypothesis is proposed 
that the Cassini ovals could be used for clustering purposes. The 
main aim of the research is to ascertain the suitability of Cassini 
ovals for clustering purposes. 
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I. INTRODUCTION 

Ancient Greeks extolled the sphere, considering it to be a 
complete self-sufficient ideal form lying in the foundation of 
the universe (Cult of the Sphere). It was the idea of the motion 
of planets around the Sun that lied at the heart of the “Ptolemy 
astronomy”. However, in the 17th century this age-old 
“Ptolemy idyll” was destroyed by new astronomical laws 
established by Johann Kepler. The most important of them is 
Kepler’s First Law, according to which the motion of the 
planets corresponds not to the ideal circle, but to another 
geometric figure – an ellipse. It is known that an ellipse is a 
planar figure, for each point of which, the sum of the distances 
from two fixed points (poles) is constant. From the ratio of the 
distances between the foci and the sum of the distances, 
different figures can be obtained from a circle to degeneration 
into a line. 

The study of ellipse, in which the sum of distances of each 
point from the two foci is constant, leads to an idea, what if not 
the sum of the distances from two points is constant but their 
product? The first who thought about this idea was Giovanni 
Cassini. In 1680, he began to study the curve called the Cassini 
ovals, which is the geometric place of points where product of 
the distances from two fixed foci is constant [6]. 

 If we denote by ܽ half of the distance between the foci of the 
oval, and ܾ is the value of the product of the distances from the 
oval points to the foci, then it is possible to derive the following 
expression for the Cassini ovals: 

               ሾሺݔ െ ܽሻଶ  ݔଶሿሾሺݕ  ܽሻଶ  ଶሿݕ ൌ ܾସ.                  (1) 

After opening the brackets and combining similar terms, the 
Cassini oval equation is obtained in the following form (in 
Cartesian coordinates): 

																										ሺݔଶ  ଶݕ  ܽଶሻଶ െ 4ܽଶݔଶ ൌ ܾସ.                    (2) 

Cassini became interested in these curves, with the purely 
practical goals [2]–[4], [7], [11]. He came to these curves, trying 
to find the optimal mathematical model of the Earth’s motion 
around the Sun. This way, he showed that the convex version 
of this curve for planetary orbits fit more than the ellipse 
proposed by Kepler. 

II. GEOMETRIC INTERPRETATION OF CASSINI OVALS 

Equation (2) can be transformed into polar coordinates. Let 
ݔ ൌ ݕ ሺθሻ and	cos	ݎ ൌ ݎ sinሺθሻ. Then 

ସݎ                    ܽସ െ 2ܽଶݎଶሾ1  cosሺ2θሻሿ ൌ ܾସ.                (3) 

Solving for ݎଶ  using the quadratic equation gives: 

ଶݎ ൌ
2ܽଶ cosሺ2θሻ േ ඥ4ܽସcosଶሺ2θሻ െ 4ሺܽସ െ ܾସሻ

2
ൌ

ൌ ܽଶ cosሺ2θሻ േ ඥܽସcosଶሺ2θሻ  ܾସ െ ܽସ ൌ 

																															ൌ ܽଶ cosሺ2θሻ േ ඥܽସሾcosଶሺ2θሻ െ 1ሿ  ܾସ ൌ 

																															ൌ ܽଶ cosሺ2θሻ േ ඥܾସ െ ܽସsinଶሺ2θሻ ൌൌ

																																			ܽଶ ቈcosሺ2θሻ േ ටቀ



ቁ
ସ
െ sinଶሺ2θሻ.	 (4) 

The geometric figures corresponding to the Cassini oval 
equation have the form shown in Fig. 1. 

