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Abstract — The research studies the estimation of a semi-
parametric stationary Markov models based on a Frank copula
density function. Described techniques allow us to estimate the
parameters of the Frank copula, which has a better fit compared
to previously selected regression models (estimators of the
marginal distribution and the copula parameters are provided).
We show how to apply our technique to the financial index VIX —
a market mechanism that measures the 30-day forward implied
volatility of the underlying index, the S&P500. Moreover, using
MatLab we made VIX option index study — found the best copula
fit under our condition, estimated nonlinear parameters and
showed evaluation steps for copula based semi-parametric
models.
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l. INTRODUCTION

Copulas have become popular in the finance and insurance
community in the past years, where modeling and estimating
the dependence structure between several univariate time
series are of great interest; see Frees and Valdez (1998) [1]
and Embrechts et al. (2002) [2] for review.

A copula function is a multivariate distribution function
with standard uniform marginals. By Sklar’s (1959) [3]
theorem, one can always model any multivariate distribution
by modeling its marginal distributions and its copula function
separately, where the copula captures all the scale-free
dependence in the multivariate distribution [4]. The central
result of this theorem, which states that any continuous
N-dimensional cumulative distribution function F, evaluated at

apoint X = (X, ..., X,)can be represented as

F(x)=C(R(x),....F, (%)),

where C is called a copula function and F(X;) ,

i=1,...,n are the marginal distributions [4]. The use of

copulas, therefore, splits a complicated problem (finding a
multivariate distribution) into two simpler tasks. The first task
is to model the univariate marginal distributions and the
second task is finding a copula that summarizes the
dependence structure between them.

It is also useful to represent copulas as joint distribution
functions of standard uniform random variables:

U =F(Xy) g V =F(Xy)
C(u,v)=PU <u\V <v)
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The outcome of uniform random variables falls into the
interval [0, 1]; therefore, the domain of a copula must be the
N-dimensional unit cube. Similarly, because the mapping
represents a probability, the range of the copula must also be
the unit interval. It is also easy to determine the value of a
copula on the border of its domain. When one argument equals
zero, the probability of any joint event must also be zero.
Similarly, when all but one of the inputs is equal to one, the
joint probability must be equal to the (marginal) probability of
the argument that does not equal one. Finally, the function
must be increasing in all its arguments [4].

Apart from the standard distribution functions, copulas have
associated densities:

6°C(u,V)

c(u,v) =
ouov
which permit the bivariate density f(u; v) as the product of the
copula density and the density functions of the margins

f (U,V) = C(Fl(u)’ Fz (V)) fl(u) fz (V)

The expression above indicates how the simple product of
two marginal distributions will fail to properly measure the
joint distribution of two asset prices unless they are in fact
independent and the dependence information captured by the

copula density [4], C(F, (u), F, (V)) , is normalized to unity.

I1. COPULA-BASED SEMI-PARAMETRIC MODELS FOR
STOHASTIC SIMULATIONS

The possibility of identifying nonlinear time series using
nonparametric estimates of the conditional mean and
conditional variance was studied in many papers (see, for
example, [5], and references there). As a rule, analyzing the
dependence structure of stationary time series {x,teZ}
regressive models defined by invariant marginal distributions
and copula functions that capture the temporal dependence of
the processes. As indicated in [5], this allows separating out
the temporal dependence (such as tail dependence) from the
marginal behavior (such as fat tails) of a time series. One more
advantage of this type regressive approach is a possibility to
apply probabilistic limit theorems for transition from
deference equations to continuous time stochastic differential
equations ([5], [6]). In our paper, we also study a class of
copula-based semi-parametric stationary Markov models in a
form of scalar difference equation
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t S Z Xt = Xt_l +& f(Xt_lag)-l_gg(xt—l’g)gt (1)

where {&,,t € Z} isi.i.d., N(0; 1), and & is a small positive
parameter, which will be used for diffusion approximation of
(1). Regressions (1) are high-usage equations for simulation
and parameter estimation of stochastic volatility models ([5]).
Unfortunately, defined by (1) Markov chain has incompact
phase space that complicates an application of probabilistic
limit theorem. Copula approach helps to simplify asymptotic
analysis of (1). Due to persistence of small parameter & after
a substitution U, = F(X,) in equation (1) for a further
diffusion approximation one can write a difference equation in
the same form like (1):

teZ:U =U_,+dU_,&)+aqU, 8 @

But now this equation defines a Markov chain on the
compact [0, 1]. This makes it easier to formulate construction
for transition probability and further estimators of functions

f(u)and g(u) . After diffusion approximation of (2) one
can make a inverse substitution and derive a stochastic
differential equation as diffusion approximation for (1).

