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Abstract — The objective of the optimal traversal planning
(OTP) is to calculate a route that would provide traversal of all
streets in a predefined area. While solving the OTP problem, the
total distance of the route should be minimized. This paper
presents a solution that provides OTP and the execution of the
corresponding plan using a series of loosely coupled web services.
A mashup is created based on the provided web services and field
tested using a data acquisition case in Riga, Latvia. Other
possible application areas are street cleaning, package delivery
and evacuation planning.
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I. INTRODUCTION

The purpose of this paper is the development of the
Solution to Optimal Traversal of Road Networks (STORN). It
will be implemented as a distributed system and comprise a
series of web services that provide near optimal traversal of
road networks using currently a popular Software as a Service
(SaaS) delivery model. A mashup utilizing the mentioned web
services will be created and tested by a company performing
data acquisition in Riga, Latvia. The data acquisition process
involves driving on all streets of Riga (bidirectional streets
have to be traversed in both directions) and taking photos for
later on-site processing. It is important to minimize the time
needed for route generation and the total distance, while
making sure that all streets have been covered.

The optimal traversal planning problem has other practical
applications, some of which are snow plowing [1], police
patrol planning [2], parcel delivery [3] and evacuation
planning [4]. The STORN will be later adjusted to suit more
use cases, promoting emergence of a wide range of optimal
traversal planning mashups and development of thin clients
for mobile computing platforms like i0S and Android.

The evolution of the technical paradigm called cloud
computing (CC) has significantly affected the way information
technology services are invented, developed, deployed and
scaled [5], [6], and it strongly correlates with the chosen
approach for implementing the STORN. Yang et al. have
acknowledged the importance of CC in dealing with technical
challenges in geospatial sciences and coined the term Spatial
Cloud Computing (SCC) [7]. The STORN will follow the best
practices of cloud application development and provide its
functionality as a service. Study by Gartner [8] predicted that
SaaS would become increasingly important and worldwide
software revenues for SaaS delivery were said to grow by
19.4 % overall between 2008 and 2013. Web services
provided by the STORN can be used to power mobile
applications, following another technological trend and
potential future of mobile application development — Mobile
Cloud Computing (MCC) [9]. Although smartphones have
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become the devices of the future for computing and service
access, they are still constrained by CPU performance,
memory and battery capacity. The MCC is used for extending
the power of CC to mobile devices by offloading computing
or data intense application from mobile devices to scalable and
virtually unlimited cloud resources [10].

The development of the STORN involves several
challenges — acquisition of the necessary spatial data,
identification of suitable algorithms for optimal traversal
planning and plan execution, data model transformations to fit
the algorithmic requirements, definition of a scalable
architecture that can be used to provide optimal traversal of
road networks as a service.

The organization of this paper is as follows. Section II
reviews the algorithms in the area of OTP that could be used
in development of the STORN. Current research in the area of
cloud application design is also discussed in this section.
Section III presents the algorithmic and architectural solutions
for the STORN. Section IV experimentally compares two
algorithms for OTP. Section V concludes final remarks and
possible directions for the future research.

II. STATE OF THE ART

This section reviews related studies in order to develop the
needed algorithms for the STORN and choose an appropriate
architecture for deploying it in the cloud.

