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Abstract – The objective of the optimal traversal planning 
(OTP) is to calculate a route that would provide traversal of all 
streets in a predefined area. While solving the OTP problem, the 
total distance of the route should be minimized. This paper 
presents a solution that provides OTP and the execution of the 
corresponding plan using a series of loosely coupled web services. 
A mashup is created based on the provided web services and field 
tested using a data acquisition case in Riga, Latvia. Other 
possible application areas are street cleaning, package delivery 
and evacuation planning. 
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I. INTRODUCTION 

The purpose of this paper is the development of the 
Solution to Optimal Traversal of Road Networks (STORN). It 
will be implemented as a distributed system and comprise a 
series of web services that provide near optimal traversal of 
road networks using currently a popular Software as a Service 
(SaaS) delivery model. A mashup utilizing the mentioned web 
services will be created and tested by a company performing 
data acquisition in Riga, Latvia. The data acquisition process 
involves driving on all streets of Riga (bidirectional streets 
have to be traversed in both directions) and taking photos for 
later on-site processing. It is important to minimize the time 
needed for route generation and the total distance, while 
making sure that all streets have been covered. 

The optimal traversal planning problem has other practical 
applications, some of which are snow plowing [1], police 
patrol planning [2], parcel delivery [3] and evacuation 
planning [4]. The STORN will be later adjusted to suit more 
use cases, promoting emergence of a wide range of optimal 
traversal planning mashups and development of thin clients 
for mobile computing platforms like iOS and Android. 

The evolution of the technical paradigm called cloud 
computing (CC) has significantly affected the way information 
technology services are invented, developed, deployed and 
scaled [5], [6], and it strongly correlates with the chosen 
approach for implementing the STORN. Yang et al. have 
acknowledged the importance of CC in dealing with technical 
challenges in geospatial sciences and coined the term Spatial 
Cloud Computing (SCC) [7]. The STORN will follow the best 
practices of cloud application development and provide its 
functionality as a service. Study by Gartner [8] predicted that 
SaaS would become increasingly important and worldwide 
software revenues for SaaS delivery were said to grow by 
19.4 % overall between 2008 and 2013. Web services 
provided by the STORN can be used to power mobile 
applications, following another technological trend and 
potential future of mobile application development – Mobile 
Cloud Computing (MCC) [9]. Although smartphones have 

become the devices of the future for computing and service 
access, they are still constrained by CPU performance, 
memory and battery capacity. The MCC is used for extending 
the power of CC to mobile devices by offloading computing 
or data intense application from mobile devices to scalable and 
virtually unlimited cloud resources [10]. 

The development of the STORN involves several 
challenges – acquisition of the necessary spatial data, 
identification of suitable algorithms for optimal traversal 
planning and plan execution, data model transformations to fit 
the algorithmic requirements, definition of a scalable 
architecture that can be used to provide optimal traversal of 
road networks as a service. 

The organization of this paper is as follows. Section II 
reviews the algorithms in the area of OTP that could be used 
in development of the STORN. Current research in the area of 
cloud application design is also discussed in this section. 
Section III presents the algorithmic and architectural solutions 
for the STORN. Section IV experimentally compares two 
algorithms for OTP. Section V concludes final remarks and 
possible directions for the future research. 

II. STATE OF THE ART 

This section reviews related studies in order to develop the 
needed algorithms for the STORN and choose an appropriate 
architecture for deploying it in the cloud. 