Described algorithm allows evaluating the parameters of
copula, which have the best fit to previously selected model.
In our copula dependence study we used MatLab, which helps
to evaluate copula parameters and choose the best copula
class, based on log likelihood estimation, for the selected
financial market data. These copula based models are easy to
simulate and can be expressed as semi-parametric regression
transformation models. Moreover, using this MatLab we made
VIX option index simulation — found the best copula fit under
our condition and built semi-parametric autoregression.

I11. PROPOSED ESTIMATION ALGORITHM AND EVALUATION OF
PARAMETERS

Let us take into consideration VIX — Market Volatility
Index — daily data from 25 October 2009 to 1 October 2014.
The VIX is a market mechanism that measures the 30-day
forward implied volatility of the underlying index, the S&P
500. Being able to meaningfully interpret movements in the
VIX and its reaction to market events can give investors an
edge in managing the risk and profitability of their trading
book and in designing portfolio strategies using VIX
derivatives to capitalize on the dynamic and time-varying
correlation of the VIX with its underlying S&P 500 Index. Let
us build for this option index semi-parametric copula based
model, using AIC and BIC criteria.

The easiest way of parameter estimating of the semi-
regressive model for the VIX index would be to hold the
algorithm:

- To simulate U, points, which are R[0,1] (uniform) or
transform the existing sample into R[0,1];
- Tobuild a scatter plot for (U, ;,U,);

- To make several statistical tests to find the suited
distribution of data;

- To take into account a scatter plot and distribution of
data, try to choose copula from the existing class or
build your own copula, if you know marginal
distributions;

- To test copula consistency to data (for example AIB
and BIC);

- Tofind regression parameters.
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Fig. 1. Historical VIX index levels.

Using Matlab program, we built scatter plots for VIX index
transformed into uniform distribution (R[0,1]) and non-
transformed data.
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Fig. 2. Scatter plot for non-transformed VIX index data.

An important issue faced by an applied researcher interested
in using the class of semi-parametric copula-based time series
models is the choice of an appropriate parametric copula [7].
In different papers, Chen et al. (1998) [8] propose two simple
tests for the correct specification of a parametric copula in the
context of modeling the contemporaneous dependence
between several univariate time series and of the innovations
of univariate GARCH models used to filter each univariate
time series.
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Fig. 3. Scatter plot for transformed into R[0,1] VIX index data.

Chen and Fan (2004b) [9] establish pseudo-likelihood ratio
tests for selection of parametric copula models for multivariate
i. i. d. observations under copula misspecification [4]. But our

suggestion is simpler — we can choose the best copula fit using
2

AIC and BIC criteria or using X test for data distribution.
We take for different copula comparisons AIC and BIC.

Clayton Frank

Fig. 4. Most common types of copula in finance (theoretical illustrations).

For the first copula choosing step, it is reasonable to
compare graphical parametric copulas with VIX data scatter
plot (Fig. 2), (Fig. 3). As we can see, the most suitable copulas
for our data are Gumbel, Frank and Normal. For this sample of
copulas, is useful to calculate AIC and BIC criteria.

108

1
E(Um |Ut = u): Iut+l dFuM\u‘ (U)
0

TABLE |
AIC AND BIC CRITERIA FOR VIX INDEX DATA
Copula AIC BIC
Gumbel copula -109.3 -105.7
Frank copula -255.1 -247.1
Normal copula -248.9 -242.2
Taking into account AIC and BIC criteria, we should

choose the Frank copula for further model estimation. Let us
see how to derive semi-parametric regression parameters using
Frank copula representation:

g U1 g Ut
CUps ) —) )

=-a"In(1+
1

Inserting expression (3) into conditional expectation, we get
our parameters:

ut+1 p( t+1 |U ) t+1 =

o'—,n—\

1

U, = J-ut+1 C(ut+l’ U, )dut+1 =
0

— .J[ t+j|_ t+1’ u )d
0 au’[+lau

_ 1 g1(1+gu1+u”1)

