] DE GRUYTER
OPEN

G

Information Technology and Management Science

doi: 10.1515/itms-2014-0008
2014/17

Knowledge-based System Design Based
on Generic Method Conception

Henrihs Gorskis ', Arkady Borisov?, "*? Riga Technical University

Abstract — This paper proposes an approach to generic object
concepts for problem solving method ontologies and knowledge-
based systems. By using placeholders, whose main purpose is to
define characteristics of the objects upon which the method acts
without specifying a domain, method ontologies can become more
reusable. The re-usability stems from the ability to merge such
method ontologies more easily with fitting domains. The generic
object concepts in the method are proposed to be used as a bridge
to the domain ontology. The paper provides a comparison to
similar methods in related studies.

Keywords — Domain ontology, intelligent system, problem
solving method, reusable components.

1. INTRODUCTION

An intelligent system based on storing knowledge in the
form of ontologies requires a way of using that knowledge for
the purpose of solving a problem. This solution is a problem
solving method. A system can be required to solve several
different problems using a number of problem solving
methods. This paper tries to define a way of reusing existing
problem solving methods with various domain descriptions
given in the form of ontology models. The main idea is to
provide a detailed description of a system in which it would be
possible to use several different domain ontology models.
Each model would contain a different description of a domain.
The system would provide a way of combining almost any
domain ontology with a method ontology model. In this paper,
we try to define what information would be necessary in the
given ontologies and what information it would be possible to
obtain from such a combination of two models. For the
purpose of reuse, it is necessary to use both ontology models
as distinct and different models in the intelligent system.
However, during the steps of solving a given problem, these
two models would be used as one. The domain ontology is a
model that describes all concepts of a certain domain. The
method ontology in its turn describes all concepts required for
the execution of the method. The method ontology should be
as far removed from any domain specific knowledge as
possible and the domain ontology should be self-sufficient and
descriptive.

II. RELATED WORK

There are several papers that propose similar systems and
approaches of using methods and problem solutions with
knowledge from an ontology. This paper was heavily
influenced by another paper “Reusable Ontologies,

Knowledge-Acquisition Tools, and Performance Systems:
Protégé-II Solutions to Sisyphus-2”. The paper describes a
knowledge-based system that configures elevators and uses
the Protégé-Il architecture for this purpose. The paper
proposes the use of both application ontology and mapping
rules [1]. In doing so, it created the third ontology, which is
specific to both the domain and the method ontology. It also
keeps track of the mapping that was used in creating the
ontology. Even though the paper provides an almost finished
framework for a knowledge system that provides the ability
for reuse, there is still room for improvement. This paper
proposes certain alternatives to the approaches presented in
the mentioned paper.

The proposal of separating general domain knowledge from
specific tasks and the difficulties of doing this are not new [2].
Modular approaches to ontology building, which would allow
for reuse, are also proposed [3]. Another approach to this
problem is to build a new ontology from existing ones [4].
However, there still seem to be no specific solutions for all
problems associated with reusing knowledge from ontology
models [5], [6].

The main problem is that by changing the context of the
problem any domain knowledge can be required to change
with it [2]. During creation of a domain ontology, the context
of it is the requirement to be descriptive. When a specific
problem needs to be solved, the context changes and another
structure for the ontology may be more fitting. This can be
achieved by mapping knowledge from several ontology
models [7].

The approach described in the clinical context based
flexible workflow (CONFlexFlow) showed how to integrate
information about pathways into an ontology-based system
[8]. It also provides an approach of using method specific
knowledge in the form of Jess rules with the domain ontology.
However, the given approach is very reliant on the existing
information from the domain ontology and, therefore, less
reusable with other domain ontologies.

The paper “A Method-Description Language” provides a
language that is capable of describing method ontologies and
can be used for creating a “reuse library” [9]. The ideas in that
paper have similarities to the approach proposed in this paper,
especially the notion of creating and using a library that
contains solutions to problems. The described language is
useful for mapping ontologies to each other, by providing
Meta information for the mapping process.

