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Abstract – The present research examines a wide range of 

attribute selection methods – 86 methods that include both 

ranking and subset evaluation approaches. The efficacy 

evaluation of these methods is carried out using bioinformatics 

data sets provided by the Latvian Biomedical Research and 

Study Centre. The data sets are intended for diagnostic task 

purposes and incorporate values of more than 1000 proteomics 

features as well as diagnosis (specific cancer or healthy) 

determined by a golden standard method (biopsy and histological 

analysis). The diagnostic task is solved using classification 

algorithms FURIA, RIPPER, C4.5, CART, KNN, SVM, FB+ and 

GARF in the initial and various sets with reduced dimensionality. 

The research paper finalises with conclusions about the most 

effective methods of attribute subset selection for classification 

task in diagnostic proteomics data. 

Keywords – Bioinformatics, classification, data mining, 

diagnostics, feature selection. 

I. INTRODUCTION

This article presents the study of attribute subset selection 

effects on the accuracy of classifiers. The present research is 

designed based on the bioinformatics task, when biomedical 

experts are searching for biomarker sets among a thousand or 

several thousands of proteins or genes. The potential 

diagnostic test is modelled by a classifier, which is built using 

a reduced data set. The attributes that are selected for the 

reduced data set are the potential biomarkers. 

Research aimed to determine which attribute selection 

methods are more suitable for omics data with large 

dimensionality examines the following choices and trade-offs 

when a researcher has to make the choice of the method for 

attribute selection: 

 Subset searches vs. individual attribute evaluators,

 Statistics vs. information evaluation,

 Attribute set size differences.

The feature selection and evaluation of the resulting data 

subsets (and therefore the methods that were used in feature 

selection) were carried out using five data sets provided by the 

Latvian Biomedical Research and Study Centre. The data sets 

were obtained in proteomics study, where a number of cancer 

patients and healthy controls were tested for 1229 antibody 

presence (presence of each antibody was also quantified) in 

order to find an antibody panel for disease detection. The 

cancers in question are breast cancer (abbreviated in figures 

and tables as BrCa to save space), gastric cancer (GaCa), 

melanoma (Mel) and prostate cancer (PrCa) as well as a group 

of patients with gastrointestinal diseases other than cancer 

(also paired with a set of healthy controls; GIS). 

II. METHODS AND APPROACHES

This study uses feature selection methods that evaluate full 

subsets (search algorithm and subset evaluation techniques) as 

well as those based on ranking to test various feature subset 

(gene or protein panel) sizes by selecting the top 10, 20, 50, 

100 or 200 features. The feature subsets (evaluation metrics 

and subset sizes) were tested using a group of classification 

algorithms that were applied with the same parameters to all 

data subsets. Classification was performed using different 

classification approaches to reduce the preference of one 

method that would be more appropriate for one data set and 

perform badly in other data sets.  

A. Ranking Methods

Ranking-based feature evaluation and subset selection 

methods evaluate single features using various metrics and 

assign a rank to each feature based on the performance of the 

feature. Ranking methods can filter the top features based on 

the metric and a predefined subset size. The evaluation metrics 

are usually based on statistical properties of features or the 

predictive potential of a feature. 

One of the metrics used in ranking is Chi-Square Statistic 

(abbreviated as Chi in graphs and tables) that is calculated 

with respect to the class [1]. It also works with discrete data 

types. The statistic for a problem with k classes and N 

instances is calculated as shown in (1):  

 𝜒2 = ∑ ∑
(𝐴𝑖𝑗−𝐸𝑖𝑗)

2

𝐸𝑖𝑗

𝑘
𝑗=1

2
𝑖=1  , (1) 

where Aij is the number of instances in the i-th interval (with 

i-th value), j-th class,

Eij is the expected frequency of Aij, which is calculated

as shown in (2):

𝐸𝑖𝑗 =
𝑅𝑖∙𝐶𝑗

𝑁
, (2) 

where Ri is the number of instances in the i-th interval, 

Cj is the number of instances in the j-th class. 

