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Abstract – In the paper a two-layer encoder is proposed. The 
nodes of encoder under consideration are neo-fuzzy neurons, 
which are characterised by high speed of learning process and 
effective approximation properties. The proposed architecture of 
neo-fuzzy encoder has a two-layer bottle neck” structure and its 
learning algorithm is based on error backpropagation. The 
learning algorithm is characterised by a high rate of convergence 
because the output signals of encoder’s nodes (neo-fuzzy neurons) 
are linearly dependent on the tuning parameters. The proposed 
learning algorithm can tune both the synaptic weights and centres 
of membership functions. Thus, in the paper the hybrid neo-fuzzy 
system-encoder is proposed that has essential advantages over 
conventional neurocompressors. 
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I. INTRODUCTION

A major problem of Data Mining, which is related to high 
dimensional big data processing [1], [2], is a task of data 
reduction without significant loss of information that is 
contained in this data store. For solving such tasks, a lot of 
approaches are proposed, and, first of all, the principal 
component analysis, principal manifold analysis, discriminant 
analysis, specialised neural networks such as Hebb-Sanger 
neural network, Oja-Karhunen neural network, “bottle neck” 
and others [3], [4].  

The necessary element of deep neural networks [5]–[7], 
which are intensively developed at the present day, is 
autoencoder. It solves the problem of data reduction and forms 
the input layers of neural networks. The autoassociative 
multilayer perceptron “bottle neck” and restricted Boltzmann 
machine are most often used as autoencoder. The nodes of such 
autoencoders are the elementary Rosenblatt perceptrons with 
the sigmoidal activation functions. These autoencoders provide 
a high quality of data compression but are characterised by a 
low speed of their parameter tuning, which is implemented 
based on multi-epoch learning. 

Due to the intensive development of the studies in Data 
Stream Mining [8], [9], it is important to synthesise the high-
speed autoencoders, which allow processing information in 
online mode, when data is fed to a system sequentially. 

II. ARCHITECTURE OF THE NEO-FUZZY AUTOENCODER

The proposed autoencoder has a two-layer architecture and 
is autoassociative “bottle neck” modification of the 
Kolmogorov’s neuro-fuzzy network (KNFN), which was 

proposed and investigated in [10]–[14]. The vector signals 
T

1( ) ( ( ), , ( ), , ( ))   n
i nx k x k x k x k R , which have to be 

compressed, are fed to the receptor layer of the network (here 
k = 1, 2,…, N is an observation number in a sample (in case of 
batch mode) or an instant of discrete time (in case of online 
mode)).  

The first hidden network’s layer consists of m (m < n) tuned 
nonlinear units. The output of these units is values of 
compressed signals T

1( ) ( ( ), , ( ), , ( ))   m
j my k y k y k x k R

that are fed to nonlinear tuned units of the output layer. At the 
output of the second layer, the recovered signals 

T
1( ) ( ( ), , ( ), , ( ))   n

i nx k x k x k x k R  are defined and the 
error ˆ( ) ( ) ( )i i ie k x k x k   is used for the synaptic weight 
learning of both layers. Therefore, the neo-fuzzy autoencoder 
implements the nonlinear mapping in the form: 

[2] [2] [1]
1 2

1 1 1

ˆ ( ) ( , , , ) ( ) ( ) ;

1, 2, , .

n n n

i n ij j ij ji i
j j i

x k x x x f y f f x

i n

  

 
    

 
 

  



where [1] ( )jif   and [2] ( )ijf   are nonlinear transforms, which are 
implemented by units of the first hidden and the second output 
layers, respectively. 

The nonlinear synapses [1] ,jiNS  [2]
ijNS  and the neo-fuzzy 

neurons [1] ,jNFN [2]
iNFN  (that were proposed in [15]–[17]), 

which have high approximation properties and are used as 
“building blocks” of the proposed neo-fuzzy autoencoder. The 
neo-fuzzy neuron is the Wang-Mendel neuro-fuzzy system of 
zero order. 

Figure 1 shows the architecture of the neo-fuzzy 
autoencoder, while Fig. 2 demonstrates the structure of the neo-
fuzzy neuron [1]

jNFN  in the hidden layer of autoencoder. Such 
a neo-fuzzy neuron consists of n nonlinear synapses [1]

jiNS , 
where each of them contains h membership functions [1]μ jil  and 
h tuning synaptic weights [1]

jilw . The first hidden layer contains 
mnh membership functions and the same number of synaptic 
weights. 

