
Information Technology and Management Science

85

ISSN 2255-9094 (online)
ISSN 2255-9086 (print)
December 2016, vol. 19, pp. 85–91
doi: 10.1515/itms-2016-0016
https://www.degruyter.com/view/j/itms

©2016 Henrihs Gorskis.
This is an open access article licensed under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), in the manner agreed with De Gruyter Open.

Improved Database Schema Development for OWL2
Henrihs Gorskis

Riga Technical University

Abstract – This paper proposes a novel approach to storing
ontologies in relational databases. The approach consists of a
database schema, which was created to be capable of storing
ontology information defined in OWL2 (Web Ontology Language
2) functional syntax. The paper explains how the schema has been
designed and what advantages it offers to any user. The described
schema is part of a larger system. This paper also discusses how
the schema cooperates with the external system, which, however,
is outside the scope of this paper, to successfully create, store and
retrieve ontology knowledge from the functionality offered by the
relational database. Further, this paper describes the
implementation of the proposed method in prototype software.
The described schema shall be the first step of the creation of an
ontology-based database access system.

Keywords – Database, intelligent system, ontology, semantic

knowledge.

I. INTRODUCTION

Ontology describes entities using concepts, individuals and
properties. The entities described by the ontology are important
in the context of some domain. Therefore, the ontology also
describes the domain. Usually the knowledge contained in the
ontology is semantic by nature. This means that the ontology
describes similar or related entities in a way analogous to the
human language. In information technology, ontology is related
to artificial intelligence and systems capable of some reasoning.
It is concerned with the definition and relation of terms.
Semantic knowledge stored in an ontology model is a powerful
tool to describe and define conceptual information in addition
to existing data. This allows for the classification of data with
additional concepts. By examining the properties of some units
of data and comparing these properties to descriptions within
the ontology, it is possible to conclude associations to named
and unnamed concepts. It, therefore, provides additional
descriptive information to the user of the data. This makes
ontology perfect for an additional meta layer on top of classical
data structures to describe knowledge about the data in a way
that the data themselves do not provide.

In whatever way the system uses its knowledge, it first has to
store it somewhere. There are already many storage solutions
for ontology knowledge. However, these solutions are not
always the best approach in all situations. This paper presents a
database schema for fast and simple storage of ontology
knowledge in a relational database. The proposed schema is
tuned for systematic extraction of information on an entity-to-
entity basis. This means that the stored information about
ontology entities can be extracted step-by-step, without the
need for obtaining all ontology information at the same time.

The schema described in this paper is part of a larger system
using ontology definitions for accessing data in a typical
relational database. One of the abilities of this related system,

which requires ontology, is to access related data named by an
ontology concept. This is part of a larger project still, which
aims to integrate ontology capabilities into existing solutions.
There are already many systems that use databases for their
needs. In order to integrate ontology functionality into those
systems, an additional, low-impact module is desired. Figure 1
shows how an ontology model could be added to an existing
system. The requirements of the system are the possibility of
accessing the ontology from the already existing database,
without drastically changing its structure or having a large
impact on it. The primary purpose of the database schema is to
work with this system. However, due to the schema general
design and ease of use, it can be applied in other situations as
well.

II. CURRENT ONTOLOGY STORAGE SOLUTIONS

The existing solutions for ontology storage range from very
complex to fairly simple. However, none of the solutions found
in other papers are completely satisfying the intended needs of
the previously mentioned system. As a previous analysis of
existing solutions has shown [1], many of them have a large
impact on the database. For example, the solutions provided by
the “Apache Jena” project [2] require additional databases,
specifically formatted for their intended use. Their first solution
for ontology persistence is called TDB and is used to store
triples. The second solution proposed by Jena uses a separate
database service, altogether, called “Fuseki”. This would
require the second database management system purely for
ontology storage. Both solutions would have a considerable
impact on any existing system.