Another popular metric to evaluate features is Information 

Gain (IG in graphs and tables) that measures information 

content with respect to the class. Information Gain is used in 

decision tree induction and was introduced by J. R. Quinlan 

[1]. Prior to feature evaluation, the numeric attribute values 

have to be discretised because this approach works with 

categorical data. This metric is based on the change of 

information entropy that would occur if the state of the 

information changes (some information is given) and can be 
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calculated by subtracting conditional entropy of the class from 

its entropy. The entropy of feature C is calculated as shown in 

(3). Conditional entropy of feature C if the state of feature A is 

given is calculated as shown in (4). Information Gain is 

calculated by subtracting conditional entropy from the entropy 

of C as demonstrated in (5). This shows the decrease in 

entropy of C if the value of A was given. 

  H(C) = −∑ 𝑃(𝐶 = 𝑐𝑖)𝑙𝑜𝑔2(𝑃(𝐶 = 𝑐𝑖))
𝑛
𝑖=1 , (3) 

 H(C|A) = −∑ 𝑃(𝐴 = 𝑎𝑗)𝐻(𝐶|𝐴 = 𝑎𝑗)
𝑘
𝑗=1 , (4) 

 IG(C, A) = H(C) − H(C|A), (5) 

where P(C = ci) is a relative appearance frequency of value ci 

in feature C in the data set, 

H(C|A = aj) is the entropy of feature C in the data 

subset where the value of attribute A is aj. 

Gain Ratio (GR in graphs and tables) is another metric used 

to evaluate features in decision tree induction [1]. It is based 

on Information Gain metric and eliminates its weakness that 

occur in data sets that have features with large numbers of 

unique values, which are given preference over other possibly 

better features with fewer values. Therefore, Gain Ratio 

divides Information Gain by entropy of the considered feature 

as shown in (6): 

 𝐺𝑅(𝐶, 𝐴) =
H(C)−H(C|A)

𝐻(𝐴)
. (6) 

Also simple classification methods can be used as a basis 

for feature selection, one of them is the rule induction 

algorithm OneR [3]. It also discretises numeric features (using 

minimum bucket size as the criteria) and evaluates each 

feature using error rate that would be observed using the rule 

that OneR generates. One rule is constructed for each feature 

and its error evaluates how this rule classifies the data. This 

classification error is also used to rank features in this feature 

selection approach. 

Relief algorithm [4] evaluates a feature by randomly 

sampling instances and analysing two neighbouring instances 

of the same and different classes. This algorithm was not able 

to work with missing data and data sets that included three or 

more classes; therefore, it was improved resulting in Relief-F 

algorithm [4]. It is adapted to work with multi-class problems 

by finding one or more (k) neighbouring instances MI from 

each different class C and averages their contribution for 

upgrading estimates W[A] weighting it with the prior 

probability of each class. The estimation of weight W of 

feature A [4] when the sampled instance is R (which is 

sampled m times) and the nearest instance of the same class H 

is conducted as shown in (7): 

𝑊[𝐴] ≔ 𝑊[𝐴]  − ∑
𝑑𝑖𝑓𝑓(𝐴,𝑅,𝐻𝑗)

𝑚∙𝑘

𝑘
𝑗=1 +

∑
𝑃(𝐶)

1−𝑃(𝑐𝑙𝑎𝑠𝑠(𝑅𝑖))
∑

𝑑𝑖𝑓𝑓(𝐴,𝑅,𝑀𝑗(𝐶))

𝑚∙𝑘

𝑘
𝑗=1𝐶≠𝑐𝑙𝑎𝑠𝑠(𝑅) . (7) 

The number of the checked neighbouring instances is 

determined by either predefining a number or the maximum 

distance. The difference diff(A, I1, I2) for discrete features is 1 

if the values of instances are equal and 0 if the values are 

different. The difference of numeric features is calculated as 

shown in (8): 

 𝑑𝑖𝑓𝑓(𝐴, 𝐼1, 𝐼2) =
|𝑣𝑎𝑙𝑢𝑒(𝐴,𝐼1)−𝑣𝑎𝑙𝑢𝑒(𝐴,𝐼2)|

max(𝐴)−min (𝐴)
. (8) 

B. Subset Evaluation Methods 

Correlation-based Feature Selector (CFS) is a filter 

algorithm that ranks feature subsets according to a correlation-

based heuristic evaluation function that selects features highly 

correlated with the class feature and uncorrelated with each 

other [5]. It allows distinguishing features with a high 

predictive accuracy in the instance space that is not already 

covered by other selected features (the low inter-correlation of 

the selected features). The heuristic evaluation merit M for a 

subset S containing k features is calculated as shown in (9): 

  𝑀𝑠 =
𝑘𝑟𝑐𝑓̅̅ ̅̅ ̅

√𝑘+𝑘(𝑘−1)𝑟𝑓𝑓̅̅ ̅̅ ̅
, (9) 

where rcf is the mean correlation between features and the 

class attribute, 

 rff is the average correlation between features. 

