
Information Technology and Management Science

___ 2014 / 17

132

doi: 10.1515/itms-2014-0020

Artificial Neural Network Generalization

and Simplification via Pruning

Andrey Bondarenko 1, Arkady Borisov 2, 1 CTCo Ltd., 2 Riga Technical University

Abstract – Artificial neural networks (ANNs) are well known

for their classification abilities. Although choosing hyper-

parameters such as neuron layer count and size can be a quite

tedious task. Pruning approaches assume that a sufficiently large

ANN has already been trained and can be simplified with

acceptable classification accuracy loss. The current paper

presents a node pruning algorithm and gives experimental results

for pruned network accuracy rates versus their non-pruned

counterparts.

Keywords – Artificial neural networks, generalization,

overfitting, pruning.

I. INTRODUCTION

Artificial neural networks have been successfully applied in

many different areas to solve the problems of classification

and regression. ANNs, specifically multi-layer feed-forward

artificial neural networks, trained using error back-propagation

give good results, and the recent advances in deep learning

have proved to give unprecedented classification accuracy

[1]–[2]. Main problem with regular (non-deep) ANNs is

choosing hyper-parameters, which can severely influence

model performance. Choosing architecture with insufficient

number of neurons can give unsatisfying classification rates,

while choosing too many neurons will badly influence training

time, but more than that it will cause overfitting. To overcome

these problems, two approaches exist: to grow neural networks

[3], [4] and to train an excessively large network with

subsequent pruning. In the current paper, we use the second

approach to overcome overfitting of trained ANNs, thus

enhancing their generalization abilities, as well as preparing

the previously trained artificial neural networks for rule

extraction.

The current paper is structured as follows: Section II gives

an overview of pruning methods; Section III describes the

used algorithm; Section IV presents results of experiments,

and Sections V and VI hold discussion and conclusion.

II. PRUNING METHOD OVERVIEW

First of all, we should note that some algorithms prune

weights between neuron layers, others prune neurons

themselves, and some combine both approaches. Paper [5]

gives a nice overview; we briefly present main ideas

mentioned there along with other methods not listed in the

source paper. We can divide all pruning algorithms into two

main categories: node/weight removal based on sensitivity

analysis and penalty term based methods that utilize penalty

term to remove “unused” / least important weights. Some

algorithms combine both approaches, while some cannot be

easily added to one or the other family of methods. Sensitivity

analysis relies on the calculation of influence of specific node

or weight. Some algorithms just calculate pairs of weights

coming into/out of a single neuron. Finding the smallest

weight pairs assumes that their influence on classification

result is minimal.

A. Sensitivity Analysis Based Methods

Sensitivity method from [6] by Mozer and Smolensy

calculates an error with unit removed and without it being

removed, thus deleting least important units. Instead of

calculating an error directly, they use derivative calculated

during error back-propagation to approximate it. Segee and

Carter in [7] have found that small variance in weights coming

into a neuron is signaling that the subject neuron can be safely

removed.

Karnin in [8] describes the method for weight pruning,

which does not require specific sensitivity calculation phase.

All necessary data about weight updates are stored during

training. This makes this approach unusable in case one wants

to prune the already trained ANN. Nevertheless, such an

approach is perfectly usable in case one has control over

training of ANN. The main idea is the sensitivity analysis of

weights and their removal if they have too small sensitivity.

 (1)

Here, wf is a specific weight value, 0 is its value after its

pruning, E(wf) is an error with given weight enabled and E(0)

is an error when this weight is pruned. Finally, Sij is sensitivity

of weight between nodes i,j. Instead of computing sensitivity

value directly (which would lead to a sensitivity estimation

phase), the authors propose to estimate it using a sum of all

changes in weight during training:

 (2)

Here, N – is a number of weight updates.