A. Existing Algorithmic Approaches

If the road network is converted into a graph, where street
fragments correspond to arcs (directed links) and street
intersections are transformed into nodes, we can formalize the
development of the OTP as a type of Arc Routing Problem
(ARP). ARP is a subtype of vehicle routing problems, in
which the tasks to be performed are located on arcs. This
problem has been studied less than the node routing problem,;
however, during the last decade there has been impressive
development summarized by [11]. The graph that corresponds
to a road network is more similar to one examined in the
Mixed Chinese Postman Problem (MCPP) in terms that it
contains arcs, edges and nodes; however, our use case requires
that bidirectional streets (edges) have to be driven in both
directions, while MCPP only requires edges to be traversed in
one direction. If the road network is transformed into a graph,
where bidirectional streets correspond to two arcs (one for
each direction), then it can be solved as a Directed Chinese
Postman Problem (DCPP). In DCPP each arc has a cost (e. g.,
distance of the street fragment) and to solve a DCPP one has
to find a route (Chinese Postman Tour or CPT) containing all
of the arcs. In order to find the CPT, graph must be strongly
connected (any node can be reached from any other node). If
the graph is an Eulerian, there is an Euler circuit traversing
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each arc exactly once, which is also the optimal CPT. A
theorem states that a graph is Eulerian only if all of its nodes
are balanced (each node has to have an equal number of
inbound and outbound arcs). Finding an Euler circle is a
relatively easy task [12]; unfortunately, graphs derived from
street networks are rarely Euler and thus getting the CPT is
more complex.

There are approaches that search for the CPT in a graph that
does not require nodes to be balanced [13], while others solve
the Chinese Postman Problem (CPP) by converting the initial
graph to an Eulerian one (e.g., performing an Eulerian
extension) by adding virtual arcs to the graph so that all nodes
are balanced [12], [14]. While performing the Eulerian
extension, the total cost of added virtual arcs must be
minimized. There are also studies that concentrate solely on
Eulerian extension of weighted, directed graphs and it is
known to be an NP-hard problem [15]. The general version of
DCPP does not take into account that some of the turns in the
road network may be prohibited by the traffic regulations
(e.g., left turn) and some maneuvers are more complex than
others (driving straight is easier than making a left turn).

To deal with this issue, there are studies that recommend
transforming the CPP into an equivalent Asymmetric
Travelling Salesman Problem (ATSP) [14], [16]. Other studies
[17] favor a more direct approach and state that transformation
to ATSP is inefficient. To solve the ATSP a route containing
all the vertices (e. g., the Hamiltonian cycle) must be found.
ATSP is an NP-complete problem [14] and there is a wide
range of algorithms for finding near optimal solutions,
including branch and bound [18], patching [19], [20] and
genetic [21] algorithms.

B. Architecting Applications for the Cloud

Designing applications for the cloud is a relatively new
research area and it certainly lacks a methodological support.
One of the best and technologically detailed sources for cloud
application design patterns is whitepapers by cloud service
providers. Amazon has published a document [23] containing
best practices for designing cloud native applications. It also
provides a variety of reference architectures for various tasks
(e.g., web applications, batch processing, media serving);
however, these are tightly bound to Amazon AWS platform
and might be hard to implement on other platforms.

Hamdaga et al. [24] present a more abstract version of
cloud application architecture, in which cloud application is
made of CloudFrontTask (accessible by an end-user),
CloudRotorTask (a background process),
CloudCrossCuttingTask (provides logging services and
monitors cloud resources, which is important for scaling), and
CloudPresistenceTask (provides persistent storage). Tasks
are loosely coupled and communication between them is
provided using queues.

Christian Inzinger et al. [25] present a methodology that
addresses the complete development lifecycle of cloud
applications. The methodology is based on iterative
refinement of the application architecture based on
requirements, from abstract representation of the application

that captures general business requirements to a concrete
model of cloud-based application components.

Kwon et al. [26] present a method for transforming
traditional applications into cloud-based services. The
refactoring process consists of service extraction phase and
service interface adaptation. The applicability of the approach
is proven by transforming two third party Java applications
into cloud-based applications.

Rimal et al. [27] classify architectural requirements for
cloud computing systems according to the requirements of
cloud providers, the enterprises that use the cloud and end-
users. A relation between various cloud deployment models
and requirements is also provided.

III. PROPOSED SOLUTION

This section describes STORN services, provides a high
level architecture, a data model and algorithms used in
implementing the STORN. We use freely available data from
OpenStreetMap as our spatial data source.

