P13 DE GRUYTER
OPEN

Information Technology and Management Science

doi: 10.1515/itms-2014-0020
2014 /17

Artificial Neural Network Generalization
and Simplification via Pruning

Andrey Bondarenko !, Arkady Borisov?, 1 CTCo Ltd., 2Riga Technical University

Abstract — Artificial neural networks (ANNs) are well known
for their classification abilities. Although choosing hyper-
parameters such as neuron layer count and size can be a quite
tedious task. Pruning approaches assume that a sufficiently large
ANN has already been trained and can be simplified with
acceptable classification accuracy loss. The current paper
presents a node pruning algorithm and gives experimental results
for pruned network accuracy rates versus their non-pruned
counterparts.

Keywords - Artificial neural
overfitting, pruning.

networks, generalization,

. INTRODUCTION

Artificial neural networks have been successfully applied in
many different areas to solve the problems of classification
and regression. ANNs, specifically multi-layer feed-forward
artificial neural networks, trained using error back-propagation
give good results, and the recent advances in deep learning
have proved to give unprecedented classification accuracy
[1]-[2]. Main problem with regular (non-deep) ANNS is
choosing hyper-parameters, which can severely influence
model performance. Choosing architecture with insufficient
number of neurons can give unsatisfying classification rates,
while choosing too many neurons will badly influence training
time, but more than that it will cause overfitting. To overcome
these problems, two approaches exist: to grow neural networks
[3], [4] and to train an excessively large network with
subsequent pruning. In the current paper, we use the second
approach to overcome overfitting of trained ANNs, thus
enhancing their generalization abilities, as well as preparing
the previously trained artificial neural networks for rule
extraction.

The current paper is structured as follows: Section Il gives
an overview of pruning methods; Section Il describes the
used algorithm; Section 1V presents results of experiments,
and Sections V and VI hold discussion and conclusion.

I1. PRUNING METHOD OVERVIEW

First of all, we should note that some algorithms prune
weights between neuron layers, others prune neurons
themselves, and some combine both approaches. Paper [5]
gives a nice overview; we briefly present main ideas
mentioned there along with other methods not listed in the
source paper. We can divide all pruning algorithms into two
main categories: node/weight removal based on sensitivity
analysis and penalty term based methods that utilize penalty
term to remove “unused” / least important weights. Some
algorithms combine both approaches, while some cannot be
easily added to one or the other family of methods. Sensitivity

132

analysis relies on the calculation of influence of specific node
or weight. Some algorithms just calculate pairs of weights
coming into/out of a single neuron. Finding the smallest
weight pairs assumes that their influence on classification
result is minimal.

A. Sensitivity Analysis Based Methods

Sensitivity method from [6] by Mozer and Smolensy
calculates an error with unit removed and without it being
removed, thus deleting least important units. Instead of
calculating an error directly, they use derivative calculated
during error back-propagation to approximate it. Segee and
Carter in [7] have found that small variance in weights coming
into a neuron is signaling that the subject neuron can be safely
removed.

Karnin in [8] describes the method for weight pruning,
which does not require specific sensitivity calculation phase.
All necessary data about weight updates are stored during
training. This makes this approach unusable in case one wants
to prune the already trained ANN. Nevertheless, such an
approach is perfectly usable in case one has control over
training of ANN. The main idea is the sensitivity analysis of
weights and their removal if they have too small sensitivity.

E(w")-E(0 1
S, =— (Wf)_o()wf (1)

Here, w' is a specific weight value, 0 is its value after its
pruning, E(w') is an error with given weight enabled and E(0)
is an error when this weight is pruned. Finally, S;; is sensitivity
of weight between nodes i,j. Instead of computing sensitivity
value directly (which would lead to a sensitivity estimation
phase), the authors propose to estimate it using a sum of all
changes in weight during training:

. N-1 wi
ij =~ EAWH(H)% (2
n=0 aWij Wi — W

Here, N — is a number of weight updates.

Rudy Setiono [9] describes a rather simple pruning
algorithm, which uses simple heuristics to find weights to be
pruned. It assumes that one has ANN with a single hidden
layer (although an approach can be generalized to multiple
hidden layers) and removes input-hidden and hidden-output
weights if their values are not satisfying a specific constant.
Actually, there are two constants used, both of them should be
set-up manually.

