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Abstract – Artificial neural networks (ANNs) are well known 

for their classification abilities. Although choosing hyper-

parameters such as neuron layer count and size can be a quite 

tedious task. Pruning approaches assume that a sufficiently large 

ANN has already been trained and can be simplified with 

acceptable classification accuracy loss. The current paper 

presents a node pruning algorithm and gives experimental results 

for pruned network accuracy rates versus their non-pruned 

counterparts. 
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I. INTRODUCTION 

Artificial neural networks have been successfully applied in 

many different areas to solve the problems of classification 

and regression. ANNs, specifically multi-layer feed-forward 

artificial neural networks, trained using error back-propagation 

give good results, and the recent advances in deep learning 

have proved to give unprecedented classification accuracy 

[1]–[2]. Main problem with regular (non-deep) ANNs is 

choosing hyper-parameters, which can severely influence 

model performance. Choosing architecture with insufficient 

number of neurons can give unsatisfying classification rates, 

while choosing too many neurons will badly influence training 

time, but more than that it will cause overfitting. To overcome 

these problems, two approaches exist: to grow neural networks 

[3], [4] and to train an excessively large network with 

subsequent pruning. In the current paper, we use the second 

approach to overcome overfitting of trained ANNs, thus 

enhancing their generalization abilities, as well as preparing 

the previously trained artificial neural networks for rule 

extraction. 

The current paper is structured as follows: Section II gives 

an overview of pruning methods; Section III describes the 

used algorithm; Section IV presents results of experiments, 

and Sections V and VI hold discussion and conclusion. 

II.  PRUNING METHOD OVERVIEW 

First of all, we should note that some algorithms prune 

weights between neuron layers, others prune neurons 

themselves, and some combine both approaches. Paper [5] 

gives a nice overview; we briefly present main ideas 

mentioned there along with other methods not listed in the 

source paper. We can divide all pruning algorithms into two 

main categories: node/weight removal based on sensitivity 

analysis and penalty term based methods that utilize penalty 

term to remove “unused” / least important weights. Some 

algorithms combine both approaches, while some cannot be 

easily added to one or the other family of methods. Sensitivity 

analysis relies on the calculation of influence of specific node 

or weight. Some algorithms just calculate pairs of weights 

coming into/out of a single neuron. Finding the smallest 

weight pairs assumes that their influence on classification 

result is minimal. 

A. Sensitivity Analysis Based Methods 

Sensitivity method from [6] by Mozer and Smolensy 

calculates an error with unit removed and without it being 

removed, thus deleting least important units. Instead of 

calculating an error directly, they use derivative calculated 

during error back-propagation to approximate it. Segee and 

Carter in [7] have found that small variance in weights coming 

into a neuron is signaling that the subject neuron can be safely 

removed.  

Karnin in [8] describes the method for weight pruning, 

which does not require specific sensitivity calculation phase. 

All necessary data about weight updates are stored during 

training. This makes this approach unusable in case one wants 

to prune the already trained ANN. Nevertheless, such an 

approach is perfectly usable in case one has control over 

training of ANN. The main idea is the sensitivity analysis of 

weights and their removal if they have too small sensitivity.  

 

                                                              (1) 

 

 

Here, wf is a specific weight value, 0 is its value after its 

pruning, E(wf) is an error with given weight enabled and E(0) 

is an error when this weight is pruned. Finally, Sij is sensitivity 

of weight between nodes i,j. Instead of computing sensitivity 

value directly (which would lead to a sensitivity estimation 

phase), the authors propose to estimate it using a sum of all 

changes in weight during training: 

 

 

      (2) 

 

Here, N – is a number of weight updates.  

Rudy Setiono [9] describes a rather simple pruning 

algorithm, which uses simple heuristics to find weights to be 

pruned. It assumes that one has ANN with a single hidden 

layer (although an approach can be generalized to multiple 

hidden layers) and removes input-hidden and hidden-output 

weights if their values are not satisfying a specific constant. 