As follows from Fig. 1, Cassini ovals have four characteristic 
shapes that depend on the ratio between ܽ	and ܾ. If ܾ  2ܽ, 
then Cassini oval is a convex curve (Fig. 1a) similar to an 
ellipse. If ܽ ൏ ܾ ൏ 2ܽ, then a concave bridge appears in the 
Cassini oval (Fig. 1b). If ܽ ൌ ܾ, then the bridge closes and the 
Cassini oval turns into a figure recalling the inverted digit 8 
(Fig. 1c). This curve in mathematics is known as lemniscat 
Bernoulli, which can be defined as the geometric place of the 
points for which the product of the distances from two foci is 
equal to the square of half of the distance between the foci. 
Bernoulli, a great mathematician and physicist, described this 
“similar to 8 surface” in one of his articles published in 1694. 
Unfortunately, he did not know that his lemniscate was a 
particular case of ovals described by Cassini fourteen years 
earlier. Finally, at ܽ  ܾ , the Cassini oval splits into two 
independent figures (Fig. 1d). 
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ܾ  2ܽ ܽ ൏ ܾ ൏ 2ܽ 

  

(a) (b) 

ܽ ൌ ܾ ܽ  ܾ 

  

(c) (d) 

Fig. 1. Cassini ovals (four characteristics). 

For the purpose of research, a program in the Matlab 
environment was developed. Results are demonstrated in  
Figs. 5–8. 

III. THE USE OF CASSINI OVALS IN RADIOLOCATION 

In the Cartesian coordinates system ሺݔ, ሻݕ  on the axis ݔ 
symmetrically to zero, there are transmitter ܨଵ  and receiver ܨଶ 
(see Fig. 2). Let us find the locus of the reflector ܯ, for which 
its observability by the receiver ܨଶ is constant. Obviously, this 
is a set of points for which 1/ܴଵ

ଶܴଶ
ଶ or what is the same [5]  

                                   ܴଵܴଶ ൌ ݐݏ݊ܿ ൌ αଶ.                           (5) 

 

Fig. 2. Transmitter and receiver notations for Cassini oval. 

Let us define ܨଵܱ	 ൌ 	ଶܨܱ	 ൌ 	ܿ  and express  ܴଵ  and ܴଶ  in 
terms of ܿ, ݔ and ݕ. From Fig. 2 it can be seen that 

            ܴଵ
ଶ ൌ ଶݕ  ሺݔ  ܿሻଶ		and	ܴଶ

ଶ ൌ ଶݕ  ሺݔ െ ܿሻଶ	.    (6) 

Then  

												ܴଵ
ଶܴଶ

ଶ ൌ ܽସ ൌ ሾݕଶ  ሺݔ  ܿሻଶሿሾݕଶ  ሺݔ െ ܿሻଶሿ.      (7) 

After elementary transformations, the following equation is 
obtained: 

                  
               ሺݔଶ  ଶሻଶݕ െ 2ܿଶሺݔଶ െ ଶሻݕ ൌ ܽସ െ ܿସ.            (8) 
 
This is the Cassini oval equation – the geometric locus of the 

points ܯ for which the product of the distances ܴଵ and ܴଶ from 
the two foci ܨଵ and ܨଶ is constant. 

For radiolocation Cassini ovals have the following meaning. 
From the target located at any point on the given oval, the same 
power will be taken into focus (if the transmitter that irradiates 
the target is in the second focus). If the power is at the 
sensitivity limit, then this oval covers the radar coverage area. 
In three-dimensional space, this is the surface formed by the 
rotation of the oval about the axis ݔ. The larger is the number 
of Cassini oval on which the target is located, the higher is the 
power of the received signal [5]. 

The so-called bistatic radar employs two sites that are 
separated by a considerable distance. A transmitter is placed at 
one site, and the associated receiver is placed at the other site. 
Target detection is similar to that of monostatic radar: target 
illuminated by the transmitter and target echoes detected and 
processed by the receiver (see Fig. 3). 

 

Fig. 3. Bistatic radar north coordinate system for two coordinates. 

Cassini ovals define three distinct operating regions for a 
bistatic radar: receiver-centred region, transmitter-centred 
region, and receiver-transmitter-centred region. 

The value of the bistatic radar constant ݇ is critical to the 
selection of these operating regions. The term ݇ is bistatic radar 
maximum range product [5]. 

Coverage is an important factor in bistatic radars. Coverage 
can be defined as the area on the bistatic plane whereby the 
target is visible to both the transmitter and the receiver [8].  

Bistatic radar coverage is determined by both sensitivity and 
propagation. Propagation requires a suitable path between the 
target and the both sites and should include the effects of 
multipath, diffraction, refraction, shadowing, absorption and 
geometry.  
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The first five effects are usually included in the pattern 
propagation. The geometry effect is treated separately [8]. 