55

Information Technology and Management Science

2014 /17

III. DOMAIN ONTOLOGY

The domain otology is used as storage for domain
knowledge. It holds descriptions given for concepts that are
important in the domain. By describing the concepts of the
domain, the relationships and properties between them, the
description of the domain itself is also obtained. The domain
ontology is usually created by a domain expert. Using the
structure of the concepts and by defining restraints and other
relationships, the expert creates a framework for the domain
knowledge. Once the basis for the ontology is created, the
expert fills the ontology with instances, which are the domain
knowledge. The class model structure is a meta-layer for the
knowledge, while the instances are the knowledge. The
domain ontology usually features the description of objects
that are important in the domain. For example, forest ontology
will have concepts for trees and other vegetation, which can be
separated into several different types. The domain ontology
describes the domain in such a way that it is possible to obtain
knowledge about it. Fig. 1 shows an abstract illustration of the
domain ontology. The concepts and relationships are
important parts of the knowledge about the domain. However,
the domain ontology itself is not designed for solving or
finding any solutions to problems. This is different from the
method ontology, which provides a description of action.

Fig. 1. Generalized visualization of a domain ontology.

IV. METHOD ONTOLOGY

The method ontology differs from the usual domain
ontology. Instead of providing a description of a certain
domain, that can be associated with any real world thing, it
provides information about a method or action. The method
ontology contains concepts, which are important for executing
the provided method. Very important parts of the method
ontology are concepts that describe the input and output of the
method. The structure and properties of these classes provide
the information necessary for preparing the method and
provide information about the outgoing information that is
created as a result of the execution of the method.
Additionally, the method ontology contains concepts of things
necessary during the execution. Those can be descriptions of
variables and smaller actions, which are required for keeping
track of changes. The method ontology describes these
concepts in an abstract way, which is as far removed as

56

possible from any specific domain. The concepts it describes
need to be able to transmit all the information necessary for
using these concepts. This includes the hierarchy, properties
and restrictions of any concepts that are taken from domain
ontology for the specific purpose of using them with the
method.

Fig. 2 shows an abstract visualization of a method ontology.

e

Thing

Fig. 2. Generalized visualization of a method ontology.

Note that in Fig. 2 the concepts of the method ontology are
separated into two kinds. The light gray blocks symbolize
concepts that are internal. They are used to describe actions
and other objects and processes that are only used in the
description of the method and are in no way connected to any
other domains. The dark blocks symbolize objects of the
method. The objects of the method are concepts the method
acts upon. Their description is important since it is necessary
to explain the hierarchy and properties of the things that are
being used in the method. However, these objects should be
described only in abstract terms. They will later be used for
merging with a domain ontology that holds the information of
actual concepts.

The method ontology is provided in addition to the method
body. The method body is the description of the method itself.
In contrast to the method ontology, it does not provide
knowledge about the method, but is the pure actions of the
method. The method body can be, for example, given as
commands in a programming language. It can also be a
general description of the actions and the order of the actions
that have to be taken to solve a specific problem. Without the
method ontology, the method body would not be
understandable, and without the method body, the method
ontology would provide a description of a method, but could
not provide the order of actions.

V. GENERIC OBJECT CONCEPTS

A method is a description of actions, which are performed
on some object or thing. For example, a sorting method
describes how to put differently sized objects into order. A
general description of such a method does not care about the
object, which is being sorted. However, for the sorting method
to work, the object which is sorted has to have a size, which
can be compared, in order to determine the position of the

Information Technology and Management Science

2014/17

object in the list of sorted objects. The method ontology can,
therefore, provide a general description of an object that is
being sorted. This object has to have a property, which tells
the size of the object. The method ontology can also provide
several descriptions and a hierarchy of these objects. For
example, a method ontology that describes the process of
sorting some objects can provide the following information:

e The method sorts objects;

e These objects have a property or slot that provides
information about the size of the object;

e There are small objects, which are a sub-concept of
object and have a small size;

e There are medium objects, which are a sub-concept of
object and have a medium size;

e There are large objects, which are a sub-concept of
object and have a large size.

If the ontology provides a hierarchy of sub-objects, it can
use it for its explanatory powers. A sub-object can be used in
the description just like any other object, but it provides its
unique properties. However, from the information above, we
can see that such a description needs to be finished before it
can be used. A generally described method will not provide
fixed information about what size objects are to be considered
small or large. This information has to be provided at the time,
when a domain ontology is connected to the method. Different
domains will have different ideas about what size objects are
small or large.

