Information Technology and Management Science

doi: 10.1515/itms-2014-0004
2014 /17

>l DE GRUYTER
OPEN

Towards the Model-driven Software Configuration
Management Process

Arturs Bartusevics ', Leonids Novickis 2, "% Riga Technical University

Abstract — Software configuration management is one of the
most important disciplines within the software development
project, which helps control the software evolution process and
allows including into the end product only tested and validated
changes. To achieve this, software management completes certain
tasks. Concrete tools are used for technical implementation of
tasks, such as version control systems, servers of continuous
integration, compilers, etc. There are situations when some tools
or scripts are implemented to support small particular parts of
complex software configuration management process without a
general picture of total process. Maintenance of such solutions is
complex and more expensive than it could be. The study
describes a model-driven configuration management approach,
which foresees the development of an abstract environment
model for the configuration management process that later is
transformed to lower abstraction level models and tools are
indicated to support the technical process. This approach allows
implementing all tools and solutions according to the planned
configuration management process and developing reusable
solutions.

Keywords — Configuration management model, model-driven
approach, software configuration management.

I. INTRODUCTION

Software Configuration Management is a discipline that
controls the evolution of software development process. To
achieve this goal, software configuration management deals
with the tasks such as configuration item identification,
version control, configuration status accounting and
configuration audit [1], [3], [4]. Software configuration
management is described in ISO quality standards, where it is
noted that the results of the process are needed for other sub-
processes in  software  development [3]. General
recommendations for configuration management process
described in the quality standards are taken as the basis for
many information technology companies worldwide. As it is
noted in the studies [1] and [4], there are mainly two ways to
achieve the standards. The first one is focused on the
development of methodology and describes particular
activities to be taken to implement configuration management.
The second one is focused on the development of tools that
most commonly deal with only one configuration management
task.

One of the main problems of software configuration
management implementation is the fact that implementing
strategy of initial phase of software development process is
not well thought out. However, a well-thought-out and
realized configuration management strategy is the first
condition which suggests that configuration management

32

process has been implemented [1], [3], [4]. Due to the fact that
configuration management implementation strategy is not well
thought out and there are no specific activities, they start
solving real tasks in the project. For example, there is a source
code and it is submitted to version control, but there are no
baseline strategies for development and maintenance. It is also
not thought out how to organize parallel development and
maintenance of parallel branches, but in case of project
development such a need may arise. This is a situation that
develops solutions to specific situations that arise in practice,
but the solution does not necessarily correspond to the process
of a general concept. Such solutions are difficult to maintain
because they are eventually complemented with multiple
corrections and adjustments, often resulting in dependency on
another task solutions. It is the so-called “master factor”
situation, when only one or a few people know how the
particular software configuration management solution works,
and it takes them a lot of time to find solution maintenance
[1].

The second problem is related to the reuse of solutions for
configuration management. If configuration management
strategy has not been developed and thought out, every project
of information technology company needs to develop
configuration management solutions from scratch, because
previous project solutions were purposed for dealing with too
specific tasks and it is difficult to find solutions to concrete
tasks there. Sometimes it is easier to implement a solution
from scratch than to choose the existing one as basis.

The problems mentioned above additionally stimulate
creating many tools that are focused on specific configuration
management solution and tool manufacturers promise to solve
all potential problems with a particular tool. However, both
configuration management experts [1], [4] and quality
standards [3] emphasize the need to choose a configuration
management plan, which defines specific tasks, and only then
to choose the tools that implement these tasks.

Configuration management experts [1], [4], propose at the
initial stage to create a model of configuration management
process, then to determine activities which are necessary for
process implementation, and only then to choose the
appropriate tools. Thus, the article first analyzes the existing
solutions based on models and their disadvantages. Then it is
offered a new model-driven configuration management
solution that suggests specific activities for configuration
management process plan and its implementation. The final
part of the article defines further research directions as well as
expected benefits of the designed solution.



Information Technology and Management Science

2014 /17

II. RELATED RESEARCH

Initially, the model-oriented solutions appeared in the
studies, where only one of the main configuration
management tasks was solved, for example, configuration
item identification [10], [2], [13], [6].

In article [10], the authors propose making developed
product modeling. At first, it is emphasized that by defining
potential candidates of configuration items, not only a source
code should be taken into account, but also the documentation
that describes the product from different points of view.
Modeling approach is based on a gradual system of tree-like
structure development.