Rudy Setiono [9] describes a rather simple pruning

algorithm, which uses simple heuristics to find weights to be

pruned. It assumes that one has ANN with a single hidden

layer (although an approach can be generalized to multiple

hidden layers) and removes input-hidden and hidden-output

weights if their values are not satisfying a specific constant.

Actually, there are two constants used, both of them should be

set-up manually.

Rudy Setiono also described a rule extraction algorithm

[10] called N2FPA, which uses simple estimations of effect of

removal of neurons in the network. Neurons are removed one

by one, in case an error worsens significantly pruning stops.

f

f

f

ij w
w

EwE
S

0

)0()(









 







1

0

)(ˆ
N

n
i

ij

f

ij

f

ij

ij

ij

ij
ww

w
nw

w

E
S

Information Technology and Management Science

2014 / 17 ___

133

This is the method, which was used and slightly modified in

the current paper.

Le Cun et al. in [11] describe the method called Optimal

Brain Damage (OBD), which measures “saliency” of a weight

by estimating the second derivative of the error with respect to

the weight. They made a couple of assumptions after which

computed such derivatives during the modified error back-

propagation. One drawback of such a method is the necessity

of storage of Hessian matrix. After one weight is pruned,

retraining is done to find another weight to prune.

Optimal Brain Surgery from [12] (OBS) goes one step

further in comparison with OBD, it utilizes an inverse Hessian

matrix to calculate optimal weight to be deleted, but at the

same time it solves an optimization problem, which gives

remaining weight updates necessary to lower a network error.

Such an approach allows for simultaneous update of all

remaining weights; thus, retraining is not required. OBS is one

of the best methods for pruning. Likewise OBD, it should hold

the Hessian matrix, thus requiring additional memory.

B. Penalty Based Methods

Penalty term methods use weight decay/penalty term in one

way or another to force a neural network during its training to

get rid of unnecessary weights.

Chauvin [13] uses a cost function with a specific term,

which poses average energy expended by weights, as well

there is a modification with additional magnitude of weight

term, which penalizes large weights and large amount of

weights.

Weigend et al. [14]–[16] minimize a specific cost function

with additional term penalizing network complexity as a

function of the weight magnitudes relative to the defined

constant w0. Choosing such a constant should be done via

trials/errors.

Ji et al. [17] propose another penalty term pruning approach

based on a modified error function, which tries to minimize a

number of hidden nodes and weight magnitudes. The

limitation of the proposed method is that it assumes a single

hidden layer ANN with one input and linear output node. The

method assumes retraining after each removed weight.

C. Weight Decay Methods

Plaut et al. [18] propose a simple cost function, which

decays weights. Cost function built specifically to allow an

algorithm to favor nodes with many small weights in contrast

to a node with single large connection. Nowlan and Hinton

[19] describe a more complex cost function with a penalty

term, which models the probability distributions of weights as

a mixture of Gaussians.

D. Interactive Pruning

Sietsma and Dow [19] describe an interactive method in

which a designer inspects a network and marks nodes to be

pruned. Algorithm provides several heuristics to determine

candidates for removal. The authors have demonstrated on

training problems that their method is capable of finding

relatively small networks with good accuracy in comparison

with large trained networks, which were not able to find a

solution.

E. Auto-pruning Methods

Next discussed approach is an auto-pruning method called

lprune [20] by Lutz Prechelt. It proposes pruning at each step

all weights not satisfying a specific formula controlled by

parameter lambda. Experiments showed that this parameter

should be adaptive; the algorithm to support dynamic

adjustment was proposed. According to Prechelt, the proposed

methods overcome OBD and OBS in terms of accuracy and

simplicity of pruned ANN.

Another auto-pruning method [21] by William Finoff et al.

applies a modified cost function, does not require full training

of ANN and uses dynamic adjustment of penalty term. Similar

to OBS, this method performs dynamic topology adjustments.