Rudy Setiono also described a rule extraction algorithm
[10] called N2FPA, which uses simple estimations of effect of
removal of neurons in the network. Neurons are removed one
by one, in case an error worsens significantly pruning stops.

Information Technology and Management Science

2014 /17

This is the method, which was used and slightly modified in
the current paper.

Le Cun et al. in [11] describe the method called Optimal
Brain Damage (OBD), which measures “saliency” of a weight
by estimating the second derivative of the error with respect to
the weight. They made a couple of assumptions after which
computed such derivatives during the modified error back-
propagation. One drawback of such a method is the necessity
of storage of Hessian matrix. After one weight is pruned,
retraining is done to find another weight to prune.

Optimal Brain Surgery from [12] (OBS) goes one step
further in comparison with OBD, it utilizes an inverse Hessian
matrix to calculate optimal weight to be deleted, but at the
same time it solves an optimization problem, which gives
remaining weight updates necessary to lower a network error.
Such an approach allows for simultaneous update of all
remaining weights; thus, retraining is not required. OBS is one
of the best methods for pruning. Likewise OBD, it should hold
the Hessian matrix, thus requiring additional memory.

B. Penalty Based Methods

Penalty term methods use weight decay/penalty term in one
way or another to force a neural network during its training to
get rid of unnecessary weights.

Chauvin [13] uses a cost function with a specific term,
which poses average energy expended by weights, as well
there is a modification with additional magnitude of weight
term, which penalizes large weights and large amount of
weights.

Weigend et al. [14]-[16] minimize a specific cost function
with additional term penalizing network complexity as a
function of the weight magnitudes relative to the defined
constant w0. Choosing such a constant should be done via
trials/errors.

Ji et al. [17] propose another penalty term pruning approach
based on a modified error function, which tries to minimize a
number of hidden nodes and weight magnitudes. The
limitation of the proposed method is that it assumes a single
hidden layer ANN with one input and linear output node. The
method assumes retraining after each removed weight.

C. Weight Decay Methods

Plaut et al. [18] propose a simple cost function, which
decays weights. Cost function built specifically to allow an
algorithm to favor nodes with many small weights in contrast
to a node with single large connection. Nowlan and Hinton
[19] describe a more complex cost function with a penalty
term, which models the probability distributions of weights as
a mixture of Gaussians.

D. Interactive Pruning

Sietsma and Dow [19] describe an interactive method in
which a designer inspects a network and marks nodes to be
pruned. Algorithm provides several heuristics to determine
candidates for removal. The authors have demonstrated on
training problems that their method is capable of finding
relatively small networks with good accuracy in comparison

with large trained networks, which were not able to find a
solution.

E. Auto-pruning Methods

Next discussed approach is an auto-pruning method called
Iprune [20] by Lutz Prechelt. It proposes pruning at each step
all weights not satisfying a specific formula controlled by
parameter lambda. Experiments showed that this parameter
should be adaptive; the algorithm to support dynamic
adjustment was proposed. According to Prechelt, the proposed
methods overcome OBD and OBS in terms of accuracy and
simplicity of pruned ANN.

Another auto-pruning method [21] by William Finoff et al.
applies a modified cost function, does not require full training
of ANN and uses dynamic adjustment of penalty term. Similar
to OBS, this method performs dynamic topology adjustments.

F. Other Methods

Kruchke [22] describes a local bottleneck method, in which
neurons “compete” with each other to survive. Magnitudes of
vectors determine a degree to which a neuron participates in
modeling target function; this is treated as a neuron gain. In
case gain is zero, a neuron does not participate in a task and
can be removed. In case, two neurons have parallel or anti-
parallel weight vectors, they are redundant and can be
removed as well. The method uses a specific parameter, which
should be tuned carefully.