= —aIUt+1 (—? du,, =
0 gut gut+1 + gl

_ e e -tnfe e° 1)) nfe*(e* ~1))+ale”
ale™ 1)(e e*)

=

)
(( t+1|U ) (( t+1 f(U)/U —U)
:j.( t+l f(U ) C( t+l’Ut)dUt+l:
:j}(“ In(t)_aln(t)(exp(a)—l) Lot 2y
o - expa)-t) A
(1 exp(—a)) exp(-au,)
X 1 t dt
(L-exp(-a) - (- ;)(1— exp(-au, )))*
)

where t = exp(U;41)

It is impossible to solve analytically (4) and (5) expressions.
But numerically it is doable, for example, in the Matlab or
Mathematica. For the Frank copula, we can use an inverse
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function with the aim to return to our base equation (1).
Besides integral (5) diverges at O point, as a result it is
impossible to find solution to (5).
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Fig. 5. Second moment of U, in an interval [0.001; 4] with a parameter a =
8.68.

However, using Mathematica software it is possible to draw
values of equation (5). As it is seen in Fig. 4, equation (5) in
the interval (0;1) is nonlinear. This second moment adds a
nonlinear effect to regression (1). This second moment starts
to diverge from point 1, but visual divergence is seen from
point 2.7.
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Fig. 6. Second moment of U, in an interval [0.001; 4] with a parameter a =
8.68.

The final Markov copula based semi-parametric regression
model in a form of (2) is equal to the sum of (4) and (6):

t (S Z Ut :Utfl + f (Ut,]_lg) + g(Ut—l’g)é‘Zt =

=U,+

N e’ ((ea —1XIn(eau‘ (ea —1))— In(ea(ea —1)))+ a(ea -e™ ))+

ale™ —1Je* —e™)

+j‘}(aln(t)_aln(t)(exp(a)—l)+ t
o! - expa)-t) PO

(1- exp(-2)) exp(—aut)f
X

dtg,
(1—exp(—a)—(1—})(1—exp(—aut)»2

where {&,,t € Z} isi. i. d.,, N(0; 1).

But if we deal with copulas, we should not skip some facts.
For example, it is not easy to say which parametric copula best
fits a given dataset, since some copulas may fit better near the
center and other near the tails and many copulas do not have
moments that are directly related to the Pearson correlation; it
is difficult to compare financial models based on correlation.
Of course, if we want to use this model in practice, it is crucial
to compare different class models which could be suitable for
these data. This can give an applied added value for this
method.

IV. CONCLUSIONS AND FURTHER WORK

The algorithm for copula simulation and semi-parametric
regression coefficient finding using a Markov chain has been
presented. For Option VIX index data using MatLab the best
fitted copula model, which is the Frank copula, has been
found. According to this copula, principals have been shown
and parameters of the semi-parametric regression model
coefficients have been evaluated in a copula space. The future
research may be devoted to developing numerical algorithms
for simulation of trajectories of various random processes,
evaluating the characteristic of semi-parametric models based
on copula, and finding continuous stochastic models using
limit theorems [12].
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Andrejs Matvejevs, Jegors Fjodorovs. VIX indeksa modelésana, izmantojot neparametriskos Markova modelus ar Franka kopulu

Saja raksta tiek aprakstits neparametriskas Markova modela novértésanas algoritms, izmantojot Franka kopulas blivamu. Uz kopulam bazétas neparametriskas
regresijas atSkiras ar to, ka p&tnieks varétu sadalit dazada veida efektus (risku avotus) un katru modelét atseviski (neparametriskais marginalais sadalijums un
parametriska kopulas funkcija), bet kopula savieno visu no méroga neatkarigo laika sakaribu. Raksta tika izmantots finan$u indekss VIX — méra 30 dienas uz
prieksu netiesu svarstigumu, bazes indeksa S & P 500. Sis indekss aprékinams no akciju opciju cenam. Aprakstita pieeja lauj mums novértét parametrus Franka
kopulai, kura péc noteiktajiem statistiskajiem kritérijiem ir labakais variants VIX indeksa datu vesturiskas atkaribas aprakstiSanai. Turpmak, balstoties uz Franka
kopulas blivuma funkciju, tika aprakstits neparametriskas Markova regresijas koeficientu atra$anas mehanisms. ST modela parametru noteik$ana ir sarezgita —
analitiski nav atrisindjuma (parametriskais integrals divergé 0 punkta). Tadgjadi tika izmantotas MatLab un Mathematica skaitliskas metodes, kas layj
parliecinaties par pareizo metodologisko pieeju — no ilustrétajiem grafikiem var redzet, ka otrais moments pievieno nelinearitati aprakstitajam vienadojumam.
Rezultata, izmantojot aprakstito metodologiju, var imitét VIX indeksa dinamiku dazadiem laika intervaliem un iegiitos novértéjumus izmantot finan$u riska
vadibai (riska ierobezoSanas operacijas, izmantojot ar opcijam) vai pienemot spekulativas tirdzniecibas pozicijas ar opcijam.