An additional obstacle to already existing solutions is that
many technologies described in literature have already aged and
are not usable today. Even popular tools, such as Protégé, have
the problem that some of the technologies developed for a
previous version are not available anymore in the newest
version. All these factors have led to the need to develop a
simpler solution.

Main database
Data & ontology

Pre-existing
system using a

relational database

Ontology system
for reasoning and

storage management

+

Fig. 1. System integration scheme.

Information Technology and Management Science
 ___ 2016/19

86

There are also approaches that use common relational
databases to store ontology information [3].

Conversions from OWL to database schemas can be
performed by using RDF information provided in XML [4],
storing a very raw representation of the XML data in the
ontology. More functional methods generate relational database
schemas [5], [6] or object-oriented database types and schemas
[7], [8] from ontology knowledge. The creation of database
schema from an RDF centric approach is also possible [9].
These approaches create a database schema based directly on
the knowledge contained in the ontology. As a result, this will
yield different ontological domain descriptions in different
schemas. Such an approach has the advantage of never having
unused tables or columns, since the entire structure is based on
the existing knowledge. Another advantage is that any type and
data are represented in the database using primitive types of the
database and ontology related tables can be directly unified with
other data in the database. Moreover, some restrictions are
implemented using database functionality. The disadvantage is
that the generated schemas are not universal. Some of these
approaches are not capable of translating all the information
contained in the OWL description. Furthermore, the sizes of the
schemas are dependent on the amount of knowledge in the
ontology. A larger description will result in a larger schema.
Some of the methods for creating database schemas from
ontology create some generalised tables [10]. The considered
methods sometimes use concept names directly as references to
concepts. This differs from the proposed schema, which uses
identification numbers.

Another approach is to use the database to store mapping
rules to ontology concepts [11] described in RDF triplets. Some
approaches work directly with OWL solutions and files. It often
seems to be desired to add functionality to OWL and ontology
in general, which is not typically present. For example, [12]
presents an approach for adding constraints to OWL, so that it
is better suited for data input.

Some approaches store ontology information in files; others
store them in special databases. In the case when the ontology-
based system uses a specialised database, it leads to two
possibilities: (1) the specialised database is a separate service
requiring the maintenance of a separate database solution or (2)
the system uses an existing relational database solution, but
transforms or creates a database schema to a specific structure
based on its needs. This usually makes it very difficult to store
additional information alongside.

III. DESIGN OF THE INDEPENDENT SIMPLE SCHEMA

The method described in this paper is based on the popular
web ontology language OWL2 and, specifically, its functional
syntax. The reason why the functional syntax has been chosen
is that it closely follows the structural specification of OWL2
and most directly exposes the purpose of OWL2 [13], [14]
without lengthy definitions of basic parts of the ontology, unlike
the XML/RDF (Resource Description Framework) syntax. By
basing the database scheme design on the needs of OWL2, it is
anticipated that the information stored in such a schema will be
capable of describing all the important aspects of any ontology

knowledge. The present research is a continuation of a previous
database scheme proposed in [1]. Some important changes are
the considerable reduction of the table count. This has been
done to simplify the approach and minimise the impact on the
database in cases when the ontology is stored alongside other
pre-existing information. In addition, many tables in the
original design did not hold unique data, which would justify
them to be in separate tables, because the difference could be
inferred. The final database schema consists of only six tables.
Figure 2 shows the final structure of the database, its tables,
columns and type values.