Actually, there are two constants used, both of them should be 

set-up manually. 

Rudy Setiono also described a rule extraction algorithm 

[10] called N2FPA, which uses simple estimations of effect of 

removal of neurons in the network. Neurons are removed one 

by one, in case an error worsens significantly pruning stops. 
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This is the method, which was used and slightly modified in 

the current paper.  

Le Cun et al. in [11] describe the method called Optimal 

Brain Damage (OBD), which measures “saliency” of a weight 

by estimating the second derivative of the error with respect to 

the weight. They made a couple of assumptions after which 

computed such derivatives during the modified error back-

propagation. One drawback of such a method is the necessity 

of storage of Hessian matrix. After one weight is pruned, 

retraining is done to find another weight to prune. 

Optimal Brain Surgery from [12] (OBS) goes one step 

further in comparison with OBD, it utilizes an inverse Hessian 

matrix to calculate optimal weight to be deleted, but at the 

same time it solves an optimization problem, which gives 

remaining weight updates necessary to lower a network error. 

Such an approach allows for simultaneous update of all 

remaining weights; thus, retraining is not required. OBS is one 

of the best methods for pruning. Likewise OBD, it should hold 

the Hessian matrix, thus requiring additional memory. 

B. Penalty Based Methods 

Penalty term methods use weight decay/penalty term in one 

way or another to force a neural network during its training to 

get rid of unnecessary weights. 

Chauvin [13] uses a cost function with a specific term, 

which poses average energy expended by weights, as well 

there is a modification with additional magnitude of weight 

term, which penalizes large weights and large amount of 

weights. 

Weigend et al. [14]–[16] minimize a specific cost function 

with additional term penalizing network complexity as a 

function of the weight magnitudes relative to the defined 

constant w0. Choosing such a constant should be done via 

trials/errors.  

Ji et al. [17] propose another penalty term pruning approach 

based on a modified error function, which tries to minimize a 

number of hidden nodes and weight magnitudes. The 

limitation of the proposed method is that it assumes a single 

hidden layer ANN with one input and linear output node. The 

method assumes retraining after each removed weight. 

C. Weight Decay Methods 

Plaut et al. [18] propose a simple cost function, which 

decays weights. Cost function built specifically to allow an 

algorithm to favor nodes with many small weights in contrast 

to a node with single large connection. Nowlan and Hinton 

[19] describe a more complex cost function with a penalty 

term, which models the probability distributions of weights as 

a mixture of Gaussians. 

D. Interactive Pruning 

Sietsma and Dow [19] describe an interactive method in 

which a designer inspects a network and marks nodes to be 

pruned. Algorithm provides several heuristics to determine 

candidates for removal. The authors have demonstrated on 

training problems that their method is capable of finding 

relatively small networks with good accuracy in comparison 

with large trained networks, which were not able to find a 

solution. 

E. Auto-pruning Methods 

Next discussed approach is an auto-pruning method called 

lprune [20] by Lutz Prechelt. It proposes pruning at each step 

all weights not satisfying a specific formula controlled by 

parameter lambda. Experiments showed that this parameter 

should be adaptive; the algorithm to support dynamic 

adjustment was proposed. According to Prechelt, the proposed 

methods overcome OBD and OBS in terms of accuracy and 

simplicity of pruned ANN. 

Another auto-pruning method [21] by William Finoff et al. 

applies a modified cost function, does not require full training 

of ANN and uses dynamic adjustment of penalty term. Similar 

to OBS, this method performs dynamic topology adjustments. 

F. Other Methods 

Kruchke [22] describes a local bottleneck method, in which 

neurons “compete” with each other to survive. Magnitudes of 

vectors determine a degree to which a neuron participates in 

modeling target function; this is treated as a neuron gain. In 

case gain is zero, a neuron does not participate in a task and 

can be removed. In case, two neurons have parallel or anti-

parallel weight vectors, they are redundant and can be 

removed as well. The method uses a specific parameter, which 

should be tuned carefully. 