Consistency Subset Evaluator (CSE) evaluates feature 

subsets by the degree of consistency in class values when the 

training instances are projected onto the set, i.e., the 

prevalence of one class in subsets that the data set is divided 

into by attribute values. This also means that feature values 

have to be discretised [6]. Consistency of a subset can never 

surpass that of the full set, so the algorithm searches for the 

smallest subset, which has the same consistency as the full set. 

The consistency of a feature subset S in a data set with N 

instances is calculated using the equation presented by Liu [7] 

and given in (10): 

 𝐶𝑠 = 1 −
∑ |𝐷𝑖|−|𝑀𝑖|

𝐽
𝑖=0

𝑁
, (10) 

where J is the number of distinct attribute value combinations, 

|Di| is the number of occurrences of the i-th attribute 

value combination, 

|Mi| is the cardinality of the majority class for the i-th 

attribute value combination. 

Symmetrical Uncertainty attribute set evaluation [8] is 

another method that is based on information theoretical 

concept entropy (see (3)) and Information Gain (see (5)). This 

evaluator compares attribute informativity (data set 𝑋  and 

attribute 𝑌 ) based on symmetrical uncertainty, see (11) for 

calculation: 

 𝑆𝑈(𝑋, 𝑌) = 2
𝐼𝐺(𝑋|𝑌)

𝐻(𝑋)+𝐻(𝑌)
. (11) 

The algorithm works with Fast Correlation-Based Filter 

Search Method (FCBFS), which first evaluates, if the feature 

has SU above a specified threshold, to add it to the selected 

subset, and then analyses all attributes in the subset for 

redundancy. 
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C. Subset Search Methods 

Feature subset selection algorithms perform a search over 

the feature space to select the optimal subset. To perform the 

search they have to address four basic issues [9]: 

- Starting point: starting with no features in the initial 

subset (forward selection) or starting with the full set 

of features (backward elimination); 

- Search organisation: considering each possible subset 

(exhaustive search) or locally changing the subset 

without returning to reconsider the change (greedy 

search); another possible approach is based on 

adding and removing a feature from the subset in 

each step to make the search more flexible (stepwise 

selection); 

- Evaluation strategy: testing each feature of the subset 

individually (filters) against an evaluation merit or 

testing the whole subset (wrappers). 

Stopping criterion: lack of improvement on change, 

reaching the other end of the feature space or a particular 

subset size. 

Re-ranking search ranks all attributes according to an 

evaluation metric and then processes this obtained list using 

ASSearch approach to re-rank the features in the list. 

D. Classification Methods 

Classification was used to evaluate feature subsets. Since 

feature selection was carried out in order to improve 

classification results, the obtained data subsets with reduced 

dimensionality were used for classification applying different 

classification algorithms and the feature selection methods that 

were used in order to obtain the reduced data sets, which were 

evaluated by overall classifier accuracy. The data subsets were 

evaluated using single classifiers as well as average 

classification accuracies of groups of classifiers to avoid 

influence of single classification algorithms. 

RIPPER (Repeated Incremental Pruning to Produce Error 

Reduction) algorithm was proposed by J. Cohen in 1995 [10] 

as an improvement to IREP (Incremental Reduced Error 

Pruning) [11] algorithm. IREP was created from a 

combination of FOIL (First Order Inductive Learner) [12] (to 

build the rules on the training set) and REP [13] (Reduced 

Error Pruning, to prune the rules on the test set). FOIL learns 

first-order rules that cover the positive rules by joining 

antedescents that improve gain from the rule that covers n 

features until gain of the rule does not improve, see (12): 

 𝐼(𝑐𝑖) = −𝑙𝑜𝑔2
𝑛𝑖

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑛
𝑖
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

−𝑛
𝑖
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 . (12) 

The overall rule improvement is calculated according  

to (13): 

       𝑊𝐼𝐺(𝑐𝑖+1, 𝑐𝑖) = 𝑛𝑖
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+

(𝐼(𝑐𝑖) − 𝐼(𝑐𝑖−1)),               (13) 

where 𝑛𝑖
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+

 is the number of instances covered by the 𝑐𝑖 

and at least one tuple of 𝑐𝑖+1. 