F. Other Methods

Kruchke [22] describes a local bottleneck method, in which

neurons “compete” with each other to survive. Magnitudes of

vectors determine a degree to which a neuron participates in

modeling target function; this is treated as a neuron gain. In

case gain is zero, a neuron does not participate in a task and

can be removed. In case, two neurons have parallel or anti-

parallel weight vectors, they are redundant and can be

removed as well. The method uses a specific parameter, which

should be tuned carefully.

The same author proposes another method called

Distributed Bottlenecks [22]–[23], which puts constraints on

weights rather than deletes them. This serves as sort of

dimensionality reduction. Such an approach makes weight

vectors that are further apart than average to become further

from each other and vectors that are closer than average to

become closer. Again the method uses a special constant,

which should be chosen manually

III. PROPOSED ALGORITHM

We used the algorithm described by Rudy Setiono in [10]

(part of N2FPA rule extraction method). In essence we used

node pruning. We operated on the trained ANN, on each

pruning we tried to determine a neuron, which needs to be

removed. For all neurons in hidden layers we calculated a

classification error for network operating without them. (This

essentially means we set activations of pruned neurons to

zero.) Neuron, which upon removal produced a network with

the smallest cost function, was removed. Afterwards, the

network was retrained. If classification accuracy raised above

a specific threshold (we used tolerance to error equal to 2.5 %

out of the smallest encountered classification error, i. e., we

accepted removal of a neuron in case the classification

worsened for no more than 2.5 %), then a neuron was accepted

to as pruned. If an error significantly, then a candidate neuron

was left intact and new search for a pruning candidate was

initiated on the already retrained network (remember we

retrained it without a “pruned” neuron.) Retraining gives

chances to get a simpler network with higher generalization

and good classification rates, which can be observed in

Table I.

Information Technology and Management Science

___ 2014 / 17

134

TABLE I

TYPE SIZES, SPACES AND INTERVALS

MLP train

avg.
MLP train

std. dev
MLP test

avg.
MLP test
std. dev

Pruned
train avg.

Pruned
train std.

dev

Pruned test
avg.

Pruned test
std. dev

Architecture before/after
pruning (hidden nodes in 2

hidden layers)
Ionosphere (10-fold X-validation) 10.83% 0.0013 10.83% 0.0115 5.39% 0.0169 10.44% 0.0326 15-15 / 5.4–3.8
Monks-1 (train/test) 20.16% 0.0120 29.68% 0.0166 18.47% 0.1067 24.35% 0.0952 15-15 / 5-3
Monks-2 (train/test) 36.82% 0.0135 36.55% 0.0087 31.83% 0.2005 32.58% 0.2170 15-10 / 5-3.1
Monks-3 (train/test) 6.64% 0.0026 2.80% 0.0007 5.98% 0.0078 2.85% 0.0105 15-15 / 1.7-1.1
WPBC (10-fold X-validation) 0% 0.0 0% 0.0 0% 0.0 0% 0.0 10-10 / 1-1
WDBC (10-fold X-validation) 3.89% 0.0040 4.04% 0.0278 3.03% 0.0098 3.69% 0.0271 30-30 / 23.2-17.1
Pima (10-fold X-validation) 23.02% 0.0073 23.56% 0.0498 25.94% 0.0412 26.81% 0.0598 10-10 / 2.8-3.1
Haberman (10-fold X-validation) 26.13% 0.0055 26.57% 0.0255 28.5% 0.0762 28.2% 0.0981 15-15 / 2.3-3.7
Parkinsons (10-fold X-validation) 24.62% 0.0021 24.61% 0.0197 16.29% 0.0241 15.82% 0.0848 30-30 / 26.8-28

Below you can find a pseudo code of the pruning algorithm:

Inputs:

maxIter – determines maximum number of
 prunning iterations

maxPrunedNodes – maximum number of nodes to be
 pruned
errorRiseTol - determines acceptable error rise

maxFallbacks - in case neurons are pruned and then
 reverted – how many times before we

 quit?