The same author proposes another method called 

Distributed Bottlenecks [22]–[23], which puts constraints on 

weights rather than deletes them. This serves as sort of 

dimensionality reduction. Such an approach makes weight 

vectors that are further apart than average to become further 

from each other and vectors that are closer than average to 

become closer. Again the method uses a special constant, 

which should be chosen manually 

III. PROPOSED ALGORITHM 

We used the algorithm described by Rudy Setiono in [10] 

(part of N2FPA rule extraction method). In essence we used 

node pruning. We operated on the trained ANN, on each 

pruning we tried to determine a neuron, which needs to be 

removed. For all neurons in hidden layers we calculated a 

classification error for network operating without them. (This 

essentially means we set activations of pruned neurons to 

zero.) Neuron, which upon removal produced a network with 

the smallest cost function, was removed. Afterwards, the 

network was retrained. If classification accuracy raised above 

a specific threshold (we used tolerance to error equal to 2.5 % 

out of the smallest encountered classification error, i. e.,  we 

accepted removal of a neuron in case the classification 

worsened for no more than 2.5 %), then a neuron was accepted 

to as pruned. If an error significantly, then a candidate neuron 

was left intact and new search for a pruning candidate was 

initiated on the already retrained network (remember we 

retrained it without a “pruned” neuron.) Retraining gives 

chances to get a simpler network with higher generalization 

and good classification rates, which can be observed in 

Table I. 
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TABLE I 

TYPE SIZES, SPACES AND INTERVALS 

 
MLP train 

avg. 
MLP train 

std. dev 
MLP test 

avg. 
MLP test 
std. dev 

Pruned 
train avg. 

Pruned 
train std. 

dev 

Pruned test 
avg. 

Pruned test 
std. dev 

Architecture before/after 
pruning (hidden nodes in 2 

hidden layers) 
Ionosphere (10-fold X-validation) 10.83% 0.0013 10.83% 0.0115 5.39% 0.0169 10.44% 0.0326 15-15 / 5.4–3.8 
Monks-1 (train/test) 20.16% 0.0120 29.68% 0.0166 18.47% 0.1067 24.35% 0.0952 15-15 / 5-3 
Monks-2 (train/test) 36.82% 0.0135 36.55% 0.0087 31.83% 0.2005 32.58% 0.2170 15-10 / 5-3.1 
Monks-3 (train/test) 6.64% 0.0026 2.80% 0.0007 5.98% 0.0078 2.85% 0.0105 15-15 / 1.7-1.1 
WPBC (10-fold X-validation) 0% 0.0 0% 0.0 0% 0.0 0% 0.0 10-10 / 1-1 
WDBC (10-fold X-validation) 3.89% 0.0040 4.04% 0.0278 3.03% 0.0098 3.69% 0.0271 30-30 / 23.2-17.1 
Pima (10-fold X-validation) 23.02% 0.0073 23.56% 0.0498 25.94% 0.0412 26.81% 0.0598 10-10 / 2.8-3.1 
Haberman (10-fold X-validation) 26.13% 0.0055 26.57% 0.0255 28.5% 0.0762 28.2% 0.0981 15-15 / 2.3-3.7 
Parkinsons (10-fold X-validation) 24.62% 0.0021 24.61% 0.0197 16.29% 0.0241 15.82% 0.0848 30-30 / 26.8-28 

 

Below you can find a pseudo code of the pruning algorithm: 
 
Inputs: 

 
maxIter –     determines maximum number of    
        prunning iterations 

maxPrunedNodes – maximum number of nodes to be   
        pruned 
errorRiseTol -  determines acceptable error rise 

 
maxFallbacks -  in case neurons are pruned and then 
        reverted – how many times before we 

        quit? 
 