The same author proposes another method called
Distributed Bottlenecks [22]-[23], which puts constraints on
weights rather than deletes them. This serves as sort of
dimensionality reduction. Such an approach makes weight
vectors that are further apart than average to become further
from each other and vectors that are closer than average to
become closer. Again the method uses a special constant,
which should be chosen manually

I11. PROPOSED ALGORITHM

We used the algorithm described by Rudy Setiono in [10]
(part of N2FPA rule extraction method). In essence we used
node pruning. We operated on the trained ANN, on each
pruning we tried to determine a neuron, which needs to be
removed. For all neurons in hidden layers we calculated a
classification error for network operating without them. (This
essentially means we set activations of pruned neurons to
zero.) Neuron, which upon removal produced a network with
the smallest cost function, was removed. Afterwards, the
network was retrained. If classification accuracy raised above
a specific threshold (we used tolerance to error equal to 2.5 %
out of the smallest encountered classification error, i. e., we
accepted removal of a neuron in case the classification
worsened for no more than 2.5 %), then a neuron was accepted
to as pruned. If an error significantly, then a candidate neuron
was left intact and new search for a pruning candidate was
initiated on the already retrained network (remember we
retrained it without a “pruned” neuron.) Retraining gives
chances to get a simpler network with higher generalization
and good classification rates, which can be observed in
Table I.

133

Information Technology and Management Science

2014 /17
TABLE |
TYPE SIZES, SPACES AND INTERVALS
MLP train| MLP train| MLP test | MLP test P(uned trPa\riL:\n;(cjj. Pruned test | Pruned test pﬁrgm;ef;?égebne];(z)rgéifitﬁrz
avg. std. dev avg. std. dev | train avg. dev avg. std. dev hidden layers)
lonosphere (10-fold X-validation) 10.83% | 0.0013 | 10.83% | 0.0115 | 5.39% 0.0169 10.44% 0.0326 15-15/5.4-3.8
Monks-1 (train/test) 20.16% | 0.0120 | 29.68% | 0.0166 | 18.47% | 0.1067 24.35% 0.0952 15-15/5-3
Monks-2 (train/test) 36.82% | 0.0135 | 36.55% | 0.0087 | 31.83% | 0.2005 32.58% 0.2170 15-10/5-3.1
Monks-3 (train/test) 6.64% | 0.0026 | 2.80% | 0.0007 | 5.98% 0.0078 2.85% 0.0105 15-15/1.7-1.1
WPBC (10-fold X-validation) 0% 0.0 0% 0.0 0% 0.0 0% 0.0 10-10/1-1
WDBC (10-fold X-validation) 3.89% 0.0040 4.04% 0.0278 3.03% 0.0098 3.69% 0.0271 30-30/23.2-17.1
Pima (10-fold X-validation) 23.02% | 0.0073 | 23.56% | 0.0498 | 25.94% 0.0412 26.81% 0.0598 10-10/2.8-3.1
Haberman (10-fold X-validation) 26.13% | 0.0055 | 26.57% | 0.0255 28.5% 0.0762 28.2% 0.0981 15-15/2.3-3.7
Parkinsons (10-fold X-validation) 24.62% | 0.0021 | 24.61% | 0.0197 | 16.29% 0.0241 15.82% 0.0848 30-30/26.8-28

Below you can find a pseudo code of the pruning algorithm:
Inputs:

determines maximum number of
prunning iterations
maxPrunedNodes - maximum number of nodes to be
pruned

maxlter -

errorRiseTol - determines acceptable error rise
maxFallbacks - in case neurons are pruned and then
reverted - how many times before we
quit?
Program:
iter = 1
while (iter<maxIter || prunedNodes<maxPrunedNodes)
for all not pruned neurons in all hidden layers
if (lastNeuronInlLayer()) continue;
removeNeuron (n)
cost = testNetwork()

if (cost > largestKnownCost)
largestKnownCost = cost
indexOfPrunedNeuron = getIndexOfPrunedNeuron
prunedNodes = prunedNodes + 1
end
end

retrainNetwork ()

classError = testNetwork()
errRatio = classError/smallestClassError
if (errRatio > 1 + errorRiseTol)

revert pruned neuron

fallbacksCounter = fallbacksCounter + 1
prunedNodes = prunedNodes - 1
else

///leave pruned neuron as is
fallbacksCounter = 0
end
if (fallbacksCounter >= maxFallbacks)
break
end
iter =
end

iter + 1

134

Here one can notice hyper-parameters listed in the beginning,
maxlter — controls a maximum possible number of pruning
iterations, maxPrunedNeurons — controls a maximum number
of neurons to be pruned. We need both parameters, as neurons
after pruning can be restored; thus, some iterations will not
result in network pruning. However, they will leave network
with weights adjusted during retraining. Apart from that, there
are two other hyper-parameters: errorRiseTol — which controls
maximum rise of error (we used a classification error) after
removal of a neuron which will not cause pruned neuron
reversal/restore. Thus, let us say an error has risen by more
than 5 % in case of neuron removal in comparison with the
best/lowest known error rate and our parameter is 0.075. We
will leave the network intact, but if it is below 0.05 the
network will get back the pruned neuron. Finally,
maxFallbacks controls how many attempts an algorithm
makes in pruning neurons and reverting them back
consequently before termination. Thus, if this parameter is
equal to 10, then in case of ten subsequent iterations a neuron
is pruned, but then restored due to a high rise in an error, the
algorithm terminates.