The output layer contains n neo-fuzzy neurons [2]
iNFN , 

where each of them consists of m nonlinear synapses [2]
ijNS , at 

that, each of these synapses has also h membership functions 
[2]μ ijl  and h synaptic weights [2]

ijlw . 
Thus, autoencoder contains 2mnh tuning parameters. Finally, 

the transformations, which are implemented by an 
autoassociative neo-fuzzy network, can be written in the form: 
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x x x x w w x .  (3) 

 
Fig. 1. Neo-fuzzy autoencoder. 
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The nonlinear synapses (1), (2) are like the Takagi-Sugeno 
fuzzy inference systems of zero-order [18] and are also 
universal approximators, i.e., they can approximate any one-
variable restricted function with required accuracy in condition 
that the synaptic weights are correctly tuned and a number of 
membership functions are correctly selected. 

Equation (3) describes the two-layer neuro-fuzzy system 
with two-level fuzzy rule system, which implements the 
multiscale approach, i.e., according to the theorem of Yam-
Nguyen-Kreinovich [19] this system allows achieving a 
required accuracy of approximation for any constrained 
multivariate function. 

As membership functions of nonlinear synapses [1]
jiNS , [2]

ijNS  
the authors of neo-fuzzy neuron [15]–[17] used the 
conventional triangular functions, which satisfy to unity 
partitioning in the form: 
 

 

Fig. 2. Neo-fuzzy neuron of the first hidden layer. 

 

[1]
, , 1 [1] [1]

, , 1 , ,[1] [1]
, , , , 1

[1]
[1] , , 1 [1] [1]

, , , , 1 , ,[1] [1]
, , 1 , ,

, if [ , ];

μ ( ) , if [ , ];

0 otherwise,











 



   






i j i l
i j i l j i l

j i l j i l

j i l i
j i l i i j i l j i l

j i l j i l

x c
x c c

с c

c x
x x c c

с c
  (4) 

 [1] [1]
, , , , 1μ ( ) μ ( ) 1, j i l i j i l ix x  (5) 

 

[2]
, , 1 [2] [2]

, , 1 , ,[2] [2]
, , , , 1

[2]
[2] , , 1 [2] [2]
, , , , , , 1[2] [2]

, , 1 , ,

, if [ , ];

μ ( ) , if [ , ];

0 otherwise,











 



   






j i j l
i i j l i j l

i j l i j l

i j l j
i j l j j i j l i j l

i j l i j l

y c
x c c

с c

c y
y y c c

с c
 (6) 

 [2] [2]
, , , , 1μ ( ) μ ( ) 1, i j l j i j l jy y  (7) 

where [1]
, ,j i lc , [2]

, ,i j lc , l = 1, 2,…, h are the centres of the 
membership functions, in the simplest case these functions are 
uniformly distributed along the axes ix  and jy . 

Conditions (5), (7) denote that the signals ( )ix k , ( )jy k  are 
fed to the inputs of [1] ,jiNS  [2] ,ijNS  the outputs of which are 
defined in the form: 

 
[1] [1] [1] [1] [1]

, , , , , , 1 , , 1

[2] [2] [2] [2] [2]
, , , , , , 1 , , 1

( ( )) μ ( ( )) μ ( ( ));

( ( )) μ ( ( )) μ ( ( )),
 

 

  


 

ji i j i l j i l i j i l j i l i

ij j i j l i j l j i j l i j l j

f x k w x k w x k

f y k w y k w y k
  

i.e., in each current instant of time k in each nonlinear synapse, 
only two neighbouring membership functions can be fired. 
Finally, not 2mnh synaptic weights, but only 4mn ones are 
tuned at each time step that allows accelerating the learning 
process of the system as a whole. 

III. THE LEARNING OF NEO-FUZZY AUTOENCODER 
The learning process of the neo-fuzzy autoencoder is related 

to defining the synaptic weights of both layers based on 
minimisation of goal function, which can be written for i-th 
system’s output (i = 1, 2,…, n) in the form: 
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where [2] [2] [2] [2] [2] [2] [2] T

11 12 1 21( , , , , , , , , ) ,w    i i i i h i ijl imhw w w w w w
[2] [2] [2] [2] [2]

11 1 12 1 1 1 21 2μ ( ( )) (μ ( ( )), μ ( ( )), , μ ( ( )), μ ( ( )), i i i i h iy k y k y k y k y k  
[2], μ ( ( )), ijl jy k [2] T, μ ( ( ))) imh my k  are the (mh × 1) – vectors of 

synaptic weights and membership functions. 
In the simplest case, the standard least square method can be 

used for tuning vectors [2]wi  in the form: 