Program:

iter = 1
while (iter<maxIter || prunedNodes<maxPrunedNodes)

 for all not pruned neurons in all hidden layers
 if (lastNeuronInLayer()) continue;
 removeNeuron(n)

 cost = testNetwork()
 if (cost > largestKnownCost)
 largestKnownCost = cost

 indexOfPrunedNeuron = getIndexOfPrunedNeuron
 prunedNodes = prunedNodes + 1
 end

 end

 retrainNetwork()

 classError = testNetwork()
 errRatio = classError/smallestClassError

 if (errRatio > 1 + errorRiseTol)

 revert pruned neuron
 fallbacksCounter = fallbacksCounter + 1

 prunedNodes = prunedNodes - 1
 else
 ///leave pruned neuron as is

 fallbacksCounter = 0
 end
 if (fallbacksCounter >= maxFallbacks)

 break
 end
 iter = iter + 1

end

Here one can notice hyper-parameters listed in the beginning,

maxIter – controls a maximum possible number of pruning

iterations, maxPrunedNeurons – controls a maximum number

of neurons to be pruned. We need both parameters, as neurons

after pruning can be restored; thus, some iterations will not

result in network pruning. However, they will leave network

with weights adjusted during retraining. Apart from that, there

are two other hyper-parameters: errorRiseTol – which controls

maximum rise of error (we used a classification error) after

removal of a neuron which will not cause pruned neuron

reversal/restore. Thus, let us say an error has risen by more

than 5 % in case of neuron removal in comparison with the

best/lowest known error rate and our parameter is 0.075. We

will leave the network intact, but if it is below 0.05 the

network will get back the pruned neuron. Finally,

maxFallbacks controls how many attempts an algorithm

makes in pruning neurons and reverting them back

consequently before termination. Thus, if this parameter is

equal to 10, then in case of ten subsequent iterations a neuron

is pruned, but then restored due to a high rise in an error, the

algorithm terminates.

ANN itself is trained using the cross-entropy cost function

equipped with a penalty term (weight decay). Below there is a

cost function:

 (3)

where k is the number of patterns,
i

pl = 0 or 1 is the target

value for pattern xi at an output unit p, p = 1, 2, …, C. C is the

number of output units/neurons.
i

pS is the output of the

network at unit p:

 (4)

Here, to simplify things a bit we provide formulas for a

single hidden layered neural network, but in reality for our

experiments we used two hidden layers. xi is an n-dimensional

input pattern, I = 1, 2, …, k. wm is an n-dimensional

1 1

(,) log (1)(1 log) ,
k C

i i i i

p p p p

i p

F w v l S l S
 

 
     

 


  
1

.
h

T
i i m m

p p

m

S x w v 


 
  

 


Information Technology and Management Science

2014 / 17 ___

135

Fig. 1. Haberman data set trained neural network pruning.

Fig. 2. Monks2 data set trained neural network pruning.

Fig. 3. WDBC data set trained neural network pruning.

Fig. 4. Ionosphere data set trained neural network pruning.

Information Technology and Management Science

___ 2014 / 17

136

vector of weights for the arcs connecting the input layer and

the m-th hidden unit, m = 1, 2, …, h. vm is a C-dimensional

vector for the weight connecting the m-th hidden unit and the

output layer. The activation function is a sigmoid function

with domain (−1, +1):

 (5)

Finally, for all our weights we applied weight decay factor

0.0001. This is a quite simple approach in comparison with

others described in the theoretical part, but still it does the job.

Cross-entropy has been chosen as it is capable of dealing with

problems of error derivative plateau better than a standard

round mean square error (RMSE) [25]. Apart from this, we

used Stochastic Gradient Descent batch training. Batch size

was chosen to be 20.