A. STORN Web Services

A total of six web services (WS) are provided by STORN. User
ID and API ID are mandatory parameters at all times; therefore,
they are omitted from the web service parameter list.

Routing region selection WS

It is used to obtain a region ID for the required traversal
region that is used as an input in other WS. Required input
parameter is a name of the obtainable area. Optional
parameters include a country code and administrative level of
the area to narrow the search.

Routing region definition WS
It is used to define a custom region to make it available for
a route definition. Required parameters include area name and
area boundaries. The STORN contains user generated regions,
which are accessible only by the owner, and public regions,

which are based on Open Street Maps (OSM) data [22] and
are accessible by all users.

Route generation WS

It is used to generate the actual road network traversal route
and to obtain a route ID to be used in other WS. The only
required parameter is a region ID. Navigational costs for each
turn type in seconds can be provided optionally. If no
navigational costs are set, there are no maneuver preferences
(driving straight or making a left turn is equally favorable).
Other optional parameters include custom vertex and arc
tolerance distances for the active arc detection (see Section C).

Route retrieval WS

It is used to obtain spatial information of the route. The only
required input parameter is a route ID. Optionally a filter can
be specified to retrieve only the visited arcs of the route or
unvisited ones. If no filter is set, the complete route is
returned. It is also possible to get corresponding street names
and hints, which are not returned by default, by using
parameters showStreetName and showHints.
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Route traversal WS

It is used to perform the route traversal procedure. It obtains
the list of next arcs (the number of arcs can be adjusted by
using an optional parameter) to be visited and hints. Required
input parameters include a route ID and current coordinates of
the driver. Coordinates are used to update the progress of the
route traversal. This WS can be used to develop clients for
mobile devices. During the research an HTMLS based
frontend was implemented based on this service and the Route
retrieval WS.

Route progress tracking WS

It is used to monitor the route traversal process by obtaining
driver’s current location, speed, information about deviation
from the generated route and the length of the traversed and
remaining distances. The only input parameter required is a
route ID.

B. STORN Architecture

STORN has been designed to employ the benefits provided
by cloud computing, and its architecture is given in Fig. 1.

DB Cluster

Service
consumers

Web Service
Nodes

—>

—

Load balancer

Scaling
listener

Worker
nodes

Fig. 1. High level architecture of the STORN.

Web services run on virtual machines that contain the
necessary program logic and environment (e. g., Apache web
server). The requests from service consumers are distributed to
web services using a load balancer. Based on the
nomenclature by [24] web service nodes are instances of
CloudFrontTask. To provide high availability and
performance, the minimum number of web service nodes is at
least two at all times. The total number of web service nodes is
being managed by a scaling listener (an instance of
CoudCrossCuttingTask). When the average response time
grows above a globally defined constant, new nodes are
added. Similarly, the number of nodes is decreased when the
average response time falls below a globally defined constant,
but not lower than two nodes.

A Postgres-XL database cluster is used to provide a
persistent data store. It is horizontally scalable, fully ACID
and compatible with regular PostgreSQL and PostGIS.
PostgreSQL/PostGis is community’s preferred database
management system in working with OpenStreetMap data,
which made compatibility with PostgreSQL/PostGis an
important criterion. Based on the nomenclature by [24]
database cluster is an instance of CloudPresistenceTask.

Time and resource consuming tasks are performed by
worker nodes (an instance of CloudRotorTask). Messages
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describing the tasks are added to a queue by web service
nodes. These messages are later pulled from the queue by
worker nodes and the required processing is performed. In our
case, route generation (initiated by the Route generation WS)
is implemented using worker nodes. The scaling listener
monitors the length of the queue and adjusts the number of
worker nodes accordingly. To provide high availability, there
are at least two worker nodes at all times. Worker nodes are
implemented as virtual machines, which contain the
application logic and environment to execute the needed tasks.
During the task execution data are retrieved from the
persistent data store and at the end of the process results are
written back. Worker nodes are stateless, which means that
unrecoverable errors during task execution pose no danger.
After a certain visibility period the message containing the
instructions for task execution will reappear in the queue and
will be processed by another worker node.