 [2] [2] [2]T [2]

1 1
( ) μ ( ( ))μ ( ( )) μ ( ( )) ( ).w



 

   
 
 

N N

i i i i
k k

N y k y k y k x k   

In the case when data are fed to processing in online mode, 
the learning process is simplified to gradient minimisation of 
criterion (8) in the form [17]: 
 

 

2
[2] [2]

[2]

[2] [2]

( )
( ) ( 1) η( )

( 1) η( ) ( )μ ( ( )),
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 (9) 

where η(k) is a learning rate parameter. 
To accelerate the learning process, we can introduce the 

optimised adaptive algorithm based on the procedure (9) in the 
form: 

 

[2] [2]

[2]T [2]
[2]

[2]
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( ) ( 1)

( ) ( 1)μ ( ( ))
μ ( ( ));
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i i

i i i
i

i

i i i

k w k

x k w k y k
y k

r k

r k r k y k

  

where α is a smoothing parameter, which defines the learning 
rate parameter: 

   1[2]η( ) ( )


 ik r k .  

Tuning the synaptic weights of a hidden layer is performed 
using a backpropagation algorithm; thus, we can use the 
procedure (9), which can be rewritten in the form: 

2
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w k k e k x k w k

y

(10) 

It follows from (6) that  
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for uniformly distributed centres using the notations in the 
form: 
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we can rewrite (11) in a more compact form: 
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Further introducing the notation in the form 

 

[2] [2]
, , 1 , ,
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( ) , if [ , ] ( ),
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j i j l i j l

h
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c y c c

w k c y c c w k  (13) 

the expression (10) can be rewritten in the compact form: 

 [1] [1] [1] [2]( ) ( 1) η( ) ( )μ ( ( )) ( )   jil jil i jil i ijw k w k k e k x k w k .  

This procedure is different from an output layer learning 
algorithm (9) only by multiplayer (13). 

Therefore, the backpropagation procedure in a multilayer 
system, which is based on the neo-fuzzy neurons, is simpler in 
a computational sense than learning of multilayer perceptron 
[3], [4]. 

IV. RESULTS OF SIMULATION 
For effectiveness verification of the proposed neo-fuzzy 

autoencoder, the data sets were taken from UCI Repository [20]: 
Iris, Wine, Hayes-roth. Data set “Iris” contains 150 observations 
(Number of Attributes: 4) of 3 classes, Data set “Wine” contains 
178 observations (Number of Attributes: 13) of 3 classes, data 
set “Hayes-roth” contains 160 observations (Number of 
Attributes: 5) of 3 classes.  

The results, which were obtained using the proposed neo-
fuzzy autoencoder, were compared with the results of 
autoassociative multilayer neural network “Bottle Neck”. The 
dimension of compression data was 2 components. The 
simulation was performed 20 times with different initial 
condition and the results were averaged. 
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TABLE I  
 RESULTS OF SIMULATION 

Autoencoders 
Data 
Sets Error 

Learning time, sec 

Min Avg Max 

Neo-fuzzy 
autoencoder 

Iris 0.238 3.51 4.16 4.82 

Wine 0.521 3.99 4.52 5.06 

Hayes-
roth 0.323 2.45 3.13 3.73 

Autoassociative 
three-layer neural 
network “Bottle 
Neck” 

Iris 0.486 4.04 5.43 6.82 

Wine 0.903 6.54 6.80 7.06 

Hayes-
roth 0.593 3.21 3.59 3.98 

 
As it is seen from Fig. 3, data that are compressed using a 

neo-fuzzy autoencoder are more compact clusters than data that 
are compressed based on the autoassociative multilayer neural 
network “Bottle Neck”.  

 

a) 

 

b) 

Fig. 3. Data set Hayes-roth after compression based on the autoassociative 
multilayer neural network “Bottle Neck” (а) and the neo-fuzzy autoencoder (b). 

V. CONCLUSION 
In the paper, the neo-fuzzy autoencoder has been proposed. 

This autoencoder has a two-layer architecture with the neo-
fuzzy neurons as the units. The simple learning algorithm based 
on a backpropagation algorithm, which allows information 
processing in online mode, has also been proposed in the paper. 
The autoencoder is characterised by the computational 
simplicity and high learning speed of its parameters. 
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