A. Existing Algorithmic Approaches 

If the road network is converted into a graph, where street 
fragments correspond to arcs (directed links) and street 
intersections are transformed into nodes, we can formalize the 
development of the OTP as a type of Arc Routing Problem 
(ARP). ARP is a subtype of vehicle routing problems, in 
which the tasks to be performed are located on arcs. This 
problem has been studied less than the node routing problem; 
however, during the last decade there has been impressive 
development summarized by [11]. The graph that corresponds 
to a road network is more similar to one examined in the 
Mixed Chinese Postman Problem (MCPP) in terms that it 
contains arcs, edges and nodes; however, our use case requires 
that bidirectional streets (edges) have to be driven in both 
directions, while MCPP only requires edges to be traversed in 
one direction. If the road network is transformed into a graph, 
where bidirectional streets correspond to two arcs (one for 
each direction), then it can be solved as a Directed Chinese 
Postman Problem (DCPP). In DCPP each arc has a cost (e. g., 
distance of the street fragment) and to solve a DCPP one has 
to find a route (Chinese Postman Tour or CPT) containing all 
of the arcs. In order to find the CPT, graph must be strongly 
connected (any node can be reached from any other node). If 
the graph is an Eulerian, there is an Euler circuit traversing 
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each arc exactly once, which is also the optimal CPT. A 
theorem states that a graph is Eulerian only if all of its nodes 
are balanced (each node has to have an equal number of 
inbound and outbound arcs). Finding an Euler circle is a 
relatively easy task [12]; unfortunately, graphs derived from 
street networks are rarely Euler and thus getting the CPT is 
more complex. 

There are approaches that search for the CPT in a graph that 
does not require nodes to be balanced [13], while others solve 
the Chinese Postman Problem (CPP) by converting the initial 
graph to an Eulerian one (e. g., performing an Eulerian 
extension) by adding virtual arcs to the graph so that all nodes 
are balanced [12], [14]. While performing the Eulerian 
extension, the total cost of added virtual arcs must be 
minimized. There are also studies that concentrate solely on 
Eulerian extension of weighted, directed graphs and it is 
known to be an NP-hard problem [15]. The general version of 
DCPP does not take into account that some of the turns in the 
road network may be prohibited by the traffic regulations 
(e.g., left turn) and some maneuvers are more complex than 
others (driving straight is easier than making a left turn).  

To deal with this issue, there are studies that recommend 
transforming the CPP into an equivalent Asymmetric 
Travelling Salesman Problem (ATSP) [14], [16]. Other studies 
[17] favor a more direct approach and state that transformation 
to ATSP is inefficient. To solve the ATSP a route containing 
all the vertices (e. g., the Hamiltonian cycle) must be found. 
ATSP is an NP-complete problem [14] and there is a wide 
range of algorithms for finding near optimal solutions, 
including branch and bound [18], patching [19], [20] and 
genetic [21] algorithms.   

B. Architecting Applications for the Cloud 

Designing applications for the cloud is a relatively new 
research area and it certainly lacks a methodological support. 
One of the best and technologically detailed sources for cloud 
application design patterns is whitepapers by cloud service 
providers. Amazon has published a document [23] containing 
best practices for designing cloud native applications. It also 
provides a variety of reference architectures for various tasks 
(e.g., web applications, batch processing, media serving); 
however, these are tightly bound to Amazon AWS platform 
and might be hard to implement on other platforms.  

Hamdaqa et al. [24] present a more abstract version of 
cloud application architecture, in which cloud application is 
made of CloudFrontTask (accessible by an end-user), 
CloudRotorTask (a background process), 
CloudCrossCuttingTask (provides logging services and 
monitors cloud resources, which is important for scaling), and 
CloudPresistenceTask (provides persistent storage). Tasks 
are loosely coupled and communication between them is 
provided using queues. 

Christian Inzinger et al. [25] present a methodology that 
addresses the complete development lifecycle of cloud 
applications. The methodology is based on iterative 
refinement of the application architecture based on 
requirements, from abstract representation of the application 

that captures general business requirements to a concrete 
model of cloud-based application components. 

Kwon et al. [26] present a method for transforming 
traditional applications into cloud-based services. The 
refactoring process consists of service extraction phase and 
service interface adaptation. The applicability of the approach 
is proven by transforming two third party Java applications 
into cloud-based applications. 