A. Types and References

The “entities” table has a column describing the type of the
entity and the “attributes” table has a column describing the
type of the relation or attribute relation between two entities.
Usually in cases when there is a type in databases, there are
several approaches for implementing them. The first approach
is to create an enumerator if the database offers such
capabilities. The second approach is to create a separate table,
holding the different values and referencing these values by ID.
There is the third, less elegant approach of simply using an
integer value for the type, and pushing the burden of
understanding of the numeric value to the user or related
system. Since the proposed schema is more concerned with the
storage of ontology information and it is desired to do so with
the smallest impact, exactly this approach has been chosen.
Since enumerators are not supported by all databases, it was
decided not to use them. Enumerators are also difficult to
maintain because changing them leads to the corruption of the
database. It was also decided not to use an additional table,
exclusively for storing unique values, to keep the impact of the
ontology storage low. The related ontology-extraction system,
for managing ontology information in the database, has to have
the implementation of the types used in the tables. Another
reason, why an external solution to type values has been chosen,
is the hierarchical relations between the types. The type “individual”
is an extension of the type “value”. “SomeValuesFrom” is an

Entities

USID PrefixID Name Type

INT String

0000 Unknown
0010 Comment
0011 ____Other
0110 Prefix
0111 ____ThisOntologyPrefix
0200 Import
1000 Type
1001 ____Thing
1100 ____Class
1110 ________ComplexClass
1111 ____________hasSelf
1112 ____________SomeValuesFrom
1113 ____________AllValuesFrom
1114 ____________HasValue
1115 ____________MinCard
1116 ____________MaxCard
1117 ____________ExactCard
1118 ____________ComplementOf
1120 ________ClassCollection
1121 ____________ClassIntersection
1122 ____________ClassUnion
1123 ____________ClassOneOf
1124 ____________DisjointUnion
1200 ____DataType
1210 ________DataCollection
1211 ____________DataIntersection
1212 ____________DataUnion
1213 ____________DataOneOf
1220 ________DatatypeRestriction
2000 Value
2100 ____Data
2200 ____Individual
3000 Property
3100 ____DataProperty
3200 ____ObjectProperty
3210 ________Chain
3220 ________ObjectInverseOf
3300 ____AnnotationProperty

Integer

Attributes

TID EntityID TargetID Number Type

INT INT INT

1100 ClassKey
0001 SubOf
0002 EquivalentTo
0003 DisjointFrom
1221 minInclusive
1222 maxInclusive
1223 minExclusive
1224 maxExclusive
1225 enumeration
1226 pattern
1300 Collection Item
3210 Chain Item

INT

Complex Classes

TID EntityID Number PropertyID TEntityID

INT INT INT INT Integer

Property Assertions

TID EntityID Positive PropertyID ValueID

INT INT Boolean INT INT

Properties

TID EntityID Domain Range Functional

INT INT Integer Integer Boolean

Object Properties

TID EntityID Symmetric Asymmetric Reflexive Irreflexive InverseFunctional Transitive

INT INT Boolean Boolean Boolean Boolean Boolean Boolean

Fig. 2. The database schema.

Information Technology and Management Science
 ___ 2016/19

87

extension of “Complex class”, which, in turn, is an extension of
“Class” and so on. This hierarchical approach allows multiple
related types of entities to be obtained at the same time. It was
chosen to implement this functionality using external solutions.

As can be seen from Fig. 2, all references in the schema are
connected exclusively to the “entities” table. This means that all
references are external keys to the unique primary key of the
entity. Although only entities are referenced, all tables have
been given identifiers. This is done for simplicity of
maintaining the database. For example, if a record in one of the
tables needs to be updated, the update function can use ID to
reference the specific record.