Program: 

 

iter = 1 
while (iter<maxIter || prunedNodes<maxPrunedNodes) 

 for all not pruned neurons in all hidden layers  
  if (lastNeuronInLayer()) continue; 
  removeNeuron(n) 

  cost = testNetwork() 
  if (cost > largestKnownCost) 
   largestKnownCost = cost 

   indexOfPrunedNeuron = getIndexOfPrunedNeuron  
   prunedNodes = prunedNodes + 1 
  end 

 end 
 
 retrainNetwork() 

 
 classError = testNetwork() 
  errRatio = classError/smallestClassError 

 if (errRatio > 1 + errorRiseTol) 

  revert pruned neuron 
  fallbacksCounter = fallbacksCounter + 1 

    prunedNodes = prunedNodes - 1 
 else 
    ///leave pruned neuron as is 

    fallbacksCounter = 0 
 end 
 if (fallbacksCounter >= maxFallbacks)  

  break 
 end 
  iter = iter + 1 

end 
 

 

 

Here one can notice hyper-parameters listed in the beginning, 

maxIter – controls a maximum possible number of pruning 

iterations, maxPrunedNeurons – controls a maximum number 

of neurons to be pruned. We need both parameters, as neurons 

after pruning can be restored; thus, some iterations will not 

result in network pruning. However, they will leave network 

with weights adjusted during retraining. Apart from that, there 

are two other hyper-parameters: errorRiseTol – which controls 

maximum rise of error (we used a classification error) after 

removal of a neuron which will not cause pruned neuron 

reversal/restore. Thus, let us say an error has risen by more 

than 5 % in case of neuron removal in comparison with the 

best/lowest known error rate and our parameter is 0.075. We 

will leave the network intact, but if it is below 0.05 the 

network will get back the pruned neuron. Finally, 

maxFallbacks controls how many attempts an algorithm 

makes in pruning neurons and reverting them back 

consequently before termination. Thus, if this parameter is 

equal to 10, then in case of ten subsequent iterations a neuron 

is pruned, but then restored due to a high rise in an error, the 

algorithm terminates. 

ANN itself is trained using the cross-entropy cost function 

equipped with a penalty term (weight decay). Below there is a 

cost function: 

 

 

   (3) 

 

 

where k is the number of patterns, 
i

pl  = 0 or 1 is the target 

value for pattern xi at an output unit p, p = 1, 2, …, C. C is the 

number of output units/neurons. 
i

pS  is the output of the 

network at unit p:  

 

         (4) 

 

 

Here, to simplify things a bit we provide formulas for a 

single hidden layered neural network, but in reality for our 

experiments we used two hidden layers. xi is an n-dimensional 

input pattern,  I = 1, 2, …, k.  wm is an n-dimensional 
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Fig. 1. Haberman data set trained neural network pruning. 

Fig. 2. Monks2 data set trained neural network pruning. 

 

Fig. 3. WDBC data set trained neural network pruning. 

Fig. 4. Ionosphere data set trained neural network pruning. 



Information Technology and Management Science  

 

___________________________________________________________________________________________________________ 2014 / 17 

136 

vector of weights for the arcs connecting the input layer and 

the m-th hidden unit, m = 1, 2, …, h. vm is a C-dimensional 

vector for the weight connecting the m-th hidden unit and the 

output layer. The activation function is a sigmoid function 

with domain (−1, +1): 

 

               (5) 

 

Finally, for all our weights we applied weight decay factor 

0.0001. This is a quite simple approach in comparison with 

others described in the theoretical part, but still it does the job. 

Cross-entropy has been chosen as it is capable of dealing with 

problems of error derivative plateau better than a standard 

round mean square error (RMSE) [25]. Apart from this, we 

used Stochastic Gradient Descent batch training. Batch size 

was chosen to be 20. 