ANN itself is trained using the cross-entropy cost function
equipped with a penalty term (weight decay). Below there is a
cost function:

il; log$S, +(1-1;)(1-logS,) |,

p=1

Fwv)=— X ®)

k
i=1

where k is the number of patterns, IL = 0 or 1 is the target
value for pattern x'at an output unitp, p=1, 2, ..., C. Cis the
number of output units/neurons. SL is the output of the
network at unit p:

S, :a[mzh:;a((xi)T Wm)V?J.

Here, to simplify things a bit we provide formulas for a
single hidden layered neural network, but in reality for our
experiments we used two hidden layers. x'is an n-dimensional
input pattern, 1=1,2, ..., k. w™is an n-dimensional

(4)

Information Technology and Management Science

2014 /17

—

5 _

£

® o |

E ™

@

: —

>

o

e o |

T «

@

w -

(2]

(@]

—

O < |
— |

! | I !
0 1000 2000 3000 4000

Neural network pruning retrain iteration

S

(e}

=

g -

c c

o I~ >

= 8

8 o)

= c

2 g

8 o

(&) () c

£ e

© @

=] 5

B S T &

5 0 20 40

o o . L .
Pruning iteration Pruning iteration

Fig. 1. Haberman data set trained neural network pruning.

-l

S @

-

5 O

=

s |

S

=

> O

2 &
S o

=

C

(&)]
)]

[2]

© o

O T
o

Neural network pruning retrain iteration

b
(@]
c
o -
c < —
>
2 8 o
S o I
= O c
n D o -
o < 5
o o o
o 2 &
c
= ©
g 2 o
— O
T S 2 o -
@ o 1 T T T 1
5 0 20 40
o L . L .
Pruning iteration Pruning iteration

Fig. 2. Monks2 data set trained neural network pruning.

p—
2 © 7
@
c 7
S
= <
2
o < 7
P
€
S «
w
H o
o
= =~
O o -+
|

! ! !
0 2000 4000 6000 8000

Neural network pruning retrain iteration

S

o

A

(] -

c c

S 3

© o]

Q %)

Ua’ 5 o

L 3 -

© c

£ °

© O W0

= S

3 o T T T T 1

5 0 10 20 30 0 10 20 30

o N . L .
Pruning iteration Pruning iteration

Fig. 3. WDBC data set trained neural network pruning.

S

g 0

(]

£ < +

g

> M

o

o

T N

O]

@ i

o

3]
T T T T |
0 2000 4000 6000 8000

Neural network pruning retrain iteration

S

o

© -

[c

9 3

= @ 2 | -

w <9 o N

E o q:; -

[&] c O _]

C ™

= ©

s S e

o =

@ — T T T T o © 717 717 T T 1

5 0 20 40 0 10 30

o o . N .
Pruning iteration Pruning iteration

Fig. 4. lonosphere data set trained neural network pruning.

135

Information Technology and Management Science

2014 /17

vector of weights for the arcs connecting the input layer and
the m-th hidden unit, m =1, 2, ..., h. v" is a C-dimensional
vector for the weight connecting the m-th hidden unit and the
output layer. The activation function is a sigmoid function
with domain (-1, +1):
1

1+e”

Finally, for all our weights we applied weight decay factor
0.0001. This is a quite simple approach in comparison with
others described in the theoretical part, but still it does the job.
Cross-entropy has been chosen as it is capable of dealing with
problems of error derivative plateau better than a standard
round mean square error (RMSE) [25]. Apart from this, we
used Stochastic Gradient Descent batch training. Batch size
was chosen to be 20.

o(y)=)

IV. EXPERIMENTS

In our experiments, we used three 10-fold cross-validation,
but for some test-sets like monk’s train and test data are
already provided; thus, there we utilized thirty runs to get
averaged results. We decided to use two hidden layer neural
networks, so that some networks would be able to use an
additional layer, in case one of the layers was not needed we
would be able to see this after pruning would be finished —
such layers should have small number of intact neurons in one
of the layers. For our experiments, we used well- known UCI
[24] data sets: Monks-1, Monks-2, Monks-3, lonosphere,
Haberman, Pima diabetes, WDBC, WPBC and Parkinsons.

