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Abstract – In this paper, the NDVI time series forecasting model 
has been developed based on the use of discrete time, continuous 
state Markov chain of suitable order. The normalised difference 
vegetation index (NDVI) is an indicator that describes the amount 
of chlorophyll (the green mass) and shows the relative density and 
health of vegetation; therefore, it is an important variable for 
vegetation forecasting. A Markov chain is a stochastic process that 
consists of a state space. This stochastic process undergoes 
transitions from one state to another in the state space with some 
probabilities. A Markov chain forecast model is flexible in 
accommodating various forecast assumptions and structures. The 
present paper discusses the considerations and techniques in 
building a Markov chain forecast model at each step. Continuous 
state Markov chain model is analytically described. Finally, the 
application of the proposed Markov chain model is illustrated with 
reference to a set of NDVI time series data. 

 
Keywords – Continuous state space, Markov chains, NDVI, 
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I. INTRODUCTION 

Remote sensing has shown great opportunities in vegetation 
mapping and monitoring over the past decades. Remote sensing 
data such as satellite images can be obtained fast, regularly; 
images cover large areas and remote sensing is cost effective 
compared to traditional vegetation mapping and monitoring 
methods. Vegetation indices obtained from satellite images are 
used to describe vegetation properties [2]. One of the most 
popular vegetation indices is the normalised difference 
vegetation index (NDVI). The NDVI is a numerical indicator 
that uses the ratio between spectral reflectance measurements 
obtained in red and infrared bands of the electromagnetic 
spectrum [1]. The NDVI has found a wide application in 
vegetative studies such as forestry, agriculture, food security 
and water management. In order to obtain NDVI values, the red 
band values are subtracted from the near-infrared band values 
and divided by the sum of near-infrared and red bands:  

 ,  (1) 

where NIR is the spectral reflectance value in near-infrared 
band and R is the spectral reflectance value in red band [3]. The 
NDVI takes values between −1 and 1; however, the typical 
range is between about 0 to 0.9. Negative values of NDVI 
(values close to −1) correspond to water. Values close to zero 
correspond to barren areas of rock, sand, or snow. Low and 
medium positive values represent shrub and grassland, while 
high values (close to 1) correspond to dense vegetation, for 
example, forests [15]. When analysed through time, the NDVI 
can show where vegetation is healthy and where it is under 

stress, as well as changes in vegetation due to human activities 
such as deforestation or natural disasters such as wild fires.  

Many decisions are accepted within the context of 
randomness. In order to calculate, understand, and predict the 
effects of randomness, one special type of stochastic processes 
named Markov chains is examined in this paper. Markov chains 
are usually used in modelling many practical problems and are 
useful in studying the evolution of systems where the state of 
the system cannot be determined with certainty [4]. Therefore, 
Markov chains are often used for capturing dynamic behaviour 
with a large stochastic component [5]. They are also effective 
in modelling time series. If a Markov chain can model the time 
series accurately, then good predictions and optimal planning in 
a decision process can be made [6].  

In their previous research [3], the authors used discrete time, 
discrete state first order Markov chains in order to obtain short-
term forecasts of the NDVI time series. The aim of the 
experiment described in this paper is to examine accuracy of the 
discrete time, continuous state m-th order Markov chains 
combined with feature selection method – stepwise regression 
and feature extraction method – principal component analysis 
as data pre-processing methods in the NDVI time series 
forecasting problem. 

II. STUDY AREA AND DATA ACQUISITION 

A. Study Area 

Ventspils Municipality is the municipality in Courland, 
Latvia. Its area is 2472 km2 (Fig. 1). 

 

Fig. 1. Ventspils Municipality. 

One pixel with spatial resolution of 250 m (Fig. 2) was selected 
as a test site. 
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Fig. 2. Test pixel with spatial resolution of 250 m. 

Therefore, the size of a test site is 250 m by 250 m. A moderate 
climate zone with significant maritime elements is dominating 
in this area.  