C. Data Model

A local copy of Riga, Latvia, highway data is obtained and
loaded into a PostgreSQL database. Initial data are loaded in
four tables, which serve as a base for further data model
transformations. These tables are planet osm_lines (streets,
roundabouts, links etc.), planet osm_points (traffic lights,
intersection points etc.), planet osm_relations (used as a
source for navigational restrictions) and planet osm_polygon
(used as a source for public regions). Initial tables are adjusted
and transformed according to STORN requirements. Resulting
database model is given in Fig. 2.

Table graph _arcs corresponds to the Eulerian graph and
contains relations between two records from osm_points,
which form an arc. For each arc [u;v] a distance that equals
to wuv is stored. Each bidirectional arc is stored as two separate
arcs — one for each direction. This table is used by Fleury’s
algorithm (See Section D). Tables graph e nodes and
graph_e_arcs correspond to Expanded Line Graph and both
are based on the graph_arcs table and used by Patched Cycle
algorithm (See Section D).

Navigational restrictions are retrieved from
planet_osm_relations and are available in two different forms.
One of them defines only the allowed turns from a single or
multiple ways (line geometry) via a specific node (point
geometry) to a single or multiple ways. Restrictions are
defined as string literals that start with a keyword “only”
(e. g., “only_straight turn”). The second approach for storing
navigational constraints defines only prohibited turns and
starts with a keyword “no” (e.g., “no_left turn”). For our
purposes, we transform every restriction record with many

from or to entries into multiple restriction records with a single
from and fo entry.

Table regions contains OSM predefined set of
administrative territories from planet _osm_polygon. Routing
region definition WS users are able to add custom traversable
regions to this table. If the region is user defined, user ID field
contains the ID of the corresponding author (this field is left
blank for publicly available regions retrieved from
planet_osm_polygon).
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Fig. 2. Database entity relationship diagram of the STORN.

For each route a region ID, navigational costs and active arc
detection tolerance parameters are stored in users_routes.
Because of the different input parameters, tours created for the
same regions are not the same and therefore cannot be reused
as easily as graph tables.

Users can have more than one route each generated with
different parameters. A separate route table is generated for
each user. It contains the route definition and columns needed
for storing route traversal progress.

D. Algorithms

We have based our solution on algorithms and graph
models provided in [14]. In addition to navigational
constrains, STORN encompasses prohibited turns, driving
directions and route tracking.

If [u;v] is the previous traversed arc and [v;n] is the
current traversable arc, we define a function nav (u;v;n) to get
a type of the turn to be made. Possible values for the turn type
are “straight”, “left”, “right”, “sharp right”, “sharp left”,
“slight right”, “slight left”,” u-turn” and “prohibited turn”.

When the function checks if the turn is prohibited, the input
of source arc and target arc are used to search for affecting
restrictions. A restriction is found if From way ends with a
source arc and the via node matches both the source arc’s end
point and target arc’s start point. If a restriction is found, its
type is further reviewed. If the type is “only ” and fo way
starts with a target arc or the type is “ no” and fo way does not
start with a source arc, turn is allowed, otherwise — turn is
prohibited.

We define function ncost (u;v;n) to get a navigational
cost for the turn made. Navigational costs used by the
algorithms are set via the Route definition WS. Term path cost
refers to both navigational costs and arc costs to traverse a
given path.

Solving OTP is an optimization problem. Because of the
presence of navigational constrains and prohibited turns in our
solution we optimize time spent traversing the route. Two
alternative algorithms for calculating OTP that work with two
different graph models are described in this section — the
greedy algorithm (GA) and the approximate algorithm (AA).
We use Fleury’s algorithm for the GA with added heuristics to
minimize the cost of the Eulerian cycle and we use simplified
Patched Cycle algorithm [19] for the AA with added heuristics
to minimize the cost of the Hamiltonian cycle.