One type of coverage is constrained by the maximum range 
product of the Cassini oval ሺ்ܴܴோሻ	୫ୟ୶. When the Cassini oval 
encapsulates both the transmitter and the receiver, the coverage 
area can be approximated by [5], [8]: 

																			ܵ ൎ π݇ ቄ1 െ ቀ
ଵ

ସ
ቁ ቀ

ర

మ
ቁ െ ቀ

ଷ

ଵଷ଼ସ
ቁ ቀ

ఴ

ర
ቁቅ.	 (9) 

IV.  CLUSTERING POSSIBILITIES USING CASSINI OVALS 

In general, clustering algorithms are used to group some 
given objects defined by a set of numerical properties in such a 
way that the objects within a group are more similar than the 
objects in different groups [1]. Therefore, a particular clustering 
algorithm needs to be given a criterion to measure the similarity 
of objects, how to cluster the objects into groups. The classical 
c-means clustering algorithm uses the Euclidean distance to 
measure the similarities between objects [1], [9], [10].  

A sample of artificial data with 14 points [12] has been taken 
to test the Cassini oval possibilities for clustering purposes. The 
coordinates of the points are provided in Table I. 

TABLE I 

THE COORDINATES OF THE EXPERIMENTAL DATA POINTS 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

x 1 3 6 10 2 2 5 6 4 8 8 4 9 1 

y 3 4 1 6 3 8 5 5 3 6 3 9 1 6 

 

By means of the c-means clustering algorithm, the following 
clusters and their centres have been derived (see Fig. 4). 

 

Fig. 4. The obtained two clusters with centres using c-means algorithm. 

 
 
 

The values of ovals ܽ and ܾ have been changed in the study 
and it has been found whether the data points fit into the ovals. 

 
a) Case ܾ  2ܽ (Fig. 1a) 
Starting with ܽ	 ൌ  5 and ܾ	 ൌ 	10, all points are inside the 

oval. Really one cluster has been obtained (see Fig. 5). 

 

Fig. 5. Clustering for ܾ  2ܽ. 

b) Case ܽ ൏ ܾ ൏ 2ܽ (Fig. 1b) 
 
Starting with a = 5 and b = 9, all points are inside the oval. 

One cluster has been obtained (see Fig. 6). 

 

Fig. 6. Clustering for ܽ ൏ ܾ ൏ 2ܽ. 

c) Case ܽ ൌ ܾ (Fig. 1c) 
 
For ܽ and ܾ values from 13 data points, only 7 data points are 

in the oval (see Fig. 7). 
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Fig. 7. Clustering for ܽ ൌ ܾ. 

d) Case ܽ  ܾ (Fig. 1d) 
 
At ܽ	 ൌ	  15, ܾ	 ൌ 	14  and ܽ	 ൌ 	16 , ܾ	 ൌ	  15 only 3 data 

points are inside the oval. From ܽ	 ൌ 	17, ܾ	 ൌ 	16,  4 points are 
inside the oval. The value of ܾ in all cases is ܽ െ 1. Data points 
do not appear inside the oval at the lower values of ܾ  
(see Fig. 8). 

 

Fig. 8. Clustering for ܽ  ܾ. 

Obviously, the cases c) and d) are more interesting. Both data 
points and ovals are currently set to the starting point of the 
coordinates. Making ovals “floating” and using more ovals, it 
is possible to cover all data points and obtain multiple clusters 
(see Fig. 9).  

The results obtained so far do not allow them to be compared 
with the results of the classical c-means algorithm. 

 

Fig. 9. Floating Cassini ovals. 

The ݊-dimensional situation should also be investigated. 

V. CONCLUSION 

Cassini ovals are used both in astronomy and in 
radiolocation. Cassini ovals are also used in various scientific 
applications such as physics, biosciences, acoustics, etc. The 
unique features of ovals make it an interesting tool in various 
fields for military and commercial purposes. 

The study is currently at its initial stage and the author has 
not rejected the proposed hypothesis of the use of Cassini ovals 
for clustering purposes and will continue the research. 
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