Some of the mentioned problems use only categorical
variables — like monks. In such cases, we transformed input
data into binary format, thus instead of 5 inputs we used 17. In
other cases, the only transformation applied was rescaling of
data into [-1, 1] region. Data sets are binary classification
problems; we utilized two output neurons to represent a
solution to the network. Data sets themselves are pretty small
ranging from about 150 to 500 entries. Table | holds
classification accuracy for all data sets. It contains average
classification rate with standard deviation for both train and
test cases along with 10 x-validation folds or runs for non-
pruned and pruned neural networks. Last table column holds
network hidden layers structures before and after pruning.

For the pruning algorithm we used 0.025 as an errorRiseTol
tolerance level, usually around 50 (depends on the total
number of neurons, it should be around 60-70 % of that) as
maxlter iterations. MaxlIter count should be larger than the
maximum number of neurons to be pruned (which was always
equal to neuron count in hidden layers minus 2 — we could not
prune all neurons from all layers). In all cases, we decided to
apply 2 layer hidden neuron networks (with error-
backpropagation) trained using cross-entropy cost (error)
function and stochastic gradient descent as a learning
algorithm. All cases were executed using 10-fold cross-
validation except monk’s data sets — they had already been
divided into training and testing sets.

Figs. 1-4 represent a pruning process. Looking at a cross-
entropy train error one can notice spikes upon neuron removal.
In majority of cases, a network is rather quickly adapting to

136

effects of pruning. In cases when a train error rises
significantly — a neuron is not pruned. All in all, training set
classification graphs show decrease of train set classification
error.

V. DISCUSSION

As one can notice in many cases the acquired ANN models
are significantly smaller than initial networks. Smaller
networks are less prone to overfitting, thus have higher
generalization abilities. In some cases, networks were not
significantly simplified; these were: WDBC and Parkinsons
data sets, where we could see only ~50 % drop in neuron
counts. Both of these data sets have a rather complex structure
and thus require bigger models (in comparison with other data
sets). As we have already noted, the algorithm has auto-
stopping criteria allowing it to perform several trials before
deciding to stop. The used algorithm assumes training of
neural network with the removed neuron, while afterwards in
case of unsatisfactory results the removed neuron is returned
back to the ANN. Diligent reader can note that there are
several possibilities in regards to how and which neuron
should be returned back into a neural net. We used the same
neuron, but we did not explore possibilities of adding a
random neuron.

VI. CONCLUSION

In the current paper, we presented the algorithm for pruning
artificial neural networks along with experimental data (UCI
classification data sets were used), showing that it was able to
significantly simplify a network structure, if a data set did not
have a complex structure. Algorithm with the proposed
stopping criteria applied to UCI datasets in many cases is
giving much simpler ANN models with only a few neurons
while having slightly worse or in some cases better
classification accuracy rates in comparison with original non-
pruned neural networks. Such “simpler” models are faster to
execute and are better candidates for knowledge extraction.
Further research directions are exploration of other techniques
for returning a neuron back after a retraining phase.

REFERENCES

[1] A.-Krizhevsky, 1. Sutskever, G. Hinton. “ImageNet Classification with
Deep Convolutional Neural Networks”, Advances in Neural Information
Processing Systems 25, NIPS, 2012.

[2] G. Hinton, L. Deong, D. Yu, G. Dahl and others, “Deep Neural
Networks for Accoustic Modelling in Speech Recognition”. IEEE Signal
Processing Magazine, Nov., 2012.
http://dx.doi.org/10.1109/MSP.2012.2205597

[3] X. Qiang, G. Cheng, Z. Wang, “An Overview of Some Classical
Growing Neural Networks and New Developments”, |IEEE, Education
Technology and Computer (ICETC), 2nd International conference,
vol. 3. 2010.

[4] V. Chaudhary, A. K. Ahlawat, R. S. Bhatia, “Growing Neural Networks
using Soft Competitive Learning”. International Journal of Computer
Applications (0975-8887) vol. 21, no. 3, May 2011.

