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Abstract – During the past years, a rapid growth has been seen 
in the descriptive approaches to decision choice. As opposed to 
normative expected utility theory, these approaches are based on 
the subjective perception of probabilities by the individuals, which 
takes place in real situations of risky choice. The modelling of this 
kind of perceptions is made on the basis of probability weighting 
functions. In cumulative prospect theory, which is the focus of this 
paper, decision prospect outcome weights are calculated using the 
obtained probability weights. If the value functions are 
constructed in the sets of positive and negative outcomes, then, 
based on the outcome value evaluations and outcome decision 
weights, generalised evaluations of prospect value are calculated, 
which are the basis for choosing an optimal prospect.  

In cumulative prospect theory, all relevant evaluations are 
represented in deterministic form. The present research is an 
attempt to extend classical prospect theory to the cases when the 
weights of probabilities are given in a fuzzy form.  

Keywords – Fuzzy probability weight, probability weighting 
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I. INTRODUCTION

This paper uses the terminology represented in the literature 
on descriptive theories of choice that differs from the traditional 
terminology used in the literature on normative approaches to a 
decision choice. Thus, instead of the concept “decision”, a more 
general concept “prospect” is used. A prospect can be treated as 
an alternative decision, lottery or other situation of risky choice.  

The present research makes use of the concept of value 
function introduced in the original work on the cumulative 
prospect theory [1]. Actually, the concept of value function in 
this context coincides with the concept of utility in expected 
utility theory except for the conceptual notion of reference 
point, which is beyond the topic of this paper.  

Just after the expected utility theory has been developed [2], 
it has occupied the leading position as a basis for a decision 
choice under risk. The theory is normative, i.e., it prescribes 
how decisions have to be made. It assumes that decision makers 
are rational individuals, and the maximisation of the expected 
utility is the basis for decision choice.  

Soon after the theory of expected utility has appeared, 
attempts to study its descriptive properties have started. The 
attempts have been aimed at discovering how adequately the 
theory models real behaviour of the individuals in risky 
situations of choice. Even the first results obtained [3], [4] have 
shown that the individuals in their actual choices are focused 
not only on the maximisation of the expected utility but also on 
the probability of prospect outcomes. These findings contradict 
the canons of expected utility theory, which states that the 

probabilities of outcomes are only used as linear coefficients 
when calculating the expected utility.  

A serious blow to the expected utility theory was delivered 
by Allais paradox [5]. This paradox includes specially 
constructed situations of choice (lotteries). The results of actual 
choices on these lotteries have explicitly evidenced that the 
individuals in their choice largely orient themselves towards the 
probabilities of lottery outcomes.  

In [6], the results of actual choices in risky situations are 
modelled with triangular diagrams. This paper strictly proves 
that choices in Allais lotteries are not consistent with normative 
requirements of expected utility theory. 

Visual examples in research [7] clearly show that the Allais 
paradox relates to two effects: common relation effect and 
common consequence effect. The results of empirical studies 
presented in [8] also demonstrate that the results of actual 
choices of the individuals in risky situations sufficiently differ 
from those obtained on the basis of expected utility theory.  

Since in risky situations of choice the individuals account for 
the probabilities of prospect outcome occurrence, one can say 
that they weight these probabilities, on whose basis subjective 
weighting of outcomes is made. In [9], the following 
explanation of that phenomenon is given: “Intuitive explanation 
of the Allais paradox is the fair of disappointment. The loss of 
guaranteed 5 million dollars in a gamble seems to be much less 
disappointing than the loss of 5 million dollars with slight 
chances of occurrence. Due to that, if in a gamble people fare 
to become disappointed, it is assumed that their preferences 
really depend on the probabilities”. 

The presence of multiple empiric evidences about the 
influence of outcome probabilities on the results of prospect 
choice has proven indisputably that the expected utility theory 
cannot cope in principle with the current state of things [10], 
[11]. The necessity of new descriptive theories of choice has 
become evident. Rank-dependent utility theory [12] and 
prospect theory [13], [1] have become widespread. 

In this paper, we focus on cumulative prospect theory [1] due 
to these reasons: (1) currently, this theory is the most developed 
descriptive theory of prospect choice and (2) the theory can be 
considered a specific extension of rank-dependent utility 
theory. 

II. GENERAL PRINCIPLES OF WEIGHTING PROBABILITIES

The results of numerous empiric studies have shown that in
most cases the individuals subjectively overweight probabilities 
of the outcomes with large wins and subjectively underweight 
probabilities of the outcomes with large losses. In the area of 
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average values of wins and losses, subjective weights of 
relevant probabilities nearly correspond to the values of those 
probabilities. 