Once the objects that are used in the method are defined, the
method can provide a general explanation of how it uses these
objects, what information is required at the beginning of the
method, and what information is returned by the end of the
method execution. The inputs and outputs of the method can
also be generic objects, but they do not have to be. Let us take
a look at an example. Let the example use an ontology that
describes different foods. Food ontologies are common and
are also used in medicine [10], [11] for the purpose of
describing the different kinds and properties of food a person
may consume. The example contains:

e The method ontology, which describes a sorting
method. It has its generic object structure of small,
medium and large generic objects that are used in the
sorting;

e The domain ontology, which describes the food
domain. It contains concepts like “Nut”, “Fruit”,
“Bread” and others. These concepts have individuals
like “Walnut”, “Hazelnut”, “Apple”, “Pear”, “White
Bread” and others.

Concepts from the food ontology have to be mapped to the
generic objects of the method ontology. This can be done by
providing the information about the sizes of the foods and the
category sizes. Or the information about the sizes can be
skipped (as long as that information is not vital to the method
itself) and the concepts can be mapped directly by the
knowledge expert. The sorting method has to provide the
description of the input. In this case, the method input is a list
of generic objects (or sub-concepts of the generic object since

they can be viewed as the same). From this it is clear that a list
of food is the input for the method. The method sorts the
objects by their size and returns a sorted list of the same food
as the result of the method.

Mapping domain object to these generic method objects
should be easier if the method ontology can provide a clear
description of what is expected from the concepts that are
mapped to the generic objects.

VI. THE RELATION BETWEEN THE GENERIC OBJECT
CONCEPTS AND THE DOMAIN CONCEPTS

The mapping and usage of these generic objects can be
simplified if a new kind of relation is introduced to the
ontology description of the concepts. This relation is “of
functional equality”. This relation would signify to any user or
process that uses the ontology description of a concept that
any function, action or other process has to perform the same
action with the related concept. If we have a relation of
functional equality between the concept “apple” and “medium
sized object” and a process has to check the size of the
concept apple, the result should be that the apple is medium
sized, even if that information is provided in the concept
“medium sized object” and not in “apple” since both are
functionally equal for the purpose of the method. Such an
effect can be achieved by using deductive reasoning or by
implementing a process of equal functionality
(polymorphism). A similar effect can be achieved by using a
simple “is a” relation, but that approach would make it
necessary to perform additional reasoning, which has to be
defined specifically for the connected concepts. Fig. 3 shows a
connection between two concepts from two different
ontologies, which have to be functionally equal for the
purposes of the method.

—————— e —— —— "=
- Method | Domain

Fig. 3. Relations between ontologies.

VII. ONTOLOGY USE WITHIN THE SYSTEM

The descriptions of the two kinds of ontologies that are used
in the system given in the previous sections are very
important. The system is based on the presupposition that the
method ontology provides generic objects that can be mapped
to the knowledge of the domain ontology. It is based on the
process of merging. Merging is important for explanation
purposes, so the method is no longer abstract, but describes
actions and objects of a certain field. During merging it is

57

Information Technology and Management Science

2014 /17

necessary to define which abstract method concepts are
equivalent to some of the domain concepts. The working of
the system can be described with the following steps:

Step 1 — Obtaining the ontologies: The domain ontology is
the description of the field, in which the problem arose. The
method ontology should be picked based on the problem itself.
A reuse library as mentioned in another paper [9] can be very
helpful for finding fitting ontologies and making sure that they
are compatible.

Step 2 — Mapping: Based on the description of the method
ontology, every generic object used by the method has to be
mapped to one or several concepts within the domain
ontology. Fig. 4 shows how method objects are mapped to
domain concepts. Note that in a certain situation it required
knowledge be missing from the domain ontology. It can be
necessary to add missing information to the ontology.