Graph balancing approach

Both GA and AA require a balanced graph, so first we
check if the graph is strongly connected and remove any
vertices, which are creating dead-ends. Vertice removal is
done by searching for vertices that contain only inbound or
outbound arcs. The procedure is repeated while all vertices
have at least one inbound and outbound arc.

Further the initial graph G is converted to an Eulerian graph
Ge by balancing all of its vertices. Path costs needed by the
algorithm are calculated by implementing a shortest path
Dijkstra-like algorithm [28]. The classical version of Dijkstra
is not applicable [29] in the given graph with prohibited turns
as there are possible situations when an already visited node
must be included in the graph traversal route to reach the
destination node (otherwise no cycle can be found).

The greedy algorithm
Fleury’s algorithm removes a single arc at a time. If
removing an arc from the graph makes it disconnected, the arc
is called a bridge. Bridge is removed only if there is no other
non-bridge arc to traverse. Heuristics are applied to make a

minimum cost choice between two or more possible arc
selections. The pseudocode of the GA is given below:
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Algorithm(graph Ge, starting vertex s)
01. OTP = {s}; Bridge children = {};
Nonbridge children = {};

02. while there exists an unvisited arc
03. for each unvisited arc [s;n]

04. if [s;n] = bridge arc of Pss

05. append n to Bridge children;

06. else

07. append n to Nonbridge children.

08. if Nonbridge children is not empty

09. from all Nonbridge children vertices x

10. m = the vertex with the minimum ncost (p;s;m)

11. else if Bridge children is not empty

12. from all Bridge children vertices y

13. m = the vertex with the minimum ncost (p;s;m)

14. else

15. replace any virtual arc [u;v] with the
vertices of shortest path Puv

16. for each arc pair ([u;v], [vin])

17. if nav(v;u;n) = ‘restricted turn’

18. replace [v;n] with the vertices of

shortest path Pvn.
19. return OTP.

20. mark [s;m] as visited;
21. p = s; //previous parent p
22. s = m; //new parent s
23. bridge children = {};
24. non bridge children = {};
In a formed tour we try to replace any detected restricted
turns [v;u;n] with the shortest path from v to n.

The approximate algorithm

To implement the AA graph Ge is converted to an Extended
Line Graph (ELG) G*1. Instead of modeling intersections and
the roads connecting them, ELG is used to model roads and
turns from one to another [28]. For each arc [u;v] in graph Ge
we add an arc [uuw;vuv] with a cost wuv from Ge to G*1. After
this step all the basic arcs are transferred. To add the turns for
each vertex vuw from G*1 all the possible arcs [vuv;vvx] with
ncost[u;v;x] are added.

AA consists of two phases. At first, the AP is solved to
match every vertex with its best neighbor. Finally, the
resulting subcycles are patched with the minimum cost to
make a single cycle using the Karp-Steel patching [19], [20].
Solving an AP in a large dataset can be a very time-consuming
task. To minimize the execution time thus contributing to
performance improvements, we create subcycles with Nearest
Neighbor Algorithm using the same heuristics as Fleury’s
Algorithm. Optimization is done only at the second phase
solving an AP iteratively patching the two largest subcycles at
a time. The pseudocode of the AA is given below:

Algorithm(graph G*1, starting vertex s)
01. Subcycles={}; CurrentCycle={};

02. while there exists an unvisited vertex
03. if CurrentCycle is empty

04. v = the arbitrary chosen, unvisted vertex;

05. append v to CurrentCycle;

06. mark v as visited;

07. else

08. from all the unvisited vertices x such that
there exists an arc [v;x]

09. c = the vertex with minimum wvx.
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10. if ¢ is null

11. append CurrentCycle to Subcycles;

12. CurrentCycle = {};

13. else

14. append ¢ to CurrentCycle;

15. v =c;

16. mark c as visited.