How could subjective weights of real values of the 
probabilities be modelled? This can be done through 
constructing a subjective function for weighting probabilities 
(weighting function) for an individual in a specific task of 
choosing prospects. Such a function can be constructed 
simultaneously with constructing the value function [14]. 

Quite frequently, approximations of original weighting 
functions with the help of suitable degree functions are used. 
The Prelec-I, II [15] and Tversky-Kahneman weighting 
functions are widespread [1]: 
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For weighting probabilities in cumulative prospect theory, 
the authors have proposed these versions of the weighting 
function (1): 
- for positive values of the evaluations of outcomes of
prospects:
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- for negative values of the evaluations of outcomes of
prospects:
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The graph of weighting function (2, а) is shown in Fig. 1. 
The graph of weighting function (2, b) just slightly differs 
from that graph. 
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Fig. 1. Graph of weighting function (2, а). 

III. CALCULATION OF THE GENERALISED EVALUATIONS 

OF PREFERENCE IN CUMULATIVE PROSPECT THEORY

Let there be set a prospect  1 1, ;...; ,n nA k p k p , whose 
outcomes are ordered in the order of decrease of their criteria 
evaluations: 

1 2 1 2... 0 ...r r r nk k k k k k           (3) 

As opposed to the rank-dependent utility theory, this theory 
allows for negative values of outcome evaluations. 

Using certain weights of probabilities  iw p ,  jw p  and 

values of outcome probabilities, the values of decision weights 
of outcomes are calculated by these expressions: 

for i r

   1 1 1... ...i i iw p p w p p   
      , 

 1 1w p   ; (4)

for j r    1... ...j j n j nw p p w p p   
      ,

 n nw p       (5) 

Let us consider the method of calculating decision weights 
using an example. Let us set this prospect:  

Probabilities 1p , 2p , and 3p  , and the corresponding weights 

 1w p ,  2w p  and  3w p  are shown in Fig. 1. 

Decision weights of outcomes of prospect A  are calculated 
by expressions (4) and (5). Let us describe calculations for 
positive outcomes of the prospects. 
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Fig. 2. Modelling uncertainties regarding probability weights. 
 

 
Let us suppose that in the set of consequences of the available 

prospects, value functions for positive and negative outcomes 
are constructed. Using these functions, criteria evaluations of 
outcomes ik , 1,...,6i  , of prospect A  are transformed to the 

value evaluations  iv k , 1,...,6i  . 

Common value of the prospect A  is calculated by expression 
 

     
1 1

r n

PT i i j j
i j r

V A v k v k  

  

   ,    (6) 

where i
  – decision weight of the i -th outcome with positive 

criteria evaluation calculated by expression (4); 

j   – decision weight of the j -th outcome with negative 

criteria evaluation calculated by expression (5);  

 iv k ,  jv k – value evaluations of the i -th and j -th 

outcomes. 
If for all prospects jA , 1,...,j m , their generalised value 

evaluations  

 PT jV A  

are calculated; a prospect having a maximum value 

 max j PT jV A is chosen as optimal. 

IV. MODELLING UNCERTAINTIES WHEN ASSIGNING 

PROBABILITY WEIGHTS 

Probability weighting functions are constructed on the basis 
of subjective perceptions of outcome probabilities in a specific 
task of prospect choice. Assumptions that these subjective 
evaluations are real representations of the status quo and can be 
represented in the form of deterministic evaluations are invalid 
simplification of the real state of things. Subjective perceptions 
of the individuals are in essence vague and uncertain. 

Distinguishing and fixation of a single weight value for a 
specific value of probability out of a set of its possible values 
are of rather deliberate character. It seems necessary to account 
for and model inevitable uncertainties of the individual’s 
judgements about the weights of probabilities and expand them 
to further calculations of the weights of outcome decisions and 
generalised evaluations of the values of prospects. 

Common idea of modelling uncertainties regarding 
probability weights is as follows (see Fig. 2). This figure is 
based on the graph of the weighting function  w p  from 

Fig. 1 and probabilities as well as their weights shown in Fig. 1. 
Instead of defining point values of the upper boundaries of the 
probability weights, it is assumed now that these boundaries 
have uncertain character. For example, for probability 1p  a 

minimum reliable value of the upper boundary of its weight 
 1w p  (point a in Fig. 2) is determined. 