B. Ontology Functions of the Schema Tables

At the very core of the schema, there is the entity table.
It contains all unique ontology entities. An entity is a piece of
named or unnamed information describing a concept,
individual, property or value. The entity is uniquely identified
by a prefix and name. It is the combination of prefix and name,
which should be unique in the ontology. Most self-sufficient
ontology descriptions, in most cases, should not have two or
more entities with the same name. It is only in cases when
entities from other ontology descriptions or schemas are used,
which necessitates the use of prefixes to distinguish them from
each other. Name and prefix are, of course, related, since they
only both together provide the full URI (Uniform Resource
Identifier) of the entity. The other distinguishing feature, apart
from the name and prefix, is the entity type. Any entity should
have only one type. Type conflicts can arise only in cases of
“OWL full”, when any given entity can be a concept and an
individual, and maybe others, at the same time. The schema
described in this paper focuses on storing “OWL DL”
(Description Logic) type ontology knowledge. The type of an
entity is an important part of this approach, since its secondary
purpose is to provide hints to the ontology information retrieval
systems about where to obtain additional information from the
database. For example, if the entity has a “property” type, it
means that there is a hint to search the “Properties” table for
additional information about this entity. The function of all the
other tables in this schema is to provide additional information
about the entities from the “Entities” table.

The “Properties”, “Object properties” and “Complex
classes” tables are the only tables, which directly extend the
entity. They are connected to the entity table in a one-to-one
relationship. The columns “Entity ID” in these tables are used
to trace the relationship to the core entity. In case of an entity
of the type “Object property”, both the tables “Properties” and
“Object properties” are needed to provide all information about
the object property aspects of the entity. In case of data
property, only information from the “Properties” table is
required. The table “Property assertions” is used for individuals
and annotations to define relationships between entities using
properties. The assertions are made about the relations of one
individual to both, other individuals using object properties, and
data using data properties. Since there can be multiple types of
annotations defined by annotation properties, they also need to

be described by using this table. Of course, annotation
assertions can only be positive.

The “Complex classes” table provides the descriptions
necessary for the definition of some, but not all complex
classes. This table is used only for those complex classes that
are defined by their relationship to other entities using
properties. This includes cardinality classes, but excludes
complex classes based on grouping. This is conceptually
different from the property assertion table. Cardinality classes
are the ones using the column “Number” for the restriction of
minimal, maximal or the exact count of relations. Collection-
based complex classes are defined by grouping not by
relationships; therefore, they do not require any data from this
table. Groups are defined using the “Attributes” table.

The table named “Attributes” provides all the information
about how entities are directly related to each other, without the
use of property relations in between. This table includes
information about subtyping, classification, distinction and
grouping. The relation is defined by providing references to
both entities and the type of the relation. Some relations, such
as the equality relation, can be viewed as directionless. Others
are directed from the first entity, pointed to by the column
“Entity ID”, to the second one, pointed to by the column
“Target ID”. Collections are defined by pointing from the
entity representing the collection itself to all its members. Most
collections are unordered, except for the property chain, which
is also viewed as a collection in the described approach. Since
the order of the property entities, used to define the chain, is
important, they have to be ordered. The order is achieved by
providing a number, describing the position of the entity within
the chain.

In response to the complexity of defining a new data type by
using data type restrictions, it has been decided to exclude a
table responsible for that task. Instead, all data type restrictions
are defined by creating a data type entity and using attributes to
describe the restrictions.

C. Translation of Statements Written in the OWL2 Functional
Syntax to the Database Schema

This section describes how different statements written in the
OWL2 functional syntax are translated and stored in a database
using the proposed schema.

Prefixes. Prefixes are defined in the functional syntax using
the operator “Pre-fix”. Prefixes are added to the database using
two records in the “Entities” table. Both records will have the
prefix type assigned to them. First, the full prefix URI is added.
The full version of a prefix, for example, “http://www.w3.org/
2002/07/owl” as its name, does not have a value in its prefix
columns, in the table. Once the full URI exists in the database
and has an ID associated with it, the second prefix entity is
created. The second entity holds the short version of the prefix
in its name, for example “owl”. This prefix entity also does not
have a value in its prefix column. Entities of the prefix type
should be the only ones without a prefix themselves. All other
entities should have a prefix, usually the ontology main prefix
if no other is specified. The short prefix is linked to the full URI
using a record in the “attributes” table of the type “EquivalentTo”.