Step 3 — Creation of the application ontology: Similar to the
process described in the related paper, an ontology model that
holds all the information for the given task is created [1].
Based on the mapping information and any added knowledge,
an application ontology is created. Fig.5 shows the new
ontology that resulted from the combination of the domain and
the method ontology. The doted block symbolizes an added
concept. The light and dark octagons symbolize the concepts
that resulted from the combining method and domain
knowledge. It is important to note that these concepts keep all
the properties from the concepts they were created from.

Step 4 — Problem solving: Using the application ontology
and the method body, it is possible to solve the problem, in the
context of the provided domain. This is possible since the
concepts used in the method body were connected to the
method ontology. By creating the application ontology, any
missing information (the inputs) and the context of the
problem (the domain) are provided to the method. The actual
execution of the method is task for the system. This can be
done either by using an API (Application Programming
Interface) created for this task, which is capable of looking up
the required information from the connected ontology or by
generating the executable code by adding the information
from the ontology to the method template. An API, for the
purpose of using OWL (Ontology Web Language) already
exists [12], but it would require additional functionality as
described, in order to perform the required actions.

Step 5 — Explanation of the solution: Any solution found by
the method can, at this point, be explained further by using the
knowledge of the ontologies. If the user of the system requires
more information about the solution, the system can provide it,
by using connected concepts or by reasoning. Since the
solution is described by using the application ontology, the
descriptive powers of the ontology can be used.

58

.

Thing

Thing

Fig. 4. Mapping the method ontology to the domain ontology.

Thing

Fig. 5. The application ontology.

The main idea of this approach is the use of method objects
in the description of the method ontology. By using these
abstract objects, it is easier to define and perform mapping and
merging of the two ontology models.

VIII. CONCLUSION

By combining method and domain ontology, it is possible
to reuse the generally defined methods with any fitting domain
ontology. This way we can reuse knowledge to solve specific
problems and provide explanations for the solutions. The
proposed is an approach for a knowledge-based system that
can use ontologies in the described way. It is important to note
that this approach is heavily based on the way the method
ontology is created. The reusability of ontologies is achieved
by having method object descriptions in the method ontology.

Information Technology and Management Science

2014/17

If the method ontology defines all the concepts it needs in
order to perform, the mapping process can be simplified, and
the method ontology can become very reusable. These
generalized method objects provide the hierarchy and
properties, which can be used in the method. Once these
objects are combined with domain concepts, the new concepts
inherit the hierarchy and properties of both. This way a clear
interface for mapping or merging between ontologies is
provided. This approach of using generalized non-specific
concepts in the description of the method can be applied to
any of the methods concepts. It is not limited only to the
inputs and outputs of the method. If the method uses variables
or objects during execution, which rely or can be described in
the domain, these objects can be provided in a generalized
way for mapping to the domain ontology.

The application ontology created as a result of combining
two different ontologies and adding any required information
is distinct from the domain and method ontologies. The reuse
comes from using the basic ontologies in different
combinations. The application ontology is a specific ontology
usable only for solving the task it was created for. Only by
creating such application ontologies for different situations, by
using preexisting ontologies, reuse of knowledge can be
achieved.

The ability to describe the obtained solution from the
method comes from the idea that the execution of a method is
connected to the ontological description of the concepts used
in the method. Once the method ontology is replaced by the
application ontology, the method has to be capable of using
this new knowledge about the concepts that are used in the
method. The generic method objects are also renamed and
combined with concepts from the domain. This means that
these concepts now contain information from two ontologies
usable for solving the task. That means that the execution
needs to be capable to look up the properties of concepts at
runtime. For example, if a method is designed to sort different
sized objects by their size, the application ontology can be
created with a domain ontology that contains knowledge about
fruit. And a certain fruit was mapped to a certain method
related object that provides information about size. The
method has to be capable of using the concept that describes
the fruit as a sized object. At this point, it can become clear if
a fundamental difference exists within these ontologies, which
would require further work from the domain export to make
such ontologies compatible.

The language used in the method body to describe actions
and the exact specifications of the execution are subjects for
future work. They use concepts and information from the
ontology, but they are not part of the ontology and do not
necessarily use the ontology directly.

This paper is part of research in progress to create a
specification of an intelligent system that will be capable of
reusing ontology knowledge. The approach provided in this
paper about reusing methods by creating combinations of
different ontologies is part of this research.