Then interval [a,b] is defined within which a real value of the 
upper boundary of weight  1w p can be located. This interval 

at the same time represents uncertainty regarding the lower 
boundary of weight  2w p . Just in the same manner, 

uncertainties regarding the boundaries between other 
probability weights are modelled. As a result, we obtain a set of 
trapezoidal fuzzy values of probability weights. Assuming that 
the intervals between the boundaries of successive weights of 
probabilities are symmetric and equal to 0.040, we have 
 

 1 (0,0,0.165,0.205)w p   

 

   2 0.165,0.205,0.401,0.441w p   

 
   3 0.298,0.338,0.401,0.441 .w p   
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Fig. 3. Schematic representation of the technique of determination of fuzzy decision weight 2

 . 

 
With regard to fuzzy values of the weights of summary 

values of the probabilities that appear in further calculations, 
they are determined as follows: 

 

   1 2 0,0,0.298,0.338w p p    

 

   1 2 3 0,0,0.401,0.441 .w p p p     

These expressions do not account for internal fuzzy 
boundaries between the addend probabilities. They have no 
meaning for the resulting fuzzy weights of probabilities. Only 
the upper fuzzy boundary of the probability weight that appears 
last in the corresponding sum has meaning.  
Let us calculate fuzzy weights of outcome decisions (1), (2) and 
(3) of the aforementioned prospect: 

   1 1 0,0,0.165,0.205w p    . 

There is no need to make formal calculations of the 
successive weights of decisions following the rules of fuzzy 
arithmetic. Let us have a look at Fig. 3. This figure shows 
graphs of membership functions of fuzzy weights of 
probabilities  1w p  and  1 2w p p . The shaded area bcde  

schematically represents the difference between those fuzzy 
weights. Point a  corresponds to the minimum reliable value of 
the upper boundary of weight  1w p . Interval ae  expresses 

uncertainty regarding the real value of that upper boundary. Let 
us orient ourselves towards the maximum uncertainty of the 
fuzzy weight of decision 2

 . It is evident that trapezoidal fuzzy 

number (a, b, c, d) in Fig. 3 satisfies that uncertainty. To 
determine a real fuzzy evaluation of 2

 , let us move the fuzzy 

number to the origin. As a result, we have: 

 2 0,0,0.113,0.153   . 

Following that schema, let us determine fuzzy decision weight 

3
 :  3 0,0,0.083,0.123   . Fuzzy decision weights for 

negative decision weights of prospect A  can be determined in 
the same way using the weighting function (2, b). 

Once the values of fuzzy weights of decisions for all 
outcomes of prospect A  are available, its fuzzy generalised 
value is calculated as follows: 

     
1 1

r n

PT i i j j
i j r

V A v k v k  

  

     .          (7) 

Expression (7) is a fuzzy version of expression (6). 

To choose an optimal prospect, fuzzy numbers  PT jV A , 

1,...,j m  have to be compared. There are many methods for 

comparing fuzzy numbers. However, it is evident that in the 

case under consideration fuzzy evaluations  PT jV A , 

1,...,j m  have the shape of single-sided trapezoidal fuzzy 

numbers. Due to that, their comparison reduces to a simple 
comparison of the location of the upper fuzzy boundaries. 

V.  CONCLUSION 

Constructing probability weighting functions is based on 
subjective perceptions of some or other probability values of 
prospect outcome occurrence by the individual. Like any other 
subjective judgements and evaluations, the values of 
probability weights are related to considerable uncertainties. It 
seems necessary to model these prior uncertainties and take 
them into consideration in further calculations. 

One suitable technique to model such uncertainties is to use 
fuzzy numbers. This paper offers to employ fuzzy boundaries 
between successive weights of the corresponding probabilities. 
By specifying intervals of possible values of boundaries 
between the probability weights, we translate that uncertainty 
to the fuzzy form of the corresponding boundaries. As a result, 
fuzzy values of probability weights are obtained in the form of 
trapezoidal fuzzy numbers. Using the obtained fuzzy values of 
probability weights, one can sufficiently easily find fuzzy 
values of outcome decision weights and generalised evaluations 
of prospect value. The choice of optimal prospect is not difficult 
because it reduces to a simple comparison of single-sided 
trapezoidal fuzzy numbers. 

The present research uses equal intervals for modelling 
uncertainties of the values of probability weights. Those 
intervals are symmetric with regard to the corresponding values 
of the weighting function. Actually, these intervals can be 
different for different weights and non-symmetrical with regard 
to the values of the weighting function. 
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The validation of the proposed technique is based on the fact 
that in cumulative prospect theory the sum of prospect decision 
weights is not required to be equal to 1, which is the case in the 
rank-dependent utility theory. Due to that, the use of fuzzy 
weights of probabilities only leads to the fuzziness of resulting 
evaluations and does not break the conceptual fundamentals of 
the theory. 
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