17. OTP={};

18. while subcycles count != 1

19. replace any virtual edge [u;v] with the

vertices of shortest path Puv
20. SC1; SC2 = the two largest subcycles;

21. [u;v] =the arc from SCl1 and [n;m] = the arc
from SC2 with the minimum sum of wum + wWnv —
Wuv — Wnm,

22. delete [u;v] from SCI1;

23. delete [n;m] from SC2;

24, append [u;m], [n,v] to SCIl;

25. join SC1 with SC2.

26. for each arc [uvu, Uun]

27. if nav(v;u;n) = ‘restricted turn’

28. replace [uvu;uuwn] with the vertices of
shortest path Puvuuun.

29. order SCl starting from s;

30. OTP = SC1;

31. return OTP;

Hint generation approach

Hints are short keywords that show the next maneuver to be
performed. They are used in combination with street names of
the previous and current arcs, remaining route distance,
distance to the next maneuver and other route related
information. Hints are generated based on the following eight
rules:

1. If there is no previous arc to determine a turn (first arc of
the tour), the hint contains direction of the arc (e. g., west).

2. If the next arc is the only possible path from the current
arc, no hints are generated.

3. If the next arc is included in a roundabout and current
one is not, generate hint “enter roundabout”.

4. If the last hint was “enter roundabout” it is determined
which exit has to be taken. All allowed exits are counted
starting from the roundabout entrance to the desired exit. A
hint “exit-n” is generated, where n is the exit number.

5. If the current arc [u;v] is on the same road as the next
arc [v;n] and nav(u;v;n) equals “straight”, “slight left” or
“slight right”, no hint is generated. It is natural to continue
driving on the same street straight forward or with a slight
turn, therefore no guidance is needed.

7. If the current arc [u;v] is not on the same road as the
next arc [n;v] and nav (u;v;n) equals “straight”, “slight left”
or “slight right”, generate hint “continue”.

8. If for the current arc [u;v] and next arc [v;n]
nav(u;v;n) equals “left”, “right”, “sharp left”, “sharp right”
or “u-turn”, the hint accordingly equals to nav (u;v;n).

Active arc detection approach

During the route traversal, the progress is saved in the
routes table. To detect which arcs have been traversed, an
active arc detection algorithm is defined. Active (current) arc
is the arc which according to the previously generated route is
being traversed at the moment and has not been marked as
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finished. Three edges on the arc are identified — start, middle
and end. Each of these can be marked as traversed, when
visited by a driver. Active arc detection starts with checking
whether the driver’s distance to the traversable arc is less than
a predefined constant — arc tolerance. If it is true, it is further
evaluated if the driver’s current distance to the next
traversable edge (arc start, middle or end) is less than a
predefined distance — vertex tolerance. If it is true, the edge
(e. g., middle) is marked as finished. Edges can be marked as
finished only by going from the start to the end. When all
three edges are finished, the arc is marked as finished. Arc and
vertex tolerance constants are specified by the route
generation WS and used for dealing with problems caused by
spatial data and GPS inconsistencies.

IV. EXPERIMENTAL RESULTS

The experiments to compare the GA and the AA were
conducted on a 1491 node large dataset with arc total distance
of 72364.80 m, including virtual arcs — 85176.65 m. While
calculating the path cost, the average driving speed is defined
as 50 km/h.

The gathered results from using GA and AA on two
different graph models are presented in TableI, the
corresponding turn type counts are presented in Table II. The
effectiveness of both approaches is evaluated in terms of path
cost. Since both solutions use the same balanced graph,
minimizing path cost also minimizes turn costs (chooses
preferred maneuver types when possible).

choose a more expensive non-bridge arc just to finish the
algorithm execution.