Then the found rules are pruned using reduced error 

pruning (REP), validating them on a training set. This 

combination was improved in IREP by introducing immediate 

rule pre- and post-pruning. RIPPER takes improvements one 

step further by improving pruning metrics and rule 

optimisation. RIPPER algorithm is used in this study as its 

Java implementation JRip provided in Weka library [14]. 

FURIA (Fuzzy Unordered Rule Induction Algorithm) 

algorithm [15] extends the RIPPER algorithm [10], keeping its 

advantage – a simple and understandable rule base. One of the 

improvements, introduced in FURIA, is learning fuzzy rules 

instead of crisp rules induced by RIPPER. FURIA also induces 

an unordered rule set instead or an ordered list of rules used in 

RIPPER. FURIA learns rules for each class separately using 

one vs. all classes approach. This leads to a situation that there 

is not one major rule and the order of classes to learn rules is 

not significant. But this approach has its shortcomings – if a 

record is covered by rules of two classes equally, a confidence 

factor should be calculated. The main improvements to 

RIPPER are related to branching. But the main advantage of 

this algorithm is a rule stretching method, which solved the 

pressing problem that new records that should be classified 

using the induced rules might not be covered by the previously 

induced rules. The representation of the fuzzy rules is also 

different – the intervals are replaced by fuzzy intervals, named 

fuzzy sets, with trapeze-type membership functions [15]. 

C4.5 is a decision tree construction algorithm that was 

proposed in 1993 by J. R. Quinlan [1]. If a data set S is given, 

algorithm C4.5 first constructs an initial decision tree using 

the ‘divide and conquer’ strategy iteratively dividing S into 

subsets S*. If all records from S* belong to the same class or 

S* is smaller than a previously defined threshold, the subset is 

used to define a leaf (end node) with a class c = mode(c(S)). 

If neither of these applies, a test is chosen to split the subset 

according to an attribute with two or more unique values. This 

test is represented as a root node of a subtree with branches 

according to all values of the test, splitting the subset into 

further subsets accordingly. C4.5 uses two heuristic criteria in 

test evaluation: 

1) Information Gain that decreases the total entropy of a 

data subset S*, but this mostly applies to continuous 

attributes; 

2) Gain Ratio that divides the Information Gain according 

to the values of the attribute (discrete, nominal 

attributes). 

The algorithm works with both continuous and discrete 

attributes, and the tests are chosen accordingly. When the 

decision tree classifier is built using the described iterative 

process, the tree is pruned to avoid overfitting and classifiers 

that are very complex gaining little additional accuracy. The 

pruning is carried out according to a pessimistic pruning 

approach that does not require a separate validation set for 

pruning. A subtree is pruned if the resulting change in 

accuracy does not exceed one standard deviation of the error 

obtained with the reference tree. This process is carried out in 

a top-down manner and if a node is pruned, none of its 

descendants is tested, which results in a relatively fast pruning.  



Information Technology and Management Science  

________________________________________________________________________________________________2015 / 18 

118 

CART (Classification and Regression Tree) is another 

decision tree classifier construction method. It is based on 

binary recursive splits and works with continuous and nominal 

data. CART was proposed in 1984 by L. Breiman et al. [16]. 

The data is processed without any transformation inside the 

algorithm. The test CART uses to select optimal splits is Gini 

impurity. 

The trees are constructed to their full size and then pruned 

down to a root node using Cost-Complexity Pruning. The 

pruning process analyses pruning of every internal node and 

their combinations. A subtree is pruned if it has a low increase 

in error rate, see (14): 

 𝛼 =
𝜀(𝑝𝑟𝑢𝑛𝑒𝑑(𝑇,𝑡),𝑆)−𝜀(𝑇,𝑆)

|𝑙𝑒𝑎𝑣𝑒𝑠(𝑇)|−|𝑙𝑒𝑎𝑣𝑒𝑠 (𝑝𝑟𝑢𝑛𝑒𝑑(𝑇,𝑡))
 , (14) 

where 𝜀(𝑇, 𝑆) is the error of tree T in data set S, 

𝑝𝑟𝑢𝑛𝑒𝑑(𝑇, 𝑡) is the tree pruned by replacing node t with a 

leaf node, 

𝑙𝑒𝑎𝑣𝑒𝑠(T) is the number of leaves in tree T. 