Information Technology and Management Science
 ___ 2016/19

88

The OWL2 functional syntax also uses the operator
“Ontology”. The ontology definition is used in OWL2
documents to relate all other entities and relation to the ontology
they are defined in. It is the responsibility of the converter to
keep track of entities belonging to the ontology. As far as the
schema is concerned, this keyword defines the main ontology
prefix. By creating a prefix using the “ThisOntologiesPrefix”
type, a prefix for the ontology is defined. Any entities defined
within the “Ontology” operator will be given the ontology
prefix automatically.

Imports. Imports are defined using the operator “Import”.
Handling of imports is outside the scope of this paper. However,
an entity of the type “Import” is created in the “entities” table.
This is done so as not to lose the reference to other ontology.
Depending on the implementation of the translation function,
the referenced ontology can be stored in the database as well.
Otherwise, the referenced ontology has to be accessed, when
needed, from an external system.

Declarations. The following operators are used in OWL2 to
declare the existence of named entities: “Declaration”, “Class”,
“DataProperty”, “ObjectProperty”, “NamedIndividual”,
“Datatype” and “AnnotationProperty”. All these keywords are
related to the declaration of new entities and are usually found
at the beginning of the ontology in the OWL2 document. The
result of translating them into the database is very similar. For
each type, a new entity is created with the name provided in the
declaration. The entity is linked to its prefix. The type is
assigned accordingly. In case of any property declaration, a
record in the “Properties” table is also created. This record is
linked back to the newly created entity using the “Entity ID”
column in the “Properties” table. In the case of an object-
property entity, a new record in the “Object properties” table is
also created in addition to the one in the “Properties” table. It is
also linked back in the same fashion. The named entities should
be added first, since their records in the database have to be
referenced for the creation of other, more complex entities.

Direct entity relations. Operators for the description of
direct relations between entities are: “SubClassOf”,
“EquivalentClasses”, “DisjointClasses”,
“InverseObjectProperties”, “SubDataPropertyOf”,
“SubObjectPropertyOf”, “Equivalent-DataProperties”,
“EquivalentObjectProperties”, “DisjointDataProperties”, “Dis-
jointObjectProperties”, “HasKey”, “SameIndividual”,
“DifferentIndividuals”, “ClassAssertion”. All these operators
define a simple relation between two entities within the
ontology. All of them correspond to records in the “Attributes”
table. The attributes table links the referenced entities using the
“Entity ID” and “Target ID” columns. The type of the relation
is defined using the corresponding type from the attribute types.
They all will have a zero value in the “Number” column. Some
of the operators will use the same type of attribute.
“SubClassOf” and “ClassAssertion” can both use the type
“SubOf”, since the exact type of the relationship can be inferred
by the type of the related entities.

Property specific attributes. Keywords describing
properties are: “InverseFunctionalObjectProperty”,
“ReflexiveObjectProperty”, “IrreflexiveObjectProperty”,

“SymmetricObjectProperty”, “AsymmetricObjectProperty”,
“TransitiveObjectProperty”, “DataPropertyDomain”,
“ObjectPropertyDomain”, “DataPropertyRange”,
“ObjectPropertyRange”, “FunctionalDataProperty”,
“FunctionalObjectProperty”. Statements using these operators
describe aspects of properties. The last three operators are used
to update information in the “Properties” table. The domain and
range of the properties are defined using references to entities
from the main entity table in the columns named “Domain” and
“Range”. The asserted functionality of the property is stored in
the “Functional” column of the “Properties” table. All the other
descriptions of an object property are stored in the “Object
properties” table.

Property assertions for individuals. Assertions are defined
using “DataPropertyAssertion”, “ObjectPropertyAssertion”,
“NegativeDataPropertyAssertion” and
“NegativeObjectPropertyAssertion”. These assertions are
related to individuals in the ontology. The table “Property
assertions” holds the information related to both data and object
properties of an individual. The column “Entity ID” in this table
holds the reference to the individual who possesses these
properties. The column “Positive” stores a Boolean value
indicating whether the assertion is a normal positive assertion
or a negative assertion. The column “Property ID” holds the
reference of the type of property this assertion uses. The last
column “Value ID” holds a reference to the entity, which
represents the target object in the case of an object property
assertion or the value in the case of a data property assertion.
Values are also stored in the entity table using the type “Data”
and linked to their XSD (XML Schema) type entity using a
“SubOf” attribute.