B. NDVI Data Set 

Multi-temporal MODIS Terra NDVI images with spatial 
resolution of 250 m and temporal resolution of 7 days (Fig. 3) 
were used in this study. Data were obtained from data service 
platform for MODIS vegetation index time series processing at 
BOKU, Vienna [7]. The used data were smoothed and gap-
filled using the Whittaker smoothing algorithm with smoothing 
parameter λ = 15 and two filtering iterations [8]. Iterative 
filtering was used because undetected clouds and poor 
atmospheric conditions decreased the observed NDVI values. 

 

Fig. 3. MODIS Terra NDVI satellite image. 

The data set contains 814 smoothed NDVI images obtained 
every 7 days within 15 years. NDVI values of these images 
were collected for corresponding test pixel and NDVI time 
series was obtained (Fig. 4).  

 

Fig. 4. Smoothed NDVI time series from 18 February 2000 to 27 July 2015. 

Table I summarises the descriptive statistics of the NDVI 
time series.  

TABLE I 

DESCRIPTIVE STATISTICS 

 NDVI 

Observations 814 

Mean 0.4965 

Median 0.5171 

Maximum 0.9109 

Minimum −0.0050 

Standard deviation 0.2492 

Skewness −0.3591 

Kurtosis 1.9533 

 
The NDVI time series data show seasonal oscillations, which 
correspond to the vegetation phenological cycles. Maximum 
NDVI values conform to the period between May and August, 
and minimum values conform to the period between November 
and February. 

III.  MARKOV CHAINS 

A Markov chain is a stochastic process X = {Xn; n = 0, 1, …} 
that sequentially moves from one state to another in the state 
space [9]. A Markov chain consists of state space S, which is a 
set of values that the chain can take and a transition operator 
that determines the probability of moving from one state to 
another. Transition operator can help to determine the 
probability that system will go to a certain state in the next 
period.  

If the state space of a Markov chain takes on a finite number 
of distinct values, then the transition operator can be defined by 
a matrix that it is always nonnegative and where the sum of the 
elements in each row equals one. Markov chain is said to have 
stationary transition probabilities if: 

 }|Pr{}|Pr{ 101 iXjXiXjX nn   .  (2)
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A Markov chain can also have a continuous or uncountable 
state space that can take all real numbers. In this case, the 
transition operator cannot be defined simply as a probability 
transition matrix. Continuous state space Markov chain also has 
a stationary distribution. However, the stationary distribution 
will also be over a continuous set of variables. For a continuous 
state Markov chain, the true underlying transition probability 
for any current state is unique, but expected to be smoothly 
varying with changes in the initial state [10]. 

Higher-order Markov chain is a stochastic process, in which 
the probability to get to the next state value depends not only 
on the current, but also on the sequence of several previous 
states or history [11]. The number of states in history that is 
used to calculate the probability is the order of the Markov 
chain. 

IV. RECONSTRUCTED PHASE SPACE 

A phase space of a dynamical system is a space where all 
possible states of this system are represented. Each possible 
state is one unique point in the multidimensional phase space. 
The evolution of system in time establishes a phase space 
trajectory for the system through the high-dimensional space 
[12]. In order to estimate the internal system information from 
complex time series data, time-delay phase space can be used. 
From the original time series Y with length N:  

 )}(),...,2(),1({ NyyyY  ,  (3) 

i-th state vector or delay vector can be obtained by: 

 )])1((),...,2(),(),([(   mtytytytyS iiiii ,  (4) 

where m is an embedding dimension and τ is a time delay. 
Therefore, one-dimensional time series measurements in time 
are transformed into a sequence of m-dimensional state vectors 
and reconstructed phase space PhS is given by: 
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where M is a number of points or states in the reconstructed 
phase space. 

V.  STEPWISE REGRESSION 

Stepwise regression is a sequential feature selection method 
that can be used for least-squares regression in which the choice 
of predictive variables is implemented by an automatic 
procedure [13]. 

Initial regression model includes a constant variable. 
Sequence of F-tests is used in order to compare explanatory 
power of incrementally larger and smaller models that are 
obtained adding or removing features to initial model. At each 
step, the p value of an F-statistic is computed to test models with 
and without a potential feature. If the F-test values of the new 

model are better than that of the first model, the new model is 
saved and the third feature is added. If the new model performs 
worse compared to the first one, the first feature is removed, the 
second variable is kept and the next model is created that 
contains the second and third features. This procedure repeats 
until all two variable combinations are tested, the best 
performing model that contains two variables (features) is 
selected as the final model at this stage. Then the procedure is 
repeated with adding or removing the third variable. The 
process ends when all significant features are included in the 
model. 