While researching version of controlled solutions, one may
encounter model creation [2], [5]. Study [2] describes an
algorithm, which consists of meta-model controlled items. The
meta-model describes the syntax of the model, which could be
exposed to version control. The algorithm is intended for
version control systems that control models, not a source code,
which is specific to projects that use a model-driven
development approach. Thanks to meta-model, it is possible
not only to manage the change of models, but also to make the
merge of different model versions and to see merge conflicts,
like it can be seen in source code file change combination. A
similar solution is offered in the following source [5]. There is
mentioned the fact that the version control and parallel
development may not be limited by source code file control.
The projects, which use a model-driven approach, need to
control the model versions, while the vast majority of existing
version control systems fails to maintain versions of the
models. Therefore, the authors of study [5] propose an
approach that requires the development of an abstract model
for version control system.

Model-driven approach is used for building and installation
processes in the framework of configuration management
[13], [6]. The following article [13] is not about specific tools,
but about an abstract model, which describes the building and
installation process. The solution offers a model that describes
the activities necessary to implement in the building and
installation process. However, the following article [6]
emphasizes the importance of a correct choice of
configuration items for qualitative product building that
should be included in the building process. Article [6]
proposes a model-based methodology, which provides a set of
configuration items to be included in the building process.
Methodology uses heuristics and analyzes all possible
configuration item sets that could potentially be included in
the building process.

There are model-based solutions that are focused not on one,
but numerous configuration management tasks [12], [7], [8].
In order to have a better idea about solution maturity and
disadvantages in the context of a model-driven approach,
general principles of model-driven approaches [11], [9] used
in software development have been studied. Model-driven
solutions should have the following features:

e The existence of a meta-model. The solution must have
the source from where one can create a configuration
management process model.

e Different levels of abstraction models. Model-driven
solution should have an abstract model that describes a
configuration management process, independently from
computing and tools that will be used in the process of
implementation. However, there should be other types of
models, where you can see signs of computing, platform
specificity and tool role in the process.

e Relationship between different types of models and
transformation rules, which allows the model with one
abstraction level to transform into the model of another
abstraction level. Transformation rules should be
formalized in order to be subjected to computer
processing.

e Tool support. In order not to leave the solution at a
theoretical level, we need tools that are able to create
models from the existing meta-models and to make
necessary transformation.

e Relationship with a problematic environment. This
relationship is needed for a viable solution. Otherwise, the
created and implemented model is unable to respond to
changes in the problematic environment and it will be
impossible to quickly determine weaknesses in the model.
Over time, this can lead to specific tool configuration or
code corrections, implementation process and the process
model will lose its relevance.

Within the following solution [12], the authors have
developed configuration management and model-driven
development unification concept, meta-model, which allows
creating an abstract model of product configuration, Eclipse
Modeling Framework tools, which allow obtaining a specific
configuration model from an abstract model platform, as well
as instructions for expanding the created methodology and
tools. Although the solution corresponds to the main principles
of a model-driven concept, it is focused on projects where
development occurs based on model-driven approaches. Meta-
model is only a configuration item for task identification.

Study [8] presents a methodology, which considers a
configuration management process as a whole process.
Configuration management principles for solution creation are
taken from ITIL standard (Information Technology
Infrastructure Library) and later abstract models are created,
from which one can create an abstract configuration
management process, and later this model can be transformed
into a platform interdependent model. The approach uses the
main principles of model-driven development. The meta-
model based models offer the necessary abstraction that
improves the process of configuration management,
transparency and allows the user, if necessary, to implement a
model of a particular technology, for example, to make model
transformation. A system prototype is created that implements
model-driven configuration management. The author of article

33



Information Technology and Management Science

2014 /17

[8] provides extensive research further, in order to arrive at a
particular solution, which is also recognized in the
conclusions. The solution is focused only on one technology
(JAVA). Thus, it is difficult to assess the possibility of
practical application, and an opportunity to realize the
relationship with the problem is also not analyzed.

Solution [7] offers an approach to various configuration
management tools for mutual integration. In order to maintain
a complete configuration management process, a number of
tools are required: version control system, problem
management system, building servers, continuous integration
servers and many other tools. In practice, all the above-
mentioned tools work separately from each other. In order to
facilitate a configuration management process, an approach
has been offered to integrate all these tools together. However,
in order to integrate various configuration management tools,
it is necessary to define a general concept of each integrated
tool [7]. The article offers configuration management task
ontology. This ontology is used as a configuration
management model that shows how various configuration
management tools are integrated. Ontology is mainly based on
the version control, which is one of the key concepts of
configuration management. Ontology provides information
about configuration management of sub-reciprocal links,
which are expressed in concepts, links, tasks, agents, output
and input data sets [7]. There is no guidance how ontology can
be used in specific project configuration management. In
terms of relationship between problems, it is not clear how to
make changes in ontology, which ontology editors it is
recommended to use and how to determine the moment when
these changes have to be made.

Solution [14] intends to apply the fuzzy logic theory to
create a multi-criteria decision-making system. Decision-
making main objective is to determine the optimal set of
configuration items that will be subjected to a configuration
management process.