Rimal et al. [27] classify architectural requirements for 
cloud computing systems according to the requirements of 
cloud providers, the enterprises that use the cloud and end-
users. A relation between various cloud deployment models 
and requirements is also provided. 

III. PROPOSED SOLUTION 

This section describes STORN services, provides a high 
level architecture, a data model and algorithms used in 
implementing the STORN. We use freely available data from 
OpenStreetMap as our spatial data source. 

A. STORN Web Services 

A total of six web services (WS) are provided by STORN. User 
ID and API ID are mandatory parameters at all times; therefore, 
they are omitted from the web service parameter list. 

Routing region selection WS 

It is used to obtain a region ID for the required traversal 
region that is used as an input in other WS. Required input 
parameter is a name of the obtainable area. Optional 
parameters include a country code and administrative level of 
the area to narrow the search. 

Routing region definition WS 

It is used to define a custom region to make it available for 
a route definition. Required parameters include area name and 
area boundaries. The STORN contains user generated regions, 
which are accessible only by the owner, and public regions, 
which are based on Open Street Maps (OSM) data [22] and 
are accessible by all users. 

Route generation WS 

It is used to generate the actual road network traversal route 
and to obtain a route ID to be used in other WS. The only 
required parameter is a region ID. Navigational costs for each 
turn type in seconds can be provided optionally. If no 
navigational costs are set, there are no maneuver preferences 
(driving straight or making a left turn is equally favorable). 
Other optional parameters include custom vertex and arc 
tolerance distances for the active arc detection (see Section C). 

Route retrieval WS 

It is used to obtain spatial information of the route. The only 
required input parameter is a route ID. Optionally a filter can 
be specified to retrieve only the visited arcs of the route or 
unvisited ones. If no filter is set, the complete route is 
returned. It is also possible to get corresponding street names 
and hints, which are not returned by default, by using 
parameters showStreetName and showHints. 
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Route traversal WS 

It is used to perform the route traversal procedure. It obtains 
the list of next arcs (the number of arcs can be adjusted by 
using an optional parameter) to be visited and hints. Required 
input parameters include a route ID and current coordinates of 
the driver. Coordinates are used to update the progress of the 
route traversal. This WS can be used to develop clients for 
mobile devices. During the research an HTML5 based 
frontend was implemented based on this service and the Route 
retrieval WS. 

Route progress tracking WS 

It is used to monitor the route traversal process by obtaining 
driver’s current location, speed, information about deviation 
from the generated route and the length of the traversed and 
remaining distances. The only input parameter required is a 
route ID. 

B. STORN Architecture 

STORN has been designed to employ the benefits provided 
by cloud computing, and its architecture is given in Fig. 1.  

Web  Service 
Nodes

Load balancer

DB Cluster

Queue

Service 
consumers

Scaling 
listener

Worker 
nodes

 

Fig. 1. High level architecture of the STORN. 

Web services run on virtual machines that contain the 
necessary program logic and environment (e. g., Apache web 
server). The requests from service consumers are distributed to 
web services using a load balancer. Based on the 
nomenclature by [24] web service nodes are instances of 
CloudFrontTask. To provide high availability and 
performance, the minimum number of web service nodes is at 
least two at all times. The total number of web service nodes is 
being managed by a scaling listener (an instance of 
CoudCrossCuttingTask). When the average response time 
grows above a globally defined constant, new nodes are 
added. Similarly, the number of nodes is decreased when the 
average response time falls below a globally defined constant, 
but not lower than two nodes. 
 A Postgres-XL database cluster is used to provide a 
persistent data store. It is horizontally scalable, fully ACID 
and compatible with regular PostgreSQL and PostGIS. 
PostgreSQL/PostGis is community’s preferred database 
management system in working with OpenStreetMap data, 
which made compatibility with PostgreSQL/PostGis an 
important criterion. Based on the nomenclature by [24] 
database cluster is an instance of CloudPresistenceTask. 