VI. PRINCIPAL COMPONENT ANALYSIS 

Principal component analysis (PCA) is a statistical feature 
extraction method that uses an orthogonal transformation to 
transform a set of possibly correlated features x1, x2, x3, …, xp 
into a set of linearly uncorrelated features y1, y2, y3, …, ym called 
principal components [14]. Here p is the dimension of the 
original data set. The principal components are chosen so that 
the first principal component y1 contains the maximum 
variance, the second principal component y2 has the second 
greater variance and it is uncorrelated with the first principal 
component, and so on. Therefore, the goal of PCA is to find a 
set of orthogonal features that minimise the error in the 
transformed data set.  

The first step in the PCA algorithm is to normalise the 
features so that they have zero mean and unity variance. Then 
the second step is to compute the principal components of the 
normalised features using orthogonalisation method. The 
principal components are orthogonal because they are the 
eigenvectors of the sample covariance matrix, which is 
symmetric and positive semi-definite. Sample covariance 
matrix is given by: 

    
1

1 N
T

i i
i

C x x
N

 


   , (6) 

where xi is i-th original feature (component), μ is the sample 
mean and N is the number of samples. This leads to: 

 miylCy iii ,...,1,  ,  (7) 

where li is the i-th largest eigenvalue of covariance matrix C and 
m is the number of principal components [14]. Therefore, the 
PCA method can also help reduce dimensionality of the original 
data set. 

VII. EXPERIMENTAL PROCEDURE 

The data set was divided into three parts: training, validation 
and testing data set where 70 % of the NDVI data (or 568 
observations) were used as a training data set, 15 % of the 
NDVI data (or 122 observations) were used as a validation data 
set and last 15 % of the NDVI data (or 122 observations) were 
used as a testing data set. 

It can be assumed that the measurements of time series Y are 
obtained by a time-discrete sampling of an instantaneous and 
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arbitrary projection of the state vectors Si of some underlying 
Markov process [10]. We want to construct a stochastic process 
whose properties are compatible with the observed data Y. A 
continuous state Markov chain, whose order m is a Markov 
model parameter representing the memory, approximated the 
stochastic dynamics of the time series Y. The present state of 
the underlying Markov process, XN, can be replaced by the last 
m measurements of the observed time series. This dependence 
of the one-step-ahead value of the variable y(N + 1) on its 
current and past values y(N), y(N − 1), y(N − 2)… can be 
described by using a conditional probability distribution 
function (pdf), so that the probability to observe v in the next 
period is approximated by [10]: 

 )}1(),...,1(),(|)1(Pr{  mNyNyNyvNy .  (8) 

In our constructed Markov chain, each state is equal to real 
number. Since we used m-th order Markov chain, last m states 
or last m time series observations were used in order to forecast 
the next state. A combination of these m Markov chain states 
established a vector that was formally identical to state vector 
in the reconstructed phase space. Geometrically, the current 
state vector SN is a point in an m dimensional phase space. 
Neighbouring points in this phase space represent similar state 
vectors. It can be assumed that similar points in phase space 
have a similar probability distribution. Variable Φε(SN) 
represents a neighbourhood around the vector SN bounded by 
small diameter ε. Variable |Φε(SN)| represents the number of 
vectors Sk, k < N, in this neighbourhood where these vectors Sk 
are taken from the past measurements of the time series. For 
these vectors the future values Sk + 1(y(tk + 1 + (m − 1)τ)) were 
examined and variable N(v) represented their number within the 
neighbourhood. Then the conditional probability was obtained 
by [10]: 
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 .  (9)

  
In practice, it is enough to predict first or the second moment 

(a mean and a variation) of conditional probability. In this study 
we predicted first moment of a conditional probability.  
The optimal prediction was given by the first moment of 
estimated conditional probability obtained by (9): 
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The first moment of conditional probability (10) is an 
average value of current state SN possible future values. It 
minimises the root mean square error by means of maximum 
likelihood.  