IV. EXPERIMENTS 

In our experiments, we used three 10-fold cross-validation, 

but for some test-sets like monk’s train and test data are 

already provided; thus, there we utilized thirty runs to get 

averaged results. We decided to use two hidden layer neural 

networks, so that some networks would be able to use an 

additional layer, in case one of the layers was not needed we 

would be able to see this after pruning would be finished – 

such layers should have small number of intact neurons in one 

of the layers. For our experiments, we used well- known UCI 

[24] data sets: Monks-1, Monks-2, Monks-3, Ionosphere, 

Haberman, Pima diabetes, WDBC, WPBC and Parkinsons.  

Some of the mentioned problems use only categorical 

variables – like monks. In such cases, we transformed input 

data into binary format, thus instead of 5 inputs we used 17. In 

other cases, the only transformation applied was rescaling of 

data into [−1, 1] region. Data sets are binary classification 

problems; we utilized two output neurons to represent a 

solution to the network. Data sets themselves are pretty small 

ranging from about 150 to 500 entries. Table I holds 

classification accuracy for all data sets. It contains average 

classification rate with standard deviation for both train and 

test cases along with 10 x-validation folds or runs for non-

pruned and pruned neural networks. Last table column holds 

network hidden layers structures before and after pruning. 

For the pruning algorithm we used 0.025 as an errorRiseTol 

tolerance level, usually around 50 (depends on the total 

number of neurons, it should be around 60–70 % of that) as 

maxIter iterations. MaxIter count should be larger than the 

maximum number of neurons to be pruned (which was always 

equal to neuron count in hidden layers minus 2 – we could not 

prune all neurons from all layers). In all cases, we decided to 

apply 2 layer hidden neuron networks (with error-

backpropagation) trained using cross-entropy cost (error) 

function and stochastic gradient descent as a learning 

algorithm. All cases were executed using 10-fold cross-

validation except monk’s data sets – they had already been 

divided into training and testing sets. 

Figs. 1–4 represent a pruning process. Looking at a cross-

entropy train error one can notice spikes upon neuron removal. 

In majority of cases, a network is rather quickly adapting to 

effects of pruning. In cases when a train error rises 

significantly – a neuron is not pruned. All in all, training set 

classification graphs show decrease of train set classification 

error. 

V.  DISCUSSION 

As one can notice in many cases the acquired ANN models 

are significantly smaller than initial networks. Smaller 

networks are less prone to overfitting, thus have higher 

generalization abilities. In some cases, networks were not 

significantly simplified; these were: WDBC and Parkinsons 

data sets, where we could see only ~50 % drop in neuron 

counts. Both of these data sets have a rather complex structure 

and thus require bigger models (in comparison with other data 

sets). As we have already noted, the algorithm has auto-

stopping criteria allowing it to perform several trials before 

deciding to stop. The used algorithm assumes training of 

neural network with the removed neuron, while afterwards in 

case of unsatisfactory results the removed neuron is returned 

back to the ANN. Diligent reader can note that there are 

several possibilities in regards to how and which neuron 

should be returned back into a neural net. We used the same 

neuron, but we did not explore possibilities of adding a 

random neuron. 

VI. CONCLUSION 

In the current paper, we presented the algorithm for pruning 

artificial neural networks along with experimental data (UCI 

classification data sets were used), showing that it was able to 

significantly simplify a network structure, if a data set did not 

have a complex structure. Algorithm with the proposed 

stopping criteria applied to UCI datasets in many cases is 

giving much simpler ANN models with only a few neurons 

while having slightly worse or in some cases better 

classification accuracy rates in comparison with original non-

pruned neural networks. Such “simpler” models are faster to 

execute and are better candidates for knowledge extraction. 