IV. EXPERIMENTS

In our experiments, we used three 10-fold cross-validation,

but for some test-sets like monk’s train and test data are

already provided; thus, there we utilized thirty runs to get

averaged results. We decided to use two hidden layer neural

networks, so that some networks would be able to use an

additional layer, in case one of the layers was not needed we

would be able to see this after pruning would be finished –

such layers should have small number of intact neurons in one

of the layers. For our experiments, we used well- known UCI

[24] data sets: Monks-1, Monks-2, Monks-3, Ionosphere,

Haberman, Pima diabetes, WDBC, WPBC and Parkinsons.

Some of the mentioned problems use only categorical

variables – like monks. In such cases, we transformed input

data into binary format, thus instead of 5 inputs we used 17. In

other cases, the only transformation applied was rescaling of

data into [−1, 1] region. Data sets are binary classification

problems; we utilized two output neurons to represent a

solution to the network. Data sets themselves are pretty small

ranging from about 150 to 500 entries. Table I holds

classification accuracy for all data sets. It contains average

classification rate with standard deviation for both train and

test cases along with 10 x-validation folds or runs for non-

pruned and pruned neural networks. Last table column holds

network hidden layers structures before and after pruning.

For the pruning algorithm we used 0.025 as an errorRiseTol

tolerance level, usually around 50 (depends on the total

number of neurons, it should be around 60–70 % of that) as

maxIter iterations. MaxIter count should be larger than the

maximum number of neurons to be pruned (which was always

equal to neuron count in hidden layers minus 2 – we could not

prune all neurons from all layers). In all cases, we decided to

apply 2 layer hidden neuron networks (with error-

backpropagation) trained using cross-entropy cost (error)

function and stochastic gradient descent as a learning

algorithm. All cases were executed using 10-fold cross-

validation except monk’s data sets – they had already been

divided into training and testing sets.

Figs. 1–4 represent a pruning process. Looking at a cross-

entropy train error one can notice spikes upon neuron removal.

In majority of cases, a network is rather quickly adapting to

effects of pruning. In cases when a train error rises

significantly – a neuron is not pruned. All in all, training set

classification graphs show decrease of train set classification

error.

V. DISCUSSION

As one can notice in many cases the acquired ANN models

are significantly smaller than initial networks. Smaller

networks are less prone to overfitting, thus have higher

generalization abilities. In some cases, networks were not

significantly simplified; these were: WDBC and Parkinsons

data sets, where we could see only ~50 % drop in neuron

counts. Both of these data sets have a rather complex structure

and thus require bigger models (in comparison with other data

sets). As we have already noted, the algorithm has auto-

stopping criteria allowing it to perform several trials before

deciding to stop. The used algorithm assumes training of

neural network with the removed neuron, while afterwards in

case of unsatisfactory results the removed neuron is returned

back to the ANN. Diligent reader can note that there are

several possibilities in regards to how and which neuron

should be returned back into a neural net. We used the same

neuron, but we did not explore possibilities of adding a

random neuron.

VI. CONCLUSION

In the current paper, we presented the algorithm for pruning

artificial neural networks along with experimental data (UCI

classification data sets were used), showing that it was able to

significantly simplify a network structure, if a data set did not

have a complex structure. Algorithm with the proposed

stopping criteria applied to UCI datasets in many cases is

giving much simpler ANN models with only a few neurons

while having slightly worse or in some cases better

classification accuracy rates in comparison with original non-

pruned neural networks. Such “simpler” models are faster to

execute and are better candidates for knowledge extraction.

Further research directions are exploration of other techniques

for returning a neuron back after a retraining phase.