TABLE 11

TURN COUNT COMPARISON
Turn type Turn cost | Greedy solution | Approximate solution
Straight 0 1746 1428
Right 5-15 203 232
Left 55-65 204 141
U-turn 80 3 8
Prohibited turn 240 17 0

TABLE I
GREEDY AND APPROXIMATE SOLUTION COMPARISON
Greedy solution Approximate solution

Expanded Replaced Applied Replaced

route restrictions | patching restrictions
Distance (m) 85176.65 101954.76 | 85176.65 103705.00
Turn costs (sec) 17075.00 17935.00 14020.00 12715.00
Prohibited 33 17 25 0
turns
Path cost (h) 6.46 7.03 5.61 5.34

Total path distance for both approaches before restriction
replacement is equal as both algorithms at this phase visit
corresponding graph arcs or nodes (ELG nodes) at a single
time. Turn costs are lower for the AA because of the applied
optimization while patching subcycles.

Prohibited turns are not fully replaced in GA. Using the
simple graph model inserting shortest path replacements or
expanding virtual arcs can create new prohibited turns in the
start and end of the path. Since the ELG model has the
information about the previous turn made, it is possible to
replace every restriction and expand virtual arcs without
creating new restrictions.

Both algorithms favor driving straight, therefore straight
driving has mainly been chosen in both cases. GA right and
left turn count is almost the same, while AA has used more
right turns. GA with Fleury’s algorithm has more situations
where there are possible better turns to make but you have to

AA takes more time to execute because solving the optimal
assignment while patching is a time-consuming task; however,
because of the transformed graph model and even using a
partial optimization, AA path cost is lower than GA, thus the
resulting route is considered to be more efficient.

V. CONCLUSION

This paper develops the STORN that provides OTP and the
execution of the corresponding plan using a series of loosely
coupled web services. The high level architecture and database
model for the solution are defined. Two alternative OTP
generation algorithms were tested and the AA was proved to
be superior.

A mashup is created based on the provided web services
and field tested using a data acquisition case in Riga, Latvia.
Currently available feedback has shown that vertex and arc
tolerance distances play an important role in city traversal and
need to be adjusted by field testing (constants may vary for
different cities). These are currently specified manually;
however, a web service providing automatic calibration of
these parameters should be developed. Another issue is
dealing with road obstacles and construction works that are
not considered during route planning and are discovered only
while traversing the route. Currently the user interface of the
mashup contains a fast-forward button to manually mark the
next arcs as visited, but a more complex approach should be
used (e. g., automatic route recalculation by using real-time
data provided by the driver).
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Janis Kampars, Elina Smite. RCTI: izbraucama celu tikla risinajums

Optimala izbraukSanas plana (OIP) mérkis ir noteikt marSrutu, kas nodroSinatu visu ielu izbrauksanu iepriek§ noteikta apgabala. Risinot OIP problému, 1pasa
vériba japievers kop€ja marsruta izbrauk$anas laika minimizeSanai. Svarigs faktors ir marSruta generéSanas laiks, kas strauji pieaug lidz ar geografiska apgabala
palielinasanu. Genergjot marsrutu, ir janem veéra, ka dazi pagriezieni var bt aizliegti un ka divvirzienu ielas ir nepiecieSams izbraukt abos virzienos. lesp&jamas
jomas OBP izmantoSanai ietver ielu tiriSanu, pasttijumu piegadi, evakuacijas planoSanu, policijas patrulé$anas planoSanu un citas. OIP noteik$anai no
OpenStreetMaps tiek iegiti telpiskie dati, kas tiek parveidoti grafa veida (ielas segments atbilst grafa lokam, bet krustojums — virsotnei). Sada grafa pilnigai
Skersosanai ir nepiecieSams apmeklét visas ta malas vismaz vienu reizi. Raksta tiek aplikoti un eksperimentali novertéti divi atSkirigi OIP izbrauksSanas plana
iegliSanas algoritmi. Balstoties uz Siem algoritmiem, tiek definéts Risinajums celu tikla izbrauksanai (RCTI). RCTI ir makonT baz&ta sistéma, kurai piekluve tiek
nodro§inata ar vairaku timekla servisu palidzibu. Timekla servisus var izmantot jaunu izbraucamo regionu defingSanai, marSrutu generéSanai, marsrutu
izbraukSanas atbalsta nodros§inasanai un marsruta izseko$anai. Raksta ir definéta RCTI arhitektiira un datubazes modelis. RCTI prototipa darbiba ir tikusi testéta
realos apstaklos Riga, Latvija, veicot marSruta generé$anu un dalgju izbrauksanu.