The Naïve Bayes classifier (NB in graphs and tables) uses 

probabilistic knowledge to assign class values [17]. It assumes 

that features are conditionally independent (hence the naïve 

approach) and predicts the most probable class according to 

class probabilities that are calculated for class set C with value 

c and feature value vector X with values x as shown in (15): 

 𝑃(𝐶 = 𝑐|𝑋 = 𝑥) =
𝑝(𝐶=𝑐)𝑝(𝑋=𝑥|𝐶=𝑐)

𝑝(𝑋=𝑥)
. (15) 

K-nearest neighbour (KNN) classification algorithm is one 

of the most simple and trivial classification algorithms and it 

is based on instance learning [18]. This approach consists of 

three key elements: set with record labels, i.e., set of stored 

records, distance or similarity metric to calculate 

distance/similarity between two records and k value – the 

number of neighbours in the selected neighbourhood.  

K-nearest neighbour algorithm classifies a new record using 

distance/similarity metric to evaluate how close a vector z (the 

new record) is to each of the stored records. Then it uses k 

closest records to assign a class value to z. 

If there is a data set D and a new record z, the algorithm 

calculates distance 𝑑(𝑧, 𝑥𝑖) where 𝑥𝑖 ∈ 𝐷 and selects k nearest 

records into Dz to calculate the class value based on the 

majority vote of its neighbours, see (16): 

 𝑦` =  ∑ 𝐼(𝑣 = 𝑦𝑖)(𝑥𝑖 ,𝑦𝑖)∈𝐷𝑧 𝑣
𝑎𝑟𝑔𝑚𝑎𝑥

 , (16) 

where 𝑣 is a class label, 

𝑦𝑖  is a class label of the i-th neighbour, 

I() is an induction function that returns 1 if true and 0 

otherwise. 

One of the most recent and perspective approaches in 

classification nowadays is Support Vector Machines (SVM) 

[19]. SVM has a strong mathematical theoretical base and 

needs only a dozen records for training; it does not have 

dimensionality-related limitations and there are many novel 

training approaches being developed. Support Vector 

Machines were proposed by Vapnik in 1963 [20], but the 

currently used version was developed by Vapnik and Cortes in 

1995 [21]. SVM was built for binary classification where a 

hyperplane is used to divide the two classes as clearly as 

possible. This hyperplane is searched for by transforming data 

according to mathematical kernels and maximising the 

distance between groups of objects with different class labels 

and the hyperplane that divides them. The points on the 

margin of classes are called support vectors and between these 

margins there is the hyperplane that divides objects into class-

specific groups. If there are objects belonging to a different 

class than the group label, these objects have smaller weights 

in order to give them less influence on the end result. In order 

to find the hyperplane with the maximum distance, the 

algorithm maximises the function shown in (17) based on 

weight vector 𝑤⃗⃗  of record value vector 𝑥𝑖 and constant 𝑏: 

𝐿𝑃 =
1

2
‖𝑤⃗⃗ ‖−∑ ∝𝑖 𝑦𝑖(𝑤⃗⃗ ∙ 𝑥𝑖⃗⃗⃗  + 𝑏)

𝑡

𝑖=1

+ 

 +∑ ∝𝑖
𝑡
𝑖=1  , (17) 

where t is the number of records in a data set, 

𝛼 is Karush-Kuhn-Tucker multiplier, 

𝑦 is a class identifier (1 or −1), 

𝐿𝑃 is a Lagrangian. 

The study also applies two classification methods 

developed specifically for bioinformatics tasks – FuzzyBEXA+ 

and Genetic Algorithm Generated Random Forests. These 

methods were evaluated and compared to classical 

classification methods. 

The structure of fuzzy data classification algorithm 

FuzzyBEXA is based on crisp data classification algorithm 

BEXA [22]. FuzzyBEXA algorithm expands the use of 

definitions described in BEXA algorithm to their application to 

fuzzy data. In the case of the algorithm of classical data 

classification BEXA, the set of conjunction covered instances 

is considered to be all records that fit the given conjunction. In 

this case, a clearly defined value of a specific attribute either 

fits or does not fit the conjunction. In the case of fuzzy data 

classification algorithm FuzzyBEXA, the value of an attribute 

fits the conjunction in the scale from 0 to 1, and therefore a 

record can fit the conjunction with a very small membership 

indicator. Such a situation may be undesirable; therefore, new 

variables are used with “alpha-cut” and “alpha-class cut”. 