REFERENCES

[1] A.-Krizhevsky, I. Sutskever, G. Hinton. “ImageNet Classification with
Deep Convolutional Neural Networks”, Advances in Neural Information

Processing Systems 25, NIPS, 2012.
[2] G. Hinton, L. Deong, D. Yu, G. Dahl and others, “Deep Neural

Networks for Accoustic Modelling in Speech Recognition”. IEEE Signal

Processing Magazine, Nov., 2012.
http://dx.doi.org/10.1109/MSP.2012.2205597

[3] X. Qiang, G. Cheng, Z. Wang, “An Overview of Some Classical
Growing Neural Networks and New Developments”, IEEE, Education

Technology and Computer (ICETC), 2nd International conference,

vol. 3. 2010.
[4] V. Chaudhary, A. K. Ahlawat, R. S. Bhatia, “Growing Neural Networks

using Soft Competitive Learning”. International Journal of Computer
Applications (0975-8887) vol. 21, no. 3, May 2011.

[5] R. Reed, “Pruning Algorithms – A Survey”, IEEE Transactions on

Neural Networks, vol. 4., no. 5., Sep. 1993.
http://dx.doi.org/10.1109/72.248452

[6] M. C. Mozer and P. Smolensky, “Skeletonization: A Techique for
Trimming the Fat From a Network via Relevance Assessment,” in

ye
y




1

1
)(

http://dx.doi.org/10.1109/MSP.2012.2205597
http://dx.doi.org/10.1109/72.248452

Information Technology and Management Science

2014 / 17 ___

137

Advances in Neural Information Processing, pp. 107–115, Denver,

1989.

[7] B. E. Segee and M. J. Carter, “Fault Tolerance of Pruned Multilayer
Networks,” in Proc. Int. Joint Conf. Neural Networks, vol. 2, Seattle,

pp. 447–452, 1991.
[8] E. D. Karnin, “A Simple Procedure For Pruning Back-Propagation

Trained Neural Networks”, IEEE Trans. Neural Networks, vol. 1., no. 2,

pp. 239–242, 1990. http://dx.doi.org/10.1109/72.80236
[9] R. Setiono and H. Liu, “Understanding Neural Networks via Rule

Extraction,” IJCAI, 1995.
[10] R. Setiono and W. H. Leow, “Pruned Neural Networks for Regression”

in PRICAI 2000 Topics in Artificial Intelligence, Lecture Notes in

Computer Science, vol. 1886, 2000, pp. 500–509.
http://dx.doi.org/10.1007/3-540-44533-1_51

[11] Y. Le Cun, J. S. Denker, and S. A. Solla, “Optimal Brain Damage,” in
Advances in Neural Information Processing (2), D. S. Touretzky Ed.

(Denver 1989), 1990, pp. 598–605.

[12] B. Hassibi, D. G. Stork, G. J Wolf, “Optimal Brain Surgery and General
Network Pruning.”

[13] Y. Chauvin, “A Back-Propagation Algorithm With Optimal Use of

Hidden Units” Advances in Neural Information Processing, (1)

D. S. Touretzky ed. (Denver 1998), 1989, pp. 519–526.

[14] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, “Back-
Propagation, Weight Elimination and Time Series Prediction,” in Proc.

1990 Connectionist Models Summer School, D. Touretzky, J. Elman,
T. Sejnowsky, and G. Hinton, Eds., 1990, pp. 105–116.

[15] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, “Generalization

by Weight-Elimination Applied to Currency Exchange Rate Prediction,”
in Proc. Int. Joint Conf. Neural Networks, vol. I, (Seattle), 1991,

pp.837–841.
[16] A. S. Weigend, D. E. Rumelhart and B. A. Huberman, “Generalization

by Weight-Elimination With Application to Forecasting,” in Advances in

Neural Information Processing (3) R. Lippmann, J. Moody, and
D. Touretzky, Eds., 1991, pp. 875–882.