Annotation assertions. Annotations are linked to any entity
by using the “AnnotationAssertion” operator. There are two
kinds of annotations in OWL2. First, inline annotations can be
added to most entities during their declaration, alongside the
description. Second, annotation can be added to entities by
using the annotation assertion mechanism. In both cases,
annotations are added to the database as annotation entities and
linked to the entity, which is being annotated by using the
“Property assertions” table. The column “Property ID”
indicates the type of annotation.

Collection-based complex classes. These complex classes
are defined using “DataIntersectionOf”,
“ObjectIntersectionOf”, “DataUnionOf”, “ObjectUnionOf”,
“DisjointUnion”, “DataOneOf”, “ObjectOneOf”,
“DataComplementOf”, “ObjectComplementOf” and
“ObjectInverseOf”. All the complex classes defined by these
operators can be represented in the database by creating a new
entity with the related type. Members are added using the
“attributes” table. For example, in case of data union a new
entity is created in the “entities” table. This entity will have the
ontology prefix, automatically generated name, since complex
classes themselves are usually nameless, and the type
“DataUnion”. Once the core entity is created, additional records
in the “Attributes” table are needed. In this case, these will be
records of the type “Collection item”, where “Entity ID” is a

Information Technology and Management Science
 ___ 2016/19

89

reference to the union entity and “Target ID” will be references
to the member entities mentioned in the operator parameters.

Definition of an object-property chain. Chains are defined
using “ObjectPropertyChain”. Chains are very similar to
complex classes representing collections. The largest difference
to collections is the use of the “Number” column in the
“Attributes” table. This is necessary for the specification of the
order of the object properties in the chain. This would not be
very important for chains where every object property is the
same, and only the number of links in the chain is important.
However, for more complex chains, consisting of different
object-properties, the structure of the chain should be preserved.

Relation-based complex classes. Complex classes based on
relationships to other entities using properties are defined by
“DataSomeValuesFrom”, “ObjectSomeValuesFrom”,
“DataAllValuesFrom”, “ObjectAllValuesFrom”,
“DataHasValue”, “ObjectHasValue”, "ObjectHasSelf",
“DataMinCardinality”, “ObjectMinCardinality”,
“DataMaxCardinality”, “ObjectMaxCardinality”, “DataExact-
Cardinality” and “ObjectExactCardinality”. Cardinality
classes, as well as some other complex classes are stored in the
database using the “Complex classes” table. The common
characteristic of these concepts is that they are defined by their
relations to other concepts. Therefore, the table holds references
to the identifiers of both properties and target entities.

Cardinality classes will additionally need a numeric indicator of
how many relations are allowed. The “Target ID” column is
optional to those complex classes because it allows for
specifications of only properties.

Data type definitions. New data types are defined using
“DatatypeRestriction” and “DatatypeDefinition”. In case of a
simple new data type, which is based on one of the XSD data
types, a new data type entity is created and by using a “Sub-Of”
attribute, the relation to the basic type is established. However,
in case of a more complex data type with restrictions, multiple
attributes are needed to describe the restriction. Because of the
complexity of describing a restriction, no separate tables were
created for that purpose. A restriction entity is created, and
using the relevant attributes from the “Attributes” table the
restriction is described. Values are also stored as entities in the
“Entities” table.