Variable “alpha-cut” (or alpha-levelling) ( a ) determines 

that all membership values of a record that are below the level 

of this variable value are considered 0 [23]. Thus, the instance 

set covered by a conjunction 𝑋𝑠(𝑐) can be defined as follows 

(see (18)): 

 𝑋𝑠(𝑐) = {𝑠 ∈ 𝑆|𝜇𝑐(𝑆) ≥ 𝛼𝑎 , (18) 

where 𝑠 is a record belonging to record set 𝑆, 

𝑐 is the conjunction, 

𝑎 is an attribute identifier, 

𝜇𝑎(𝑠) is a membership function, 

𝛼𝑎 is the alpha-cut variable for attribute a. 
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For BEXA tree algorithms to function correctly, there is a 

necessity to divide the data into positive and negative class 

records. The problem is that such a division in the case of 

fuzzy data is not directly possible. It is explained by the fact 

that values of each record, which are similar to attributes, and 

the class of a record are not one value but rather a membership 

to all possible classes with a specific membership level. To 

solve this problem, another user-defined variable is introduced – 

the “alpha-class cut” (𝛼𝑐 ) [23]. This variable points to the 

value that has to be reached by a class membership value of a 

record for this record to be considered a positive class 

instance. By using the variable “alpha-class cut” (𝛼𝑐 ), it is 

possible to define positive (see (19), left part) and negative 

(see (19), right part) record sets: 

𝑃 = {𝑠 ∈ 𝑇|𝜇𝑐(𝑠) ≥ 𝛼𝑐}, 𝑁 = {𝑠 ∈ 𝑇|𝜇𝑐(𝑠) < 𝛼𝑐}, (19) 

where 𝑠 is a record belonging to test set 𝑇, 

𝑐 is the corresponding class, 

𝜇𝑐(𝑠) is a membership function for record 𝑠, 

𝛼𝑐 is the alpha-class cut value. 

Before inspecting the real BEXA conditions in the context 

of FuzzyBEXA, it is important to note the fact that FuzzyBEXA 

algorithm does not contain the use of a specific membership 

function – in its place there is fuzzy data analysis. Since 

FuzzyBEXA algorithm uses fuzzy data, this algorithm does not 

differentiate between processing of categorical and continuous 

data [23]. 

The FuzzyBEXA modification (FuzzyBEXA+, abbreviated 

as FB+) used in this study was proposed by Gasparovica-Asite 

in [24]. This modification introduced adaptation for 

membership function construction using one of the three 

methods – k-means, x-means based clustering algorithm or 

triangle membership functions. This modification also added 

rule stretching and rule fuzzification approaches in order to 

make more universal rule bases, which are particularly useful 

in bioinformatics problems. 

The Genetic Algorithm based Random Forest algorithm 

was proposed by Polaka [25] in order to improve accuracy of 

tree-based classifiers while keeping the transparent and 

comprehensive model representations. The algorithm 

generates fixed size (in levels) binary decision trees based on 

Gain Ratio attribute and cut-off point evaluation metric. 

III. RESULTS 

The experimental evaluation was carried out using five data 

sets, eight different attribute selection and evaluation method 

combinations. Several attribute subset sizes were chosen for 

attribute ranking approaches – the attribute sets were reduced 

to 200, 100, 50, 20 and 10 attributes. The initial data sets with 

full attribute sets were used as a benchmark. Data set 

evaluation was carried out using eight classification 

algorithms with different approaches – rule based FURIA and 

JRIP, decision tree induction using C4.5 and CART, as well as 

KNN, SVM and two methods previously proposed by the 

authors for bioinformatics data analysis – FB+ and GARF. 

This resulted in an experiment series with 1160 experiment 

runs, each of which was executed using 10-fold cross-

validation. 