Stepwise regression was applied to initial input data set 
where 100 last values of the NDVI time series were used as 
features in order to reduce input data dimensionality and 
improve continuous state Markov chain predictability. In the 
experiments it was found that the optimal number of input data 
was two last successive values of the NDVI time series and the 

phase space was reconstructed with m = 2 and τ = 1. 
Reconstructed phase space is shown in Fig. 5. 

 

Fig. 5. The reconstructed phase space for the NDVI time series. 

Then the PCA method was applied to phase space and 
linearly uncorrelated data set was obtained. After data pre-
processing procedure, a continuous state second order Markov 
chain was used in order to obtain probabilistic forecasts. As 
diameter the Euclidean distance was used, and using cross-
validation it was found that the optimal diameter ε = 0.06. 

Several error measurements were chosen as performance 
criteria. The root mean square error (RMSE) is the standard 
deviation of the residuals (prediction error between observed 
and predicted time series) and is given by: 

 
 

N
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N
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,  (11) 

where ŷi – the forecasted value, yi – the observed value, N – the 
number of data set observations. The MAPE (mean absolute 
percentage error) is a relative percentage error measure that 
uses absolute values and is given by: 

 100
ˆ1
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Directional symmetry (DS) is a statistical measure that 
provides a numerical value of the correctness of the forecasted 
time series directions in percentage terms and is given by:  
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Directional symmetry statistic gives the percentage of 
observations when the sign of the change in value from one 
period to the next is the same for both the actual and forecasted 
time series. The adjusted coefficient of multiple determination 
(Radj

2) is a measure of covariation between the observed and 
predicted time series data and the values lie within the interval 
[0, 1]. The adjusted coefficient of multiple determination is 
given by: 
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 ,  (15) 

where p is the number of features in the input data set and y is 
the mean value of the observed time series values. 

VIII.  RESULTS 

Table II shows the performance of the continuous state second 
order Markov chain model on the NDVI data set.  

TABLE II 

FORECASTING PERFORMANCE 

Data set RMSE MAPE DS Radj
2 

Validation 0.029109 27.236117 % 80.991736 % 0.988336 

Testing 0.027724 4.937291 % 87.603306 % 0.980318 

 
The RMSE, MAPE and DS errors were the smallest ones on a 
testing data set, but the adjusted coefficient of multiple 
determination was the best one on a validation data set. The 
results of forecasting performance on both data sets showed 
acceptable accuracy of a continuous state second order Markov 
chain. The observed and forecasted values of the NDVI time 
series on a validation data set are shown in Fig. 6. 

 

Fig. 6. The observed and forecasted time series data on a validation data set. 

The observed and forecasted values of the NDVI time series on 
a testing data set are shown in Fig. 7.  

 

Fig. 7. The observed and forecasted time series data on a testing data set. 

From Figs. 6 and 7 it is seen that there is an adequate 
reproducibility between the forecasted and observed time 
series. 

IX. CONCLUSION 

In this paper, one-step-ahead prediction of the normalised 
difference vegetation index (NDVI) data has been obtained 
using a discrete time, continuous state second order Markov 
chain that is proposed as an alternative to the discrete time, 
discrete state first order Markov chain that was used in the 
authors’ previous research. In order to improve the forecasting 
accuracy, according to the aim of the experiment, stepwise 
regression as a feature selection method and principal 
component analysis as a feature extraction method have been 
used in this study.  

Markov chain states have been formed in this study by real 
numbers, and the transition probabilities evaluated from the 
data in online regime for every given actual state separately and 
not using some previously calculated probability distribution, 
such as a probability transition matrix. It helps make Markov 
chain adaptive. The Markov chain prediction method is purely 
a probability forecasting method as the predicted results are 
probability of a certain state of NDVI values in the future. 
However, these probabilistic forecasts have shown an 
acceptable forecasting accuracy with RMSE error 0.0277, 
MAPE error 4.9372 %, directional symmetry 87.6033 % and 
the adjusted coefficient of multiple determination 0.9803 on a 
testing data set. 
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