Amnppeii MatseeB, Erop ®énopos. Moaesuposanue VIX nHaekca nocpecTsoM HenapaMmeTpuyeckux MapkoBecKUX Mojelieii ¢ komy1oii @panka
JlaHHast cTaThs ONMCHIBAET QJITOPUTM OLGHKU HerapamMeTpuueckoii MapKOBCKOW MOJEIM € IOMOLIbIO IUIOTHOCTH Komyssl ®panka. KomynbHble
HellapaMeTPHIECKHe PErpecCHy OTIMYAIOTCS TeM, YTO HCCIENOBATeNIb MOXET pa3JeluTh pa3IndHble BB (MCTOUYHHMKH) PUCKA, Ka)KABI CMOIEIHPOBATH
OTJENBHO (HEenapaMeTpU4eCKHe MapruHajbHbIC paclpelesieHus] U IapaMeTpuueckas KOmysibHas (YHKLUHMS) U COCIAMHUTH KOIIyJOH, CBOOOJHOH OT MaiuTtaba
BPEMEHHOI 3aBUCHMOCTBIO. B crathe ObuT HMcmonb3oBaH (uHaHCOBBINH MHAEKC VIX, m3mepsitomnii 30-IHEBHYIO OyAyIIyl0 BHYTPEHHIOIO BOJNATHIBHOCTH Ha
ocHoBe HHzeKca akmuil S & P 500. DTOT MHAEKC paccUMTHIBAETCS, UCXOAS U3 IIeH ONIMOHOB. OIMCAHHBIN MOAXOJ MO3BOISIET OLEHHUTH IapaMeTPh! KOITyJIbI
®panka, MpaBUILHOCTh BbIOOpA KOTOPOI yCTaHABIMBAETCS C MOMOLIbIO CTATUCTUYECKMX KPUTEPHEB M SBIISETCS JIydIUUM A AaHHbIX uHjaekca VIX. To ects
3Ta KOITyJIa JIy4Ille OCTaIbHBIX KOITYJI OIMMCHIBAET HCTOPHYECKYIO 3aBUCUMOCTD. Jlaee, Ha ocHOBe QYHKIUMM IIOTHOCTH PpaHKa KOITyJIbl, ObLT ONUCAH MEXaHH3M
OLICHKH KOd((HITMEHTOB HemapaMeTpuieckod MapkoBcKkoil perpeccuu. Takas OIGHKa IapaMeTpoOB TPYHOEMKa — HET AaHAJIHTHYECKOTO pPEIICHHS
(mapamerpudeckuil MHTEerpan pacxoautcs B Touke 0). Takum 00pa3soM, BBIYHCICHHE IapaMETPOB MPOMCXOAUT C MCIOJIb30BAHMEM UYMCICHHBIX METO/OB B
nmakerax Matlab u Mathematica. IIpoBepuTh NpaBHIBHOCT MOAXO/A MO3BOJSIOT rpadUyecKue WILIIOCTPAIMH, TAE€ MOXHO BHJEThb, YTO BTOPOH MOMEHT,
JIOOABJICHHBI K YpaBHEHHUIO, SIBISICTCS HEIHMHEHHBIM. B pesynbrare, MCHONB3ys ONMMCAHHYIO METOMOJOTHIO, MOXXHO MMHTHpOBaTh mMHAeKc VIX B pa3sHble
MPOMEXYTKA BPEMEHH M IOJIyYCHHBIC PE3yNIbTaThl HCIIOIB30BaTh B YIPAaBICHUM (DMHAHCOBBIMU PHUCKaMH (ONEpAIMH XCIKHPOBAHHS 4epe3 OIMIMOHBI) N
HPHHATHAH CHEKYISTUBHBIX TOPTOBBIX MO3HIHIL C ONIIMOHAMH.
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