IV. IMPLEMENTATION OF THE SCHEMA IN JAVA WITH DERBY

Both the described database schema and the translation rules
have been implemented in a prototype. The prototype has been
written in JAVA. It uses an embedded Derby database. At this
point in time the prototype is capable of opening an OWL2 file,
written in the functional syntax, and translating the contained
knowledge into the database. Figure 3 shows a view of the
database containing ontology entities.

Fig. 3. Database view of the ontology data.

Information Technology and Management Science
 ___ 2016/19

90

The current process involves creating an ontology using
Protégé. Protégé is a very convenient tool for working with
ontology. Once the ontology is defined, it is stored in an OWL
file. This allows for further modification at a later point in time.
The created file can be opened by the developed prototype. The
prototype creates a model of the information and creates a list
of unique entities. The entities are added to the database main
entity table. Additional data are also added to the surrounding
tables using references to the entities. Named entities are added
first. Next, entities using named entities in their definitions are
added. Entities using other complex entities in their definitions
are added as soon as all the entities they depend on have been
added first.

The information contained in the database can be accessed
by the prototype. At this point in time, the prototype is capable
of obtaining a list of all entities based on type. This is
convenient when it is necessary to obtain concepts or other
specific parts of the ontology. It is also possible to obtain
entities by their name. Once, one or more entities are obtained,
it is possible to systematically expand them. For example, based
on the “SubOf” relationship stored in the “Attributes” table, it
is possible to find the direct ancestors of a chosen entity. Since
the ancestors are pointed to by their ID, it is possible to obtain
their names. In those cases, when the names of the related
entities are enough, no further steps should be taken. However,
if any of the found entities are of further interest, additional
information can be obtained as needed. The depth of the search
and the completeness of any entity are optional.

The created prototype is also capable of using the ontology
information, contained in the database for reasoning, and other
related ontology tasks.

V. CONCLUSION

This paper described the proposed database schema for any
ontology-based system requiring easy access to ontology
knowledge. The proposed schema makes it possible to obtain
needed pieces of the ontology, or the full ontology, from any
point, capable of accessing a database. Because of the none-
complicated nature of the schema, any solution can make use of
the proposed method. This is possible because of the core entity
list. Any software agent capable of accessing a database can use
the central entity list as a dictionary. By querying the “Entities”
table and providing a type value as a filter, anyone can obtain a
list of names relevant to the described domain. No additional
ontology knowledge or reasoning capabilities are needed for
this simple task. A more complex tool can obtain more than just
the names and use the ontology to its fullest extent.

It should be noted that there are some downsides. The
proposed schema is purely for storage and does not provide any
reasoning or integrity control. It is the knowledge engineer duty
to make sure that the knowledge is correct and complete.
However, since the proposed schema is part of a larger system,
these tasks will be part of that system and can be done
automatically. Another particularity is that primitive data are
stored in text form. Numeric data mentioned in the ontology
will be translated into data entities. The data themselves are
stored in the entities name. This leads to the necessity of parsing

text into numeric values before they can be used for numeric
operations. Additional actions may have to be performed for
other types of primitive data as well. Some minor loss of
information, related to annotations, does occur. For example,
there is no way to distinguish between inline comments and
annotation assertions of comments. In OWL2 it is possible to
annotate a direct relation (“EqualTo”, “SubOf”, etc). In the
schema only annotation of entities is possible at this time.

The described database schema and method for converting
OWL2 files are sufficient to store all the knowledge described
in the file with almost no loss of information.

The discussed schema is simple to implement in any
relational database. It is possible to add it to an existing database
or to create a new dedicated database specifically for the
ontology.

ACKNOWLEDGMENT

The present research has been supported by Doctoral Studies
Grant No. 3412000-DOK.DITF awarded by the Faculty of
Computer Science and Information Technology (Riga
Technical University).

REFERENCES
[1] H. Gorskis and A. Borisov, “Storing an OWL 2 Ontology in a Relational

Database Structure,” in Environment. Technology. Resources.
Proceedings of the International Scientific and Practical Conference,
vol. 3, 2015, pp. 71–75. https://doi.org/10.17770/etr2015vol3.168

[2] The Apache Jena homepage. [Online]. Available: https://jena.apache.org
Accessed: March 20, 2016.