[5] R. Reed, “Pruning Algorithms — A Survey”, IEEE Transactions on
Neural Networks, vol. 4., no. 5., Sep. 1993.
http://dx.doi.org/10.1109/72.248452

[6] M. C. Mozer and P. Smolensky, “Skeletonization: A Techique for
Trimming the Fat From a Network via Relevance Assessment,” in

http://dx.doi.org/10.1109/MSP.2012.2205597
http://dx.doi.org/10.1109/72.248452

Information Technology and Management Science

2014 /17

Advances in Neural Information Processing, pp. 107-115, Denver,
1989.

[7] B. E. Segee and M. J. Carter, “Fault Tolerance of Pruned Multilayer
Networks,” in Proc. Int. Joint Conf. Neural Networks, vol. 2, Seattle,
pp. 447-452, 1991.

[8] E. D. Karnin, “A Simple Procedure For Pruning Back-Propagation
Trained Neural Networks”, IEEE Trans. Neural Networks, vol. 1., no. 2,
pp. 239-242, 1990. http://dx.doi.org/10.1109/72.80236

[9] R. Setiono and H. Liu, “Understanding Neural Networks via Rule
Extraction,” IJCAI, 1995.

[10] R. Setiono and W. H. Leow, “Pruned Neural Networks for Regression”
in PRICAI 2000 Topics in Artificial Intelligence, Lecture Notes in
Computer Science, vol. 1886, 2000, pp. 500-509.
http://dx.doi.org/10.1007/3-540-44533-1 51

[11] Y. Le Cun, J. S. Denker, and S. A. Solla, “Optimal Brain Damage,” in
Advances in Neural Information Processing (2), D. S. Touretzky Ed.
(Denver 1989), 1990, pp. 598-605.

[12] B. Hassibi, D. G. Stork, G. J Wolf, “Optimal Brain Surgery and General
Network Pruning.”

[13] Y. Chauvin, “A Back-Propagation Algorithm With Optimal Use of
Hidden Units” Advances in Neural Information Processing, (1)
D. S. Touretzky ed. (Denver 1998), 1989, pp. 519-526.

[14] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, “Back-
Propagation, Weight Elimination and Time Series Prediction,” in Proc.
1990 Connectionist Models Summer School, D. Touretzky, J. Elman,
T. Sejnowsky, and G. Hinton, Eds., 1990, pp. 105-116.

[15] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, “Generalization
by Weight-Elimination Applied to Currency Exchange Rate Prediction,”
in Proc. Int. Joint Conf. Neural Networks, vol.l, (Seattle), 1991,
pp.837-841.

[16] A. S. Weigend, D. E. Rumelhart and B. A. Huberman, “Generalization
by Weight-Elimination With Application to Forecasting,” in Advances in
Neural Information Processing (3) R. Lippmann, J. Moody, and
D. Touretzky, Eds., 1991, pp. 875-882.

[17] C.Ji, R. R. Snapp, and D. Psaltis, “Generalizing Smoothness Constraints
From Discreet Samples,” Neural Computation, vol. 2, no. 2, 1990,
pp. 188-197. http://dx.doi.org/10.1162/neco.1990.2.2.188

[18] D. C. Plaut, S. J. Nowlan, and G. E. Hinton, “Experiments on Learning
by Back Propagation,” Tech. Rep. CMU-CS-86-126, Carnegie Mellon
Univ., 1986.

[19] S. J. Nowlan, and G. E. Hinton, “Simplifying Neural Networks by Soft
Weight-Sharing,” Neural Computation vol. 4, no. 4, 1992, pp. 473-493.
http://dx.doi.org/10.1162/nec0.1992.4.4.473

[20] L. Prechelt, “Adaptive Parameter Prunning in Neural Networks,”
International Computer Science Institute, Mar. 1995.

[21] W. Finnoff, F. Hergert, and H. G. Zimmermann, “Improving Model
Selection by Nonconvergent Methods”, Elsiever Neural Networks,
vol. 6, no. 6, 1993, pp. 771-783.
http://dx.doi.org/10.1016/S0893-6080(05)80122-4

[22] J. K. Kruschke, “Creating Local and Distributed Bottlenecks in Hidden
Layers of Back-Propagation Networks,” in Proc. 1988 Connectionist
Models Summer School, D. Touretzky, G. E. Hinton, and T. Sejnowsky,
Eds., 1988, pp 120-126.