REFERENCES

[1] T.E. Rothenfluh, J. H. Gennari, H. Eriksson, A. R. Puerta, S. W. Tu and
M. A. Musen, “Reusable Ontologies, Knowledge-Acquisition Tools, and
Performance Systems. Protégé-Il Solutions to Sisyphus-2” in
International Journal of Human-Computer Studies. 2002, pp. 303-332.
http://dx.doi.org/10.1006/ijhc.1996.0017

[2] B. Chandrasekaran, “Generic Tasks in Knowledge-Based Reasoning:
High-Level Building Blocks for Expert System Design,” IEEE Expert,
vol. 1, Issue 3, 1986, pp. 23-30.
http://dx.doi.org/10.1109/MEX.1986.4306977

[3] C. Torniai, M. H. Brush, N. Vasilevsky, E. Segerdell, M. Wilson, T.
Johnson, K. Corday, C. Shaffer and M. Haendel “Developing an
Application Ontology for Biomedical Resource Annotation and
Retrieval: Challenges and Lessons Learned,” in /CBO, 2011.

[4] N. K. Leung, S. K. Lau, J. Fan and N. Tsang, “An integration-oriented
ontology development methodology to reuse existing ontologies in an
ontology development process,” in Proceedings of the 13th International
Conference on Information Integration and Web-based Applications and
Services. ACM. December 2011, pp. 174-181.

[5] D. Lonsdale, D. W. Embley, Y. Ding, L. Xu and M. Hepp, “Reusing
ontologies and language components for ontology generation” in Data &
Knowledge Engineering , vol. 69, no. 4, 2010, pp. 318-330.

[6] E. Simperl, “Reusing ontologies on the Semantic Web: A feasibility
study” in Data & Knowledge Engineering, vol. 68, no. 10, 2009,
pp. 905-925.

[7] J.J. Jung, “Reusing ontology mappings for query routing in semantic
peer-to-peer environment,” in Information Sciences, vol. 180, no. 17,
2010, pp. 3248-3257. http://dx.doi.org/10.1016/j.ins.2010.04.018

[8] W. Yao, A. Kumar, “CONFlexFlow: Integrating Flexible clinical
pathways into clinical decision support systems using context and rules”
in Decision Support Systems, vol. 55, no. 2, 2013, pp. 499-515.
http://dx.doi.org/10.1016/j.dss.2012.10.008

[9] J. H. Gennari, W. Grosso, M. Musen, “A Method-Description Language:
An initial ontology with examples”. Stanford Medical Informatics. 1998,
pp. 1-18.

[10] J. Cantais, D. Dominguez, V. Gigante, L. Laera, V. Tamma, “An
example of food ontology for diabetes control”. Proceedings of the
International Semantic Web Conference 2005 workshop on Ontology
Patterns for the Semantic Web. 2005, pp. 1-9.

[11] J. Graga, M. Mourdo, O. Anunciagdo, P. Monteiro, H. S. Pinto, V.
Loureiro, “Ontology building process: The wine domain” in: Proc. of
the 5 th Conf. of EFITA. 2005, pp. 1138 — 1145.

[12] J. HenB, J. Kleb, S. Grimm, “A Protégé 4 Backend for Native OWL
Persistence,” 11th Intl. Protégé Conference, June 23-26, 2009, pp. 1-4.

Henrihs Gorskis is a second-year Doctoral Student majoring in Information
Technology at Riga Technical University (RTU). He received his Mg. sc. ing.
degree in 2013. His research interests include data mining, ontology
engineering, evolutionary computing and programming. In 2013 he
participated in the AICT conference and also provided a paper on ontology
engineering. He is especially fond of the Java programming language and uses
it for both work and personal application development.

E-mail: henrihs.gorskis@rtu.lv.

Arkady Borisov received his Doctoral Degree in Technical Cybernetics from
Riga Polytechnic Institute in 1970 and Dr. habil. sc. comp. degree in
Technical Cybernetics from Taganrog State Radio Engineering University in
1986. He is a Professor of Computer Science at the Faculty of Computer
Science and Information Technology, Riga Technical University (Latvia). His
research interests include fuzzy sets, fuzzy logic and computational
intelligence. He has 235 publications in the field.