[3] M. Sir, Z. Bradac and P. Fiedler, “Ontology versus Database,” in IFAC-
PapersOnLine, vol. 48, issue 4, pp. 220–225, 2015.
https://doi.org/10.1016/j.ifacol.2015.07.036

[4] A. Gali, C. X. Chen, K. T. Claypool and R. Uceda-Sosa, “From ontology
to relational databases,” in Conceptual Modeling for Advanced
Application Domains: ER Workshops 2004 (Lecture Notes in Computer
Science), S. Wang et al. Eds., Berlin, Germany: Springer, vol. 3289, 2004,
pp. 278–289. https://doi.org/10.1007/978-3-540-30466-1_26

[5] L. T. T. Ho, C. P. T. Tran and Q. Hoang, “An Approach of Transforming
Ontologies into Relational Databases,” in Intelligent Information and
Database Systems: 7th Asian Conference, ACIIDS (Lecture Notes in
Computer Science), 2015, pp. 149–158.
https://doi.org/10.1007/978-3-319-15702-3_15

[6] I. Astrova, N. Korda and A. Kalja, “Storing OWL ontologies in SQL
relational databases,” International Journal of Electrical, Computer and
Systems Engineering, vol. 1, no. 5, 2007, pp. 242–247.

[7] I. Astrova, A. Kalja, E. Jaeger, M. Jones, B. Ludascher and S. Mock,
“Storing owl ontologies in sql3 object-relational databases,” in AIC’08 –
Proceedings of the 8th Conference on Applied Informatics and
Communications, Rhodes, Greece, 2008, pp. 99–103.

[8] F. Zhang, Z. M. Ma and W. Li, “Storing OWL ontologies in object-
oriented databases,” Knowledge-Based Systems, vol. 76, pp. 240–255,
March 2015. https://doi.org/10.1016/j.knosys.2014.12.020

[9] E. Vysniauskas and L. Nemuraite, “Mapping of OWL ontology concepts
to RDB schemas,” in Information Technologies' 2009: Proceedings of the
15th International Conference on Information and Software
Technologies, 2009, pp. 317–327.

[10] E. Vysniauskas and L. Nemuraite, “Transforming ontology representation
from OWL to relational database,” Information Technology and Control,
vol. 35, no, 3, pp. 333–343, 2015.

[11] G. Bumans, “Mapping between Relational Databases and OWL
Ontologies: An Example. Scientific Papers,” Computer Science and
Information Technologies, vol. 756, pp. 99–117, 2010.

[12] B. Motik, I. Horrocks and U. Sattler, “Bridging the gap between OWL
and relational databases,” Web Semantics: Science, Services and Agents
on the World Wide Web, vol. 7, issue 2, pp. 74–89, Apr. 2009.
https://doi.org/10.1016/j.websem.2009.02.001

Information Technology and Management Science
 ___ 2016/19

91

[13] OWL 2 Web Ontology Language Structural Specification and Functional-
Style Syntax (Second Edition). [Online]. Available:
https://www.w3.org/TR/owl2-syntax Accessed: March 20, 2016.

[14] OWL 2 Web Ontology Language Primer (Second Edition). [Online].
Available: https://www.w3.org/TR/owl2-primer Accessed: March 20,
2016.

Henrihs Gorskis is a fourth-year Doctoral student majoring in Information
Technology at Riga Technical University (RTU). He received his Mg. sc. ing.
degree in 2013. He is currently employed as a Researcher at RTU. His research
interests include data mining, ontology engineering, ontology-based database
access and evolutionary computing and programming. He is especially fond of
the Java programming language and uses it for both work and personal
application development.
E-mail: henrihs.gorskis@rtu.lv