Further research directions are exploration of other techniques 

for returning a neuron back after a retraining phase. 
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Andrejs Bondarenko, Arkadijs Borisovs. Mākslīgo neironu tīklu vispārināšana un vienkāršošana, izmantojot samazināšanu 

Šobrīd mēs piedzīvojam otro mākslīgo neironu tīklu (MNT) renesansi. Iemesls – veiksmes apmācības nozarē. Pašlaik kļuvis iespējams apmācīt daudzslāņu tīklus, 

izmantojot lielus datu apjomus. Tomēr, tāpat kā iepriekš, MNT izmantošanu ierobežo tas, ka dotais modelis ir melna kaste, kura nepaskaidro, kā notiek 
klasifikācija, kādi faktori un kādā veidā ietekmē klasifikācijas rezultātu. Vēl viena problēma, izmantojot MNT, ir tīkla hiperparametru atlase. Viens no tiem − 

tīkla arhitektūra ievērojami ietekmē MNT vispārināšanas iespējas. Lai zināšanas izvilktu no tīkla (likumu iegūšana) un vienkāršotu tīklu, kā arī  lai palielinātu 

vispārināšanas iespējas, ir divas pieejas: apmācīt ļoti lielu tīklu, un pēc tam to vienkāršot, vai pakāpeniski apmācīt mazu tīklu, palielinot neironu skaitu. Šis raksts 
sniedz pārskatu par MNT samazināšanas metodēm. Ir dots pārskats par šādām samazināšanas metodes klasēm: jutīguma analīzes metode, neironu svaru soda 

metode, neironu svaru pakāpeniska samazināšana, interaktīva samazināšana, automātiska samazināšana u. c. Šajā rakstā tiek ierosināts un apskatīts algoritms, 
kurš samazina tīklu. Testiem ir izmantoti dati no UCI glabātuves. Metode balstās uz neironu izņemšanu un, ja vajag, atdošanu tīklā. Izmantotais neironu tīkls − 

daudzslāņu perceptrons − apmācīts svaru samazināšanai. Algoritmam ir automātiskās apstāšanās kritērijs. Iegūtie rezultāti liecina, ka atkarībā no datu 

sarežģītības, samazinātais un vienkāršotais MNT var būt ievērojami mazāks un vispārīgāks, nekā oriģinālais tīkls. Bieži vienkāršošana samazina klasifikācijas 
kļūdu. Iegūtais MNT visos gadījumos ir mazāks par oriģināliem tīkliem un to var  izmantot noteikumu iegūšanai. 

 

Андрей Бондаренко, Аркадий Борисов. Обобщение и упрощение искусственных нейронных сетей через урезание 

В данный момент мы наблюдаем второй ренессанс искусственных нейронных сетей (ИНС). Причина этого - успехи в области глубокого обучения. На 

данный момент стало возможным обучение многослойных сетей на больших объемах данных. Однако, как и прежде, ограничением к использованию 
ИНС является то, что данный вид модели является черным ящиком, не дающим объяснения, как проводится классификация и какие факторы и как 

влияют на результат классификации. Другой проблемой при использовании ИНС является подбор гиперпараметров сети. Один из них – архитектура 
сети значительно влияет на обобщающие возможности ИНС. Как для формализации модели (извлечение правил), так и для упрощения сети и 

частично увеличения обобщающих возможностей проводят обучение излишне большой сети с последующим урезанием, либо обучение маленькой 

сети с последующим добавлением нейронов. В данной статье приведен обзор методов урезания. Рассмотрены такие подходы, как: анализ 
чувствительности, методы на основе штрафа, методы распада весов нейроных связей, интерактивного урезания, автоурезания и другие. В данной 

статье предложен и рассмотрен алгоритм урезания сети на примере данных из UCI репозитория на основе удаления и, по необходимости, возврата 
нейронов в сеть. Нейронная сеть – многослойный персептрон, обученный при помощи обратного распространения ошибки. Алгоритм обладает 

критерием остановки. Полученные результаты говорят о том, что в зависимости от сложности данных модель ИНС может быть значительно упрощена 

и обобщена. Зачастую урезание уменьшает классификационную ошибку. Полученные ИНС во всех случаях становятся меньше оригинальной сети и 
могут быть использованы для извлечения правил. 
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