Time and resource consuming tasks are performed by 
worker nodes (an instance of CloudRotorTask). Messages 

describing the tasks are added to a queue by web service 
nodes. These messages are later pulled from the queue by 
worker nodes and the required processing is performed. In our 
case, route generation (initiated by the Route generation WS) 
is implemented using worker nodes. The scaling listener 
monitors the length of the queue and adjusts the number of 
worker nodes accordingly. To provide high availability, there 
are at least two worker nodes at all times. Worker nodes are 
implemented as virtual machines, which contain the 
application logic and environment to execute the needed tasks. 
During the task execution data are retrieved from the 
persistent data store and at the end of the process results are 
written back. Worker nodes are stateless, which means that 
unrecoverable errors during task execution pose no danger. 
After a certain visibility period the message containing the 
instructions for task execution will reappear in the queue and 
will be processed by another worker node. 

C. Data Model 

A local copy of Riga, Latvia, highway data is obtained and 
loaded into a PostgreSQL database. Initial data are loaded in 
four tables, which serve as a base for further data model 
transformations. These tables are planet_osm_lines (streets, 
roundabouts, links etc.), planet_osm_points (traffic lights, 
intersection points etc.), planet_osm_relations (used as a 
source for navigational restrictions) and planet_osm_polygon 
(used as a source for public regions). Initial tables are adjusted 
and transformed according to STORN requirements. Resulting 
database model is given in Fig. 2. 

Table graph_arcs corresponds to the Eulerian graph and 
contains relations between two records from osm_points, 
which form an arc. For each arc [u;v] a distance that equals 
to wuv is stored. Each bidirectional arc is stored as two separate 
arcs – one for each direction. This table is used by Fleury’s 
algorithm (See Section D). Tables graph_e_nodes and 
graph_e_arcs correspond to Expanded Line Graph and both 
are based on the graph_arcs table and used by Patched Cycle 
algorithm (See Section D). 

Navigational restrictions are retrieved from 
planet_osm_relations and are available in two different forms. 
One of them defines only the allowed turns from a single or 
multiple ways (line geometry) via a specific node (point 
geometry) to a single or multiple ways. Restrictions are 
defined as string literals that start with a keyword “only” 
(e. g., “only_straight_turn”). The second approach for storing 
navigational constraints defines only prohibited turns and 
starts with a keyword “no” (e. g., “no_left_turn”). For our 
purposes, we transform every restriction record with many 
from or to entries into multiple restriction records with a single 
from and to entry. 

Table regions contains OSM predefined set of 
administrative territories from planet_osm_polygon. Routing 
region definition WS users are able to add custom traversable 
regions to this table. If the region is user defined, user ID field 
contains the ID of the corresponding author (this field is left 
blank for publicly available regions retrieved from 
planet_osm_polygon). 
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Fig. 2.  Database entity relationship diagram of the STORN.

For each route a region ID, navigational costs and active arc 
detection tolerance parameters are stored in users_routes. 
Because of the different input parameters, tours created for the 
same regions are not the same and therefore cannot be reused 
as easily as graph tables. 

Users can have more than one route each generated with 
different parameters. A separate route table is generated for 
each user. It contains the route definition and columns needed 
for storing route traversal progress. 

D. Algorithms 

We have based our solution on algorithms and graph 
models provided in [14]. In addition to navigational 
constrains, STORN encompasses prohibited turns, driving 
directions and route tracking. 

If [u;v] is the previous traversed arc and [v;n] is the 
current traversable arc, we define a function nav(u;v;n) to get 
a type of the turn to be made. Possible values for the turn type 
are “straight”, “left”, “right”, “sharp right”, “sharp left”, 
“slight right”, “slight left”,” u-turn” and “prohibited turn”. 

When the function checks if the turn is prohibited, the input 
of source arc and target arc are used to search for affecting 
restrictions. A restriction is found if From way ends with a 
source arc and the via node matches both the source arc’s end 
point and target arc’s start point. If a restriction is found, its 
type is further reviewed. If the type is “only_” and to way 
starts with a target arc or the type is “_no” and to way does not 
start with a source arc, turn is allowed, otherwise – turn is 
prohibited. 