He has supervised a number of national research grants and participated in the
European research project ECLIPS. He is a member of IFSA European Fuzzy
System Working Group, Russian Fuzzy System and Soft Computing
Association, honorary member of the Scientific Board, member of the
Scientific Advisory Board of the Fuzzy Initiative Nordrhein-Westfalen
(Dortmund, Germany).

E-mail: arkadijs.borisovs@cs.rtu.lv.

59

Information Technology and Management Science

2014 /17

Henrihs Gorskis, Arkadijs Borisovs. Uz zina§anam bazétas sistémas izstrade, lietojot visparigas metodes konceptus

Intelektualas sistémas var biit nepiecieSams lietot vairakas ontologijas. Ontologijas glaba konceptualas pamatzinasanas $adas sistémas: lai atrisinatu dazadus
uzdevumus ar dazadam pamatzina$anam, ir nepiecieSams lietot dazadas ontologijas. Saja darba tiek piedavata pieeja, kas palidz atkartoti lictot dazadas
ontologijas ar vienu un to paSu sistému jeb atrisina$anas metodi. Sisteéma tiek glabata metodes ontologija. Tas ir konceptualas pamatzina$anas par pielietojamo
metodi un to, kada veida tiek atrisinats uzdevums. Lai atvieglotu metodes ontologiju apvienoSanu ar ontologijam, kas apraksta problémas nozari, tiek piedavats
lietot visparigus konceptus par objektiem metodes apraksta. Siem konceptiem piemit visas Tpasibas, kas ir nepieciesamas, lai metode varétu tos lietot problémas
atrisindSanas gaita. Sadam aprakstam ir jabiit p&c iesp&jas visparigam un nesaistitam ar treSo problémas apgabalu. Taja bridi, kad metodes ontologija tiek
apvienota ar problémas ontologiju, Sie visparigie metodes objekti kalpo par apvienoSanas punktiem. Savienojot visparigo metodes objektu ar konceptu no
problémas ontologijas, tiek izveidota saite ar citiem konceptiem no problémas nozares. Vienlaikus tiek garantéts, ka saistitiem konceptiem piemit visas Ipasibas,
kas ir nepiecie$amas, lai tos varétu lietot metodes izpildes laika. Kad metodes un problémas vides ontologijas ir apvienotas, tad izveidojas aplikacijas ontologija.
Ta ir ontologija, kas kalpo par pamatu problémas risinaSanas procesa. Izmantojot apvienoto ontologiju, ir iespéjams uz tas pielietot ontologijas iespgjas, jauno
zinaSanu atklasanai vai esoSo faktu aprakstiSanai. Sakara ar to, ka visparigie metodes koncepti tick savienoti ar citas ontologijas konceptiem, $aja soli var
atklaties, ka izvéletais koncepts ir nederigs, jo var izveidoties pretrunas ar vienu no ontologijam. Tiek piedavats lietot Sos visparigos metodes konceptus, lai
atvieglotu ontologiju apvieno$anas procesu un padaritu ontologijas atkartoti lietojamas. Tadgjadi ontologiju apvienoSanas procesa jau iepriek$ ir noradits veids,
péc kura ir iesp&jams atrak apvienot dazadas ontologijas.

I'enpux I'opckuii, Apkaanii Bopucos. PazpadoTka cucreMbl, 0CHOBAHHOI HAa 3HAHUSAX, HCII0JIb3Ysl 00LIMEe KOHUENTHI MeTo1a