[17] C. Ji, R. R. Snapp, and D. Psaltis, “Generalizing Smoothness Constraints
From Discreet Samples,” Neural Computation, vol. 2, no. 2, 1990,

pp. 188–197. http://dx.doi.org/10.1162/neco.1990.2.2.188

[18] D. C. Plaut, S. J. Nowlan, and G. E. Hinton, “Experiments on Learning
by Back Propagation,” Tech. Rep. CMU-CS-86-126, Carnegie Mellon

Univ., 1986.
[19] S. J. Nowlan, and G. E. Hinton, “Simplifying Neural Networks by Soft

Weight-Sharing,” Neural Computation vol. 4, no. 4, 1992, pp. 473–493.
http://dx.doi.org/10.1162/neco.1992.4.4.473

[20] L. Prechelt, “Adaptive Parameter Prunning in Neural Networks,”

International Computer Science Institute, Mar. 1995.

[21] W. Finnoff, F. Hergert, and H. G. Zimmermann, “Improving Model

Selection by Nonconvergent Methods”, Elsiever Neural Networks,

vol. 6, no. 6, 1993, pp. 771–783.
http://dx.doi.org/10.1016/S0893-6080(05)80122-4

[22] J. K. Kruschke, “Creating Local and Distributed Bottlenecks in Hidden
Layers of Back-Propagation Networks,” in Proc. 1988 Connectionist

Models Summer School, D. Touretzky, G. E. Hinton, and T. Sejnowsky,

Eds., 1988, pp 120–126.
[23] J. K. Kruschke, “Improving Generalization in Back-Propagation

Networks with Distributed Bottlenecks,” in Proc. Int. Joint Conf. Neural
Networks, Washington DC, vol. 1, 1989, pp.443–447.

[24] K. Bache, M. Lichman, (2013), UCI Machine Learning Repository

[Online]. Available: http://archive.ics.uci.edu/ml, Irvine, CA: University
of California, School of Information and Computer Science. Accessed

Sept 15, 2014.
[25] P. Golik, P. Doetsch, and H. Ney, “Cross-Entropy vs. Squared Error

Training: a Theoretical and Experimental Comparison”, in Interspeech,

pp. 1756–1760, Lyon, France, August 2013.

Andrey Bondarenko received the B.Sc. degree in 2004, and MSc. degree in

2006 from the Institute of Transport and Communication, University of

Latvia, (Riga, Latvia). Since 2010 he has continued studies at Riga Technical

University towards obtaining of the Doctoral degree in Computer Science.
Presently his major field of study is the extraction of concise rules from a

trained artificial neural network. His research interests include: computational
intelligence, machine learning.

E-mail: andrejs.bondarenko@gmail.com.

Arkady Borisov received the Doctoral degree in Technical Cybernetics from

Riga Polytechnic Institute in 1970 and Dr. habil. sc. comp. degree in
Technical Cybernetics from Taganrog State Radio Engineering University in

1986.

He is a Professor of Computer Science with the Faculty of Computer
Science and Information Technology, Riga Technical University. His research

interests include fuzzy sets, fuzzy logic, computational intelligence and
bioinformatics. He has more than 235 publications in the field.

He is a member of IFSA European Fuzzy System Working Group, Russian

Fuzzy System and Soft Computing Association, honorary member of the
Scientific Board, member of the Scientific Advisory Board of the Fuzzy

Initiative Nordrhein-Westfalen (Dortmund, Germany).
Address: 1 Kalku Str., Riga, LV-1658; phone: +371 6708953

E-mail: arkadijs.borisovs@cs.rtu.lv.

Andrejs Bondarenko, Arkadijs Borisovs. Mākslīgo neironu tīklu vispārināšana un vienkāršošana, izmantojot samazināšanu