 We define function ncost(u;v;n) to get a navigational 
cost for the turn made. Navigational costs used by the 
algorithms are set via the Route definition WS. Term path cost 
refers to both navigational costs and arc costs to traverse a 
given path. 

Solving OTP is an optimization problem. Because of the 
presence of navigational constrains and prohibited turns in our 
solution we optimize time spent traversing the route. Two 
alternative algorithms for calculating OTP that work with two 
different graph models are described in this section – the 
greedy algorithm (GA) and the approximate algorithm (AA). 
We use Fleury’s algorithm for the GA with added heuristics to 
minimize the cost of the Eulerian cycle and we use simplified 
Patched Cycle algorithm [19] for the AA with added heuristics 
to minimize the cost of the Hamiltonian cycle. 

Graph balancing approach 

Both GA and AA require a balanced graph, so first we 
check if the graph is strongly connected and remove any 
vertices, which are creating dead-ends. Vertice removal is 
done by searching for vertices that contain only inbound or 
outbound arcs. The procedure is repeated while all vertices 
have at least one inbound and outbound arc. 

Further the initial graph G is converted to an Eulerian graph 
Ge by balancing all of its vertices. Path costs needed by the 
algorithm are calculated by implementing a shortest path 
Dijkstra-like algorithm [28]. The classical version of Dijkstra 
is not applicable [29] in the given graph with prohibited turns 
as there are possible situations when an already visited node 
must be included in the graph traversal route to reach the 
destination node (otherwise no cycle can be found). 

The greedy algorithm 

Fleury’s algorithm removes a single arc at a time. If 
removing an arc from the graph makes it disconnected, the arc 
is called a bridge. Bridge is removed only if there is no other 
non-bridge arc to traverse. Heuristics are applied to make a 
minimum cost choice between two or more possible arc 
selections. The pseudocode of the GA is given below: 
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Algorithm(graph Ge, starting vertex s) 
01. OTP = {s}; Bridge_children = {};              
Nonbridge_children = {}; 
02. while there exists an unvisited arc 
03.  for each unvisited arc [s;n] 
04.   if [s;n] = bridge arc of Pss 
05.    append n to Bridge_children; 
06.   else 
07.    append n to Nonbridge_children. 
08.  if Nonbridge_children is not empty 
09.    from all Nonbridge_children vertices x 
10.    m = the vertex with the minimum ncost(p;s;m) 
11.   else if Bridge_children is not empty 
12.    from all Bridge_children vertices y 
13.    m = the vertex with the minimum ncost(p;s;m) 
14.   else  
15.    replace any virtual arc [u;v] with the   
       vertices of shortest path Puv 
16.     for each arc pair ([u;v], [v;n]) 
17.      if nav(v;u;n) =  ‘restricted turn’ 
18.       replace [v;n] with the vertices of         
          shortest path Pvn. 
19.     return OTP. 
20. mark [s;m] as visited; 
21. p = s; //previous parent p 
22. s = m; //new parent s 
23. bridge_children = {}; 
24. non_bridge_children = {}; 

In a formed tour we try to replace any detected restricted 
turns [v;u;n] with the shortest path from v to n. 

The approximate algorithm 

To implement the AA graph Ge is converted to an Extended 
Line Graph (ELG) G*l. Instead of modeling intersections and 
the roads connecting them, ELG is used to model roads and 
turns from one to another [28]. For each arc [u;v] in graph Ge 
we add an arc [uuv;vuv] with a cost wuv from Ge to G*l. After 
this step all the basic arcs are transferred. To add the turns for 
each vertex vuv from G*l all the possible arcs [vuv;vvx] with 
ncost[u;v;x] are added. 