[23] J. K. Kruschke, “Ilmproving Generalization in Back-Propagation
Networks with Distributed Bottlenecks,” in Proc. Int. Joint Conf. Neural
Networks, Washington DC, vol. 1, 1989, pp.443-447.

[24] K. Bache, M. Lichman, (2013), UCI Machine Learning Repository
[Online]. Available: http://archive.ics.uci.edu/ml, Irvine, CA: University
of California, School of Information and Computer Science. Accessed
Sept 15, 2014.

[25] P. Golik, P. Doetsch, and H. Ney, “Cross-Entropy vs. Squared Error
Training: a Theoretical and Experimental Comparison”, in Interspeech,
pp. 1756-1760, Lyon, France, August 2013.

Andrey Bondarenko received the B.Sc. degree in 2004, and MSc. degree in
2006 from the Institute of Transport and Communication, University of
Latvia, (Riga, Latvia). Since 2010 he has continued studies at Riga Technical
University towards obtaining of the Doctoral degree in Computer Science.
Presently his major field of study is the extraction of concise rules from a
trained artificial neural network. His research interests include: computational
intelligence, machine learning.

E-mail: andrejs.bondarenko@gmail.com.

Arkady Borisov received the Doctoral degree in Technical Cybernetics from
Riga Polytechnic Institute in 1970 and Dr. habil. sc. comp. degree in
Technical Cybernetics from Taganrog State Radio Engineering University in
1986.

He is a Professor of Computer Science with the Faculty of Computer
Science and Information Technology, Riga Technical University. His research
interests include fuzzy sets, fuzzy logic, computational intelligence and
bioinformatics. He has more than 235 publications in the field.

He is a member of IFSA European Fuzzy System Working Group, Russian
Fuzzy System and Soft Computing Association, honorary member of the
Scientific Board, member of the Scientific Advisory Board of the Fuzzy
Initiative Nordrhein-Westfalen (Dortmund, Germany).

Address: 1 Kalku Str., Riga, LV-1658; phone: +371 6708953
E-mail: arkadijs.borisovs@cs.rtu.lv.

Andrejs Bondarenko, Arkadijs Borisovs. Maksligo neironu tiklu visparinasana un vienkaroana, izmantojot samazinasanu

Sobrid més piedzivojam otro maksligo neironu tiklu (MNT) renesansi. lemesls — veiksmes apmacibas nozarg. Paslaik kluvis iespgjams apmacit daudzslanu tiklus,
izmantojot lielus datu apjomus. Tomér, tapat ka iepricks, MNT izmanto$anu ierobezo tas, ka dotais modelis ir melna Kkaste, kura nepaskaidro, ka notiek
klasifikacija, kadi faktori un kada veida ietekmg klasifikacijas rezultatu. Vel viena probléma, izmantojot MNT, ir tikla hiperparametru atlase. Viens no tiem —
tikla arhitektiira ievérojami ietekmé& MNT visparinasanas iesp&jas. Lai zinaSanas izvilktu no tikla (likumu iegii$ana) un vienkarSotu tiklu, ka ari lai palielinatu
visparinasanas iespgjas, ir divas pieejas: apmacit loti lielu tiklu, un p&c tam to vienkar3ot, vai pakapeniski apmacit mazu tiklu, palielinot neironu skaitu. Sis raksts
sniedz parskatu par MNT samazina$anas metodeém. Ir dots parskats par $adam samazinasanas metodes klasém: jutiguma analizes metode, neironu svaru soda
metode, neironu svaru pakapeniska samazina$ana, interaktiva samazinaana, automatiska samazinasana u. ¢. Saja raksta tiek ierosinats un apskatits algoritms,
kur§ samazina tiklu. Testiem ir izmantoti dati no UCI glabatuves. Metode balstas uz neironu iznemsanu un, ja vajag, atdoSanu tikla. 1zmantotais neironu tikls —
daudzslanu perceptrons — apmacits svaru samazinasanai. Algoritmam ir automatiskas apstasanas kritérijs. legutie rezultati liecina, ka atkariba no datu
sarezgitibas, samazinatais un vienkarSotais MNT var biit ievérojami mazaks un visparigaks, neka originalais tikls. BieZi vienkarSoSana samazina klasifikacijas
kludu. Iegiitais MNT visos gadijumos ir mazaks par originaliem tikliem un to var izmantot noteikumu iegii$anai.