B HHTe/mIeKTyanbHBIX CHCTEMaX MHOTAA HEOOXOAUMO HCIIOIb30BaTh HECKOIBKO OHTONIOTMH. B TakuxX cHcTeMax OHTOJOTHS XPAaHHUT 0a30Bble KOHIETITYyalbHEIE
3HaHWA. {1 pemeHus pa3iInyHbIX 3a7ad ¢ Pa3sHBIMH 0a30BBIMH 3HAHHMSMH HEOOXOJMMO HCIIONB30BaTh LEIbIH PsJI pa3InYHBIX OHTOJOTMH. B maHHOi pabGote
[peIaraeTcs MOAX0/, KOTOPBIH IIOMOraeT IIOBTOPHO HCIOJb30BaTh PAa3HOOOPa3HbIE OHTOJIOIUH C TOW JKE€ CHCTEMON MIIH METOIOM pelleHus 3a1a4. B cucteme
XpaHHTCS OHTONOTHS MeToa. OHa SBIIseTCS KOHIENTYalbHOH OCHOBOU 3HAHUM, KOTOPHIE IPUMEHSIOTCS] B METOJIE U ONUCHIBAIOT CIIOCO0, C MOMOMIBIO KOTOPOTO
9Ta 3ajgava pemaercs. 1 TOro 4roObl OOJICTYHTH CIMSIHUE OHTOJOTHH METOJAa C OHTOJIOTHSIMHM, OIMCHIBAIOIIMMHU IPOOJIEeMy B OTpacisX, Ipeisaraercs
UCIIOJIB30BaTh OOMLINE KOHLENTH 00BEKTOB, ONMCAHHBIX B METOJE. DTH KOHIENTHI HMEIOT BCE KAaueCTBa, KOTOPHIC HEOOXOMHMBI METOLY, JUISl TOTO YTOOBI OHH
MOTIIU OBITh HCIIONIBb30BAaHBI B XOJ€ PEIICHUs 3alaud. Takoe OMHCaHUE JODKHO OBITh II0 BO3MOXKHOCTH MAaKCHMAalIbHO OOLIMM H HE CBS3aHHBIM C TpeThel
npobyieMHON 06nacTeio. Korjma OHTONIOTHs MeToJa OOBEAMHSETCS C OHTOJOTHEH OTpaciu, 3TH OOIIMe OOBEKTBI METOJA CIYXKAT TOYKAMH OOBEIUHCHHUS.
O6bennnsis obume oOBEKTHI METOJAa C KOHIENTAMHM W3 OHTOJIOTHH MPOOJEMBbI, CO3Ma€TCsl CBsI3b C APYTMMH MOHATUSIMM OTpaciu. B To xe Bpems 310
TapaHTHPYeT, YTO COOTBETCTBYIONIHE IOHATHS OyIyT o0agaTh BCEMH KaueCTBAMH, KOTOPbIE HEOOXOMUMBI JUIS HCIIOIb30BAHUSI BO BPEMs BEIIIOIHEHHS METOA.
Korna oHTOJIOrHH METOA M OKpYIXKaIoLIeil cpebl 00beIHHSIIOTCS, CO3MAETCS OHTOIOTHS IPUIIOKEHUS. DTa OHTOJIOTHS CIIy)KHT OCHOBOH JUIS TIpoLiecca pereH s
npoGiiemsl. Mcronb3yst 00beJUHEHHYIO OHTOJIOTHIO, MOXHO NPUMEHATh (YHKIUN OHTOJIOTHH Ui OTKPBHITHS HOBBIX 3HAHMH HJIM ONMCAHMS CYIIECTBYIOIIHX
¢axToB. B cBs3u ¢ TeM, YTO OOIIME IOHSATUS METOAA CBSA3aHBI C JPYTUMH IOHSATHSAMH OHTOJOTHH, Ha JTOM 3Tale MOXKET BBIICHHTHCS, YTO BBHIOpaHHAs
KOHIICIIVS SBISIETCS HEeHCTBUTEIBHOM, TaK KaK MOTYT HOSIBUTHCS NIPOTHBOPEYHs B OXHOM U3 oHTONOTWH. [IpeiaraeTtcs HCIONB30BaTh 3TH 00IIe 0OBEKTHI
MeTo/a Uit 00erdeHust npolecca CIAMSIHHUS OHTOJIOTUH M CAENaTh OHTOJOIMH IOBTOPHO HCIOJB3yeMbIMH. TakuM 00pa3oM, B HpoLecce CIMSHHUS OHTOJOTHIL
yoKe CyIIecTBOBAJIO yKa3aHHUe, 10 KOTOPOMY MOXKHO OBLIO ObI ObICTpee KOMOMHHPOBATH Pa3IHYHbIC OHTOIOTHH.

60