AA consists of two phases. At first, the AP is solved to 
match every vertex with its best neighbor. Finally, the 
resulting subcycles are patched with the minimum cost to 
make a single cycle using the Karp-Steel patching [19], [20]. 
Solving an AP in a large dataset can be a very time-consuming 
task. To minimize the execution time thus contributing to 
performance improvements, we create subcycles with Nearest 
Neighbor Algorithm using the same heuristics as Fleury’s 
Algorithm. Optimization is done only at the second phase 
solving an AP iteratively patching the two largest subcycles at 
a time. The pseudocode of the AA is given below: 

 
Algorithm(graph G*l, starting vertex s) 
01. Subcycles={}; CurrentCycle={}; 
02. while there exists an unvisited vertex 
03.  if CurrentCycle is empty 
04.   v = the arbitrary chosen, unvisted vertex; 
05.   append v to CurrentCycle; 
06.   mark v as visited; 
07.  else 
08.   from all the unvisited vertices x such that  
      there exists an arc [v;x] 
09.   c = the vertex with minimum wvx. 

10.    if c is null 
11.     append CurrentCycle to Subcycles; 
12.     CurrentCycle = {}; 
13.    else  
14.     append c to CurrentCycle; 
15.     v = c; 
16.     mark c as visited. 
17.     OTP={}; 
18. while subcycles count != 1 
19.   replace any virtual edge [u;v] with the 
      vertices of shortest path Puv 
20.   SC1; SC2 = the two largest subcycles; 
21.    [u;v] = the arc from SC1 and [n;m] = the arc      
       from SC2 with the minimum sum of wum + wnv –  
       wuv – wnm; 
22.    delete [u;v] from SC1; 
23.    delete [n;m] from SC2; 
24.    append [u;m], [n,v] to SC1; 
25.    join SC1 with SC2. 
26.    for each arc [uvu,uun] 
27.     if nav(v;u;n) = ‘restricted turn’ 
28.      replace [uvu;uun] with the vertices of  
         shortest path Puvuuun. 
29. order SC1 starting from s; 
30. OTP = SC1; 
31. return OTP; 

Hint generation approach 

Hints are short keywords that show the next maneuver to be 
performed. They are used in combination with street names of 
the previous and current arcs, remaining route distance, 
distance to the next maneuver and other route related 
information. Hints are generated based on the following eight 
rules:  

1. If there is no previous arc to determine a turn (first arc of 
the tour), the hint contains direction of the arc (e. g., west). 

2. If the next arc is the only possible path from the current 
arc, no hints are generated. 

3. If the next arc is included in a roundabout and current 
one is not, generate hint “enter roundabout”. 

4. If the last hint was “enter roundabout” it is determined 
which exit has to be taken. All allowed exits are counted 
starting from the roundabout entrance to the desired exit. A 
hint “exit-n” is generated, where n is the exit number. 

5. If the current arc [u;v] is on the same road as the next 
arc [v;n] and nav(u;v;n) equals “straight”, “slight left” or 
“slight right”, no hint is generated. It is natural to continue 
driving on the same street straight forward or with a slight 
turn, therefore no guidance is needed.  

7. If the current arc [u;v] is not on the same road as the 
next arc [n;v] and nav(u;v;n) equals “straight”, “slight left” 
or “slight right”, generate hint “continue”. 

8. If for the current arc [u;v] and next arc [v;n] 
nav(u;v;n) equals “left”, “right”, “sharp left”, “sharp right” 
or “u-turn”, the hint accordingly equals to nav(u;v;n). 