Amnjpeii Bonnapenko, Apkanuii Bopucos. O6061eHne U ynpouieHe HCKYCCTBEHHbIX HelPOHHBIX CeTeil uepe3 ype3anue

B naHHBII MOMEHT MBI Ha0JIO/1aeM BTOPOM peHECCaHC UCKyccTBeHHBIX HeiipoHHbIx ceteit (MHC). [Ipuuunna storo - ycnexu B obaactu riaydokoro ooyuenus. Ha
JTaHHBIH MOMEHT CTaJO BO3MOXKHBIM 00y4YeHHEe MHOTOCIOWHBIX ceTei Ha 0oNbIMX 00beMax HaHHBIX. OHAKO, KaK U MPEXe, OTPAHMICHHEM K HCIIOJIb30BAHUIO
VHC sBisietcs To, 4TO JaHHBINA BHJ MOJEIHN SBIISETCS YSPHBIM SIIMKOM, HE NAIONINM OOBSICHEHHUS, KaK MPOBOAUTCS KIAacCH(UKAIMA U Kakue (HakTOpbl M Kak
BIMSIOT Ha pe3yabTaT Kiaccudukanuu. J[pyroit npodnemoit npu ucnonszoBannu MHC siBnsiercst mondop runepnapamerpoB cetu. OIUH U3 HUX — apXUTEKTypa
CeTH 3HAYMTENbHO BIHAET Ha obOoOmaromme BosmoxkHocTn VHC. Kak mis ¢opmanuzanuy mMonenu (M3BIEYEHHE NPaBHI), TaK U U YHNPOILCHUS CETH U
YaCTHYHO YBEIMYEHHs 000OIIAIONIMX BO3ZMOXKHOCTEH MPOBOAAT 00ydeHHe M3IUIIHE OOJBIION CEeTH ¢ MOCIEAYIOIMM ype3aHHeM, Jnbo obydeHne MaleHbKOM
CeTH C MOCIeAyIoIuM [o0aBIeHHeM HEHpOHOB. B maHHON cTaTbe mIpuBeIeH 0030p METOHOB ype3aHHs. PaccMOTpeHBI Takue IOAXObBI, KaK: aHAIM3
qyBCTBUTEILHOCTH, METOABI HA OCHOBE IITpaca, METOIBI pachala BECOB HEHPOHBIX CBs3ell, HHTEPAKTUBHOIO ype3aHHMs, aBTOype3aHUs W Apyrue. B manHoi
CTaThe MPEUIOKEH W PacCMOTPEH AITOPUTM ype3aHus ceTd Ha npumepe naHHbIX u3 UCI permo3ntopust Ha OCHOBE yHaleHHUs U, 0 HEOOXOIMMOCTH, BO3BpaTa
HEeUpOHOB B ceTh. HelipoHHAsl ceTh — MHOIOCIOWHBINH IEpCENTPOH, OOYYEHHBIH HPH IOMOIIM OOPATHOTO PACIPOCTPAHEHHs OMMOKU. AJropHTM 00Jamaer
KpHUTepUeM OCTaHOBKH. [lomydeHHbIE pe3ynbTaThl TOBOPAT O TOM, YTO B 3aBUCHMOCTH OT CIOXKHOCTH JaHHBIX Mozens MTHC MoxeT ObITh 3HAUUTENBHO YIPOIIEHA
u 00001IeHa. 3a4acTyro ype3aHHe yMeHbIIaeT KiaccupukanuonHyto omuoky. ITomyuennsie MTHC Bo Bcex cirydasix CTaHOBSTCS MEHbIIE OPHTMHAIBHON CETH U
MOTYT OBITh UCIIOJB30BAHBI ISl H3BJICUCHHS TIPABHIL.

137

http://dx.doi.org/10.1109/72.80236
http://dx.doi.org/10.1007/3-540-44533-1_51
http://dx.doi.org/10.1162/neco.1990.2.2.188
http://dx.doi.org/10.1162/neco.1992.4.4.473
http://dx.doi.org/10.1016/S0893-6080(05)80122-4
http://www.interspeech2013.org/
mailto:andrejs.bondarenko@gmail.com