SAnuc Kamnape, dauna Himure. PITJIC: Pemenue 10posKHBIX ceTeil /s nmpoe3aa

Lens mnana ontumansHoro npoesna (ITOIT) - o6Hapy nTh MapmIpyT, KOTOPBIN 0Oecnedn Obl MPOE3/] O BCEM YJIMIIaM Ha 3apaHee ONpeeIEHHOM yJacTKe.
Pewast npo6nemy I1OI1, ocoboe BHUMaHUE ClieyeT 0OpaTUTh HA MUHUMM3AIMIO BPEMEHH MpOe3/ia 1Mo BceMy Mapuipyty. Emé onuH BakHbIA (GakTop - Bpems
Pa3paboTKH MapIIpyTa, KOTOpoe OBICTPO BO3PACTAET BMECTE C YBEIHUCHHEM COOTBETCTBYIOIIETO reorpadMIecKkoro ydacTka. Pa3pabaTeiBast MapIIpyT, Hy»KHO
NIPYHIMATh BO BHHMAaHHE, YTO HEKOTOpBIE HMOBOPOTHI MOTYT OBITh 3allpelleHbl, ¥ 4TO Ha JBYCTOPOHHMX YJUIAX JBIKEHHE WUAET B JBYX HAIPABJICHUSX.
Bo3moxHbie obnacti npumenenus [1OI1: yncTka yaMi, HOCTaBKa MOCBUIOK, INIAHMPOBAHHE IBAKyallUH, IIAHHPOBAHHE MapIIpyTa MOJHLEHCKOro MaTpysl U
npyrue. s onpenenenust [I0OI1 ¢ OpenStreetMaps coOuparoTcst IpOCTPaHCTBEHHbIE IaHHBIE, KOTOPBIE MPEBPAIAaOTCs B Tpady (CErMEHT YJIUIBI COOTBETCTBYET
nyre rpadbl, a epecedeHue - BepiuuHe). Jis nosHoro o6xoxa Takoi rpadbl HEOOXOUMO OCETUTH BCE €ro CTOPOHBI, 10 KpaliHe# Mepe, oquH pa3. B cratse
PAcCMOTPEHBI M KCIIEPHMEHTANILHO OLIEHEHBI []Ba Pa3HBIX aIropuTMa HoiydeHus miaHa mpoesjaa ITOII. OcHOBBIBasCh Ha 3THX aITOPHUTMaX, ONPEENIAeTCs
pewenue s npoesna nopoxkusix ceret (PILJIC). PIIAC - aTo cucrema, pacmosoxeHHas B 00Jiake, JOCTYH K KOTOpOW 00ecredeH ¢ oMOoIbio MHOKecTBa Web-
cepBuCOB. Web-cepBUCEI MOXKHO HCHONIB30BATh IS ONpeeIeHNs] HOBBIX YYacTKOB I IIPOE€3/1a, pa3paboTKH MapIpyTa, oOecledeHHs HOANEP KK Ipoe3aa U
oTcIexuBaHMsT Mapuipyta. B cratee ompenenena PIIJIC apxurekrypa m Mozmenb 0a3sl qaHHbIX. DyHKunonumposanue nporotuna PITJIC mporectupoBaHo B
peajbHBIX YCIOBHUSX - OBLT pa3paboTaH MapIIpyT ¥ YaCTUYHBIN 1poe3] B ropozae Pura (JlaTBus).
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