Active arc detection approach 

During the route traversal, the progress is saved in the 
routes table. To detect which arcs have been traversed, an 
active arc detection algorithm is defined. Active (current) arc 
is the arc which according to the previously generated route is 
being traversed at the moment and has not been marked as 
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finished. Three edges on the arc are identified – start, middle 
and end. Each of these can be marked as traversed, when 
visited by a driver. Active arc detection starts with checking 
whether the driver’s distance to the traversable arc is less than 
a predefined constant – arc tolerance. If it is true, it is further 
evaluated if the driver’s current distance to the next 
traversable edge (arc start, middle or end) is less than a 
predefined distance – vertex tolerance. If it is true, the edge 
(e. g., middle) is marked as finished. Edges can be marked as 
finished only by going from the start to the end. When all 
three edges are finished, the arc is marked as finished. Arc and 
vertex tolerance constants are specified by the route 
generation WS and used for dealing with problems caused by 
spatial data and GPS inconsistencies.   

IV. EXPERIMENTAL RESULTS 

The experiments to compare the GA and the AA were 
conducted on a 1491 node large dataset with arc total distance 
of 72364.80 m, including virtual arcs – 85176.65 m. While 
calculating the path cost, the average driving speed is defined 
as 50 km/h. 

The gathered results from using GA and AA on two 
different graph models are presented in Table I, the 
corresponding turn type counts are presented in Table II. The 
effectiveness of both approaches is evaluated in terms of path 
cost. Since both solutions use the same balanced graph, 
minimizing path cost also minimizes turn costs (chooses 
preferred maneuver types when possible). 

TABLE I 

GREEDY AND APPROXIMATE SOLUTION COMPARISON 

 Greedy solution Approximate solution 

Expanded 
route 

Replaced 
restrictions 

Applied 
patching 

Replaced 
restrictions 

Distance  (m) 85176.65 101954.76 85176.65 103705.00 

Turn costs (sec) 17075.00 17935.00 14020.00 12715.00 

Prohibited 
turns 

33 17 25 0 

Path cost (h) 6.46 7.03 5.61 5.34 

 
Total path distance for both approaches before restriction 

replacement is equal as both algorithms at this phase visit 
corresponding graph arcs or nodes (ELG nodes) at a single 
time. Turn costs are lower for the AA because of the applied 
optimization while patching subcycles. 

Prohibited turns are not fully replaced in GA. Using the 
simple graph model inserting shortest path replacements or 
expanding virtual arcs can create new prohibited turns in the 
start and end of the path. Since the ELG model has the 
information about the previous turn made, it is possible to 
replace every restriction and expand virtual arcs without 
creating new restrictions. 

Both algorithms favor driving straight, therefore straight 
driving has mainly been chosen in both cases. GA right and 
left turn count is almost the same, while AA has used more 
right turns. GA with Fleury’s algorithm has more situations 
where there are possible better turns to make but you have to 

choose a more expensive non-bridge arc just to finish the 
algorithm execution.  

TABLE II 

TURN COUNT COMPARISON 

Turn type Turn cost Greedy solution Approximate solution 

Straight 0 1746 1428 

Right 5-15 203 232 

Left 55-65 204 141 

U-turn 80 3 8 

Prohibited turn 240 17 0 
 

AA takes more time to execute because solving the optimal 
assignment while patching is a time-consuming task; however, 
because of the transformed graph model and even using a 
partial optimization, AA path cost is lower than GA, thus the 
resulting route is considered to be more efficient. 

V.  CONCLUSION 

This paper develops the STORN that provides OTP and the 
execution of the corresponding plan using a series of loosely 
coupled web services. The high level architecture and database 
model for the solution are defined. Two alternative OTP 
generation algorithms were tested and the AA was proved to 
be superior. 