Šobrīd mēs piedzīvojam otro mākslīgo neironu tīklu (MNT) renesansi. Iemesls – veiksmes apmācības nozarē. Pašlaik kļuvis iespējams apmācīt daudzslāņu tīklus,

izmantojot lielus datu apjomus. Tomēr, tāpat kā iepriekš, MNT izmantošanu ierobežo tas, ka dotais modelis ir melna kaste, kura nepaskaidro, kā notiek
klasifikācija, kādi faktori un kādā veidā ietekmē klasifikācijas rezultātu. Vēl viena problēma, izmantojot MNT, ir tīkla hiperparametru atlase. Viens no tiem −

tīkla arhitektūra ievērojami ietekmē MNT vispārināšanas iespējas. Lai zināšanas izvilktu no tīkla (likumu iegūšana) un vienkāršotu tīklu, kā arī lai palielinātu

vispārināšanas iespējas, ir divas pieejas: apmācīt ļoti lielu tīklu, un pēc tam to vienkāršot, vai pakāpeniski apmācīt mazu tīklu, palielinot neironu skaitu. Šis raksts
sniedz pārskatu par MNT samazināšanas metodēm. Ir dots pārskats par šādām samazināšanas metodes klasēm: jutīguma analīzes metode, neironu svaru soda

metode, neironu svaru pakāpeniska samazināšana, interaktīva samazināšana, automātiska samazināšana u. c. Šajā rakstā tiek ierosināts un apskatīts algoritms,
kurš samazina tīklu. Testiem ir izmantoti dati no UCI glabātuves. Metode balstās uz neironu izņemšanu un, ja vajag, atdošanu tīklā. Izmantotais neironu tīkls −

daudzslāņu perceptrons − apmācīts svaru samazināšanai. Algoritmam ir automātiskās apstāšanās kritērijs. Iegūtie rezultāti liecina, ka atkarībā no datu

sarežģītības, samazinātais un vienkāršotais MNT var būt ievērojami mazāks un vispārīgāks, nekā oriģinālais tīkls. Bieži vienkāršošana samazina klasifikācijas
kļūdu. Iegūtais MNT visos gadījumos ir mazāks par oriģināliem tīkliem un to var izmantot noteikumu iegūšanai.

Андрей Бондаренко, Аркадий Борисов. Обобщение и упрощение искусственных нейронных сетей через урезание

В данный момент мы наблюдаем второй ренессанс искусственных нейронных сетей (ИНС). Причина этого - успехи в области глубокого обучения. На

данный момент стало возможным обучение многослойных сетей на больших объемах данных. Однако, как и прежде, ограничением к использованию
ИНС является то, что данный вид модели является черным ящиком, не дающим объяснения, как проводится классификация и какие факторы и как

влияют на результат классификации. Другой проблемой при использовании ИНС является подбор гиперпараметров сети. Один из них – архитектура
сети значительно влияет на обобщающие возможности ИНС. Как для формализации модели (извлечение правил), так и для упрощения сети и

частично увеличения обобщающих возможностей проводят обучение излишне большой сети с последующим урезанием, либо обучение маленькой

сети с последующим добавлением нейронов. В данной статье приведен обзор методов урезания. Рассмотрены такие подходы, как: анализ
чувствительности, методы на основе штрафа, методы распада весов нейроных связей, интерактивного урезания, автоурезания и другие. В данной

статье предложен и рассмотрен алгоритм урезания сети на примере данных из UCI репозитория на основе удаления и, по необходимости, возврата
нейронов в сеть. Нейронная сеть – многослойный персептрон, обученный при помощи обратного распространения ошибки. Алгоритм обладает

критерием остановки. Полученные результаты говорят о том, что в зависимости от сложности данных модель ИНС может быть значительно упрощена

и обобщена. Зачастую урезание уменьшает классификационную ошибку. Полученные ИНС во всех случаях становятся меньше оригинальной сети и
могут быть использованы для извлечения правил.

http://dx.doi.org/10.1109/72.80236
http://dx.doi.org/10.1007/3-540-44533-1_51
http://dx.doi.org/10.1162/neco.1990.2.2.188
http://dx.doi.org/10.1162/neco.1992.4.4.473
http://dx.doi.org/10.1016/S0893-6080(05)80122-4
http://www.interspeech2013.org/
mailto:andrejs.bondarenko@gmail.com