The average classification accuracies of all methods are 

shown in Table I. The evaluation is based on average values to 

assess the impact of attribute set reduction and exclude bias 

that can be introduced by specific classification approaches 

and algorithms. Only the best result for melanoma data set 

(74.27 % overall classifier accuracy) was achieved using the 

full set, although the second best result was worse only by 

0.19 % (74.08 % overall accuracy) in the data set with 100 

attributes, which could be considered equal (the difference 

was not significant). In gastric cancer, gastro-intestinal disease 

and prostate cancer data sets the best results were obtained 

using data sets with 50–100 attributes, which was less than 

10 % of the initial attribute set. The breast cancer data set with 

the decreased attribute set showed the best adaptation to the 

most strict attribute subset reduction – the best results were 

obtained in 10 and 20 attribute subsets. This could be 

explained by heavy noise caused by other attributes and/or few 

very definite biomarkers that pointed to breast cancer. The 

overall accuracies varied a lot from one data set to another. 

This was due to different disease specifics. The worst results 

were in gastro-intestinal disease data, which might be caused 

by mixing everal different diagnoses as the positive group, 

which might have different expressions in autoantibodies. The 

maximum difference between the best average and the worst 

average value was ~4 % in melanoma data set, while the 

minimum difference was <1 % in breast cancer data set. This 

shows how little impact of decreasing the attribute subset 

removes more than 90 % of the attributes. 

TABLE I 

AVERAGE CLASSIFICATION ACCURACIES IN THE REDUCED DATA SETS 

#Attributes BrCa GaCa GIS Mel PrCa 

1230 92.33 58.27 57.07 74.27 80.31 

10 92.99 58.07 56.09 70.89 79.11 

20 93.02 58.07 57.87 72.59 80.41 

50 92.90 59.19 57.06 72.38 81.05 

100 92.56 58.42 58.33 74.08 79.72 

200 92.26 57.82 56.16 73.65 79.03 

Comparison of the two main studied algorithms, FB+ and 

GARF, with the minimum, maximum and average accuracies 

of the other algorithms used in this study is shown in Table II. 

In 16 experiments out of 29 with breast cancer data set, gastric 

cancer data set and gastrointestinal disease data set the best 

results were achieved using GARF algorithm, but in 

experiments with melanoma and prostate cancer data sets the 

best results were acquired using FB+ algorithm, which 

showed that algorithms specifically developed with 

bioinformatics data in mind were more suitable to work with 

this type of data. It is especially obvious in experiments with 

reduced data sets with 50, 100 and 200 attribute subsets. 
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TABLE II 

CLASSIFICATION ACCURACIES OF FB+ AND GARF 

  BrCa GaCa GIS Mel PrCa 

Maximum of all other methods 96.43 69.51 67.97 90.96 91.30 

Average of all other methods 92.74 56.74 56.00 71.37 78.91 

Minimum of all other methods 83.45 46.65 44.84 44.61 71.98 

FuzzyBEXA+ 92.26 64.94 63.70 88.63 92.75 

Genetic Algorithm generated Random 

Forests 
95.26 78.95 78.36 87.19 93.74 

 

If GARF results are analysed in detail for all five data sets, 

the algorithm shows better accuracy for breast cancer data set 

when the number of attributes is 20 or 50, for gastric cancer 

data set – when there are 50 attributes, for gastrointestinal 

disease data set – with 20 or 50 attributes, for melanoma data 

set – with 10 or 50 attributes and for prostate cancer data set – 

with 50 attributes. 

The best attribute selection and evaluation methods for 

GARF algorithm are the following: Consistency Subset 

Evaluator and Re-ranking Search, ReliefF (top 20 attributes) 

and Information Gain (top 50 attributes). The most suitable 

methods for FB+ algorithm are OneR (top 50 attributes) and 

ReliefF (top 50 attributes).  

If one looks at algorithms that have one of the top 3 results 

in each case (each of the data sets with each attribute selection 

method and the full data set, totalling in 29 cases), the best 

classification accuracies are obtained using FURIA (22 cases), 

GARF (19 cases), FB+ and SVM (14 cases both).  

IV. CONCLUSION 

Dimensionality reduction by selecting a small subset of the 

attribute set (decreasing the attribute set by more than 90 %) 

does not have a significant influence on classification 

accuracy and, therefore, selecting a small subset of biomarkers 

will not have a significant impact on diagnostic accuracy of 

the resulting test. The accuracies in reduced data sets were 

even slightly higher than in full data sets in four out of five 

data sets. 

The algorithms particularly developed to work with 

bioinformatics-specific data sets (GARF and FB+) showed 

better results than the regular methods in most cases. These 

methods build easily comprehensible models that can be 

interpreted by medical experts. Although these methods can be 

slower due to more computations, the task does not ask for 

real time computations and the speed is a small drawback. 
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