A mashup is created based on the provided web services 
and field tested using a data acquisition case in Riga, Latvia. 
Currently available feedback has shown that vertex and arc 
tolerance distances play an important role in city traversal and 
need to be adjusted by field testing (constants may vary for 
different cities). These are currently specified manually; 
however, a web service providing automatic calibration of 
these parameters should be developed. Another issue is 
dealing with road obstacles and construction works that are 
not considered during route planning and are discovered only 
while traversing the route. Currently the user interface of the 
mashup contains a fast-forward button to manually mark the 
next arcs as visited, but a more complex approach should be 
used (e. g., automatic route recalculation by using real-time 
data provided by the driver). 
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Jānis Kampars, Elīna Šmite. RCTI: izbraucama ceļu tīkla risinājums 
Optimāla izbraukšanas plāna (OIP) mērķis ir noteikt maršrutu, kas nodrošinātu visu ielu izbraukšanu iepriekš noteiktā apgabalā. Risinot OIP problēmu, īpaša 
vērība jāpievērš kopējā maršruta izbraukšanas laika minimizēšanai. Svarīgs faktors ir maršruta ģenerēšanas laiks, kas strauji pieaug līdz ar ģeogrāfiskā apgabala 
palielināšanu. Ģenerējot maršrutu, ir jāņem vērā, ka daži pagriezieni var būt aizliegti un ka divvirzienu ielas ir nepieciešams izbraukt abos virzienos. Iespējamās 
jomas OBP izmantošanai ietver ielu tīrīšanu, pasūtījumu piegādi, evakuācijas plānošanu, policijas patrulēšanas plānošanu un citas. OIP noteikšanai no 
OpenStreetMaps tiek iegūti telpiskie dati, kas tiek pārveidoti grafa veidā (ielas segments atbilst grafa lokam, bet krustojums – virsotnei). Šāda grafa pilnīgai 
šķērsošanai ir nepieciešams apmeklēt visas tā malas vismaz vienu reizi. Rakstā tiek aplūkoti un eksperimentāli novērtēti divi atšķirīgi OIP izbraukšanas plāna 
iegūšanas algoritmi. Balstoties uz šiem algoritmiem, tiek definēts Risinājums ceļu tīkla izbraukšanai (RCTI). RCTI ir mākonī bāzēta sistēma, kurai piekļuve tiek 
nodrošināta ar vairāku tīmekļa servisu palīdzību. Tīmekļa servisus var izmantot jaunu izbraucamo reģionu definēšanai, maršrutu ģenerēšanai, maršrutu 
izbraukšanas atbalsta nodrošināšanai un maršruta izsekošanai. Rakstā ir definēta RCTI arhitektūra un datubāzes modelis. RCTI prototipa darbība ir tikusi testēta 
reālos apstākļos Rīgā, Latvijā, veicot maršruta ģenerēšanu un daļēju izbraukšanu. 
 
Янис Кампарс, Элина Шмите. РПДС: Решение дорожных сетей для проезда  
Цель плана оптимального проезда (ПОП) - обнаружить маршрут, который обеспечил бы проезд по всем улицам на заранее определённом участке. 
Решая проблему ПОП, особое внимание следует обратить на минимизацию времени проезда по всему маршруту. Ещё один важный фактор - время 
разработки маршрута, которое быстро возрастает вместе с увеличением соответствующего географического участка. Разрабатывая маршрут, нужно 
принимать во внимание, что некоторые повороты могут быть запрещены, и что на двусторонних улицах движение идёт в двух направлениях. 
Возможные области применения ПОП: чистка улиц, доставка посылок, планирование эвакуации, планирование маршрута полицейского патруля и 
другие. Для определения ПОП с OpenStreetMaps собираются пространственные данные, которые превращаются в графу (сегмент улицы соответствует 
дуге графы, а пересечение - вершине). Для полного обхода такой графы необходимо посетить все его стороны, по крайней мере, один раз. В статье 
рассмотрены и экспериментально оценены два разных алгоритма получения плана проезда ПОП. Основываясь на этих алгоритмах, определяется 
решение для проезда дорожных сетей (РПДС). РПДС - это система, расположенная в облаке, доступ к которой обеспечен с помощью множества Web-
сервисов. Web-сервисы можно использовать для определения новых участков для проезда, разработки маршрута, обеспечения поддержки проезда и 
отслеживания маршрута. В статье определена РПДС архитектура и модель базы данных. Функционирование прототипа РПДС протестировано в 
реальных условиях - был разработан маршрут и частичный проезд в городе Рига (Латвия). 