III. GENERAL APPROACH TO MODEL-DRIVEN SOFTWARE
CONFIGURATION MANAGEMENT

This article proposes a new model-driven configuration
management implementation approach, which unlike other
model-driven solutions is focused on a gradual process rather
than solving a specific task. Another difference is that the
solution does not impose any specific technology or tool, but
suggests using the existing solutions by increasing the reuse.

During the development of configuration management
model-driven approaches, the main ideas of MDA [9], [11]
were taken into account. A solution should contain abstraction
models with different levels and clearly defined rules how to
move from one abstraction level model to another.

The highest level of abstraction MDA is CIM (computation
independent model). While researching configuration
management definitions, it was searched for something, which
could build a configuration management model with the
highest level of abstraction.

34

Summing up definitions [1], [3], [4], the authors managed to
come to a conclusion that configuration management in its
highest level of abstraction answers the following question:
“How to transfer software performed changes from one
instance to another at the right moment?” A key highlight of
this subject is placed on the changes that were made to the
developed product and its ability to transfer changes from one
instance to another, because usually several instances are used
in a software development project [1].

Thus, creating a configuration management model with the
highest level of abstraction, the following aspects should be
taken into account: the existing instances, and the way,
software development changes will go starting from
development and finishing with exploitation, as well as which
versions are formed for the developed product. This type of
model, developed in the framework of the solution, is called
an environment model and will be hereinafter denoted as an
EM.

Each model must have the source or meta-model; therefore,
in the developed concept the element “Meta-model of EM”
has been introduced. At the initial stage, a configuration
manager, who is planning the process, is proposed to make an
EM using elements from a meta-model.

Expert system knowledge base represents rules, which are
able to determine general configuration management risks
depending on the state of EM. Such rules hereinafter will be
marked as “Rules of Risks, Compilation”. The expert system
within the developed concept is indicated as “Expert System”.
If a configuration manager creates an environment model that
does not meet basic principles of configuration management
[1], [4], an expert system then reports about potential risks of
the model. As soon as a configuration management process
EM has been obtained and an expert system has identified
risks, it is necessary to form a model with a lower level of
abstraction. The essence of a model has been defined in the
following article [7], which says that regardless of the planned
configuration management process, in the end it supports a
variety of tools which carry out certain activities to implement
source code management, compilation, building activity etc.,
performs the basic tasks of configuration management.
Environment Model shows the further way of software
changes. Taking into account the following opinion [7], it
would be logical at this stage to understand what kind of
action should be taken to implement an EM described way in
accordance with principles of configuration management [1],
[4]. The following information [11] should also be taken into
account: a CIM model is followed by a platform-independent
model (PIM), and actions at this stage cannot be attracted to
specific technologies and platforms. Thus, the concept has
introduced the element “Platform Independent Action Model”
that is marked as PIAM. This model has also a specific source
or meta-model “Meta-model of PAM”.

A new element “E—P” appears in an expert system or the
transformation rules from an Environment Model to a
Platform Independent Action Model. Thus, obtaining an



Information Technology and Management Science

2014 /17

Environment Model, a configuration manager uses “E—P”
transformation rules to get a PIAM model. PIAM meta-model
defines global activities, which deal with configuration
management tasks.

Once a configuration management PIAM model has been
created, a configuration manager chooses a solution from a
“Solutions database” to each action of PIAM. Thus, it
becomes known how PIAM model specific items will be
implemented in each task. This model is called “Platform
Specific Action Model”, and is marked as a PSAM. Fig. 1
shows a general scheme of model-driven configuration
management. Arrows with numbers represent steps of
approach.

Metamodel of EM
(Environment Model)

Metamodel of PIAM
(Platform Independent Action Model)

\ \
Use Metamodel Use Metamodel

PIAM
(Platform Independent Action Model)

| -

Configuration
Manager

O

Configuration
Manager

—
1 4

(Environment Model) —L
J .
2

LE->P”
Transformation
Rules

(<)}

Solutions
database

Rules of Risks,
Compilation

Expert System

7
A J

PSAM
(Platform Specific Action Model)

Configuration Management Domain

Fig. 1. Conception of model-based configuration management.

A detailed description of elements of the model-driven
approach for the implementation of configuration management
process is provided below:

EM (Environment Model) — Displays the flow of
configuration items in the context of different instances. For
example, the development and maintenance of development
project displays how changes come from the development
environment to different test environments, and finally, to the

operation or production environment. It also shows how new
versions of configuration items are created and in what order
these versions are transferred from one instance (environment)
to another.

Metamodel of EM — Source for an Environment Model. It
contains all the components of which EM may consist.
During the EM modeling course, the user can take
components only from a meta-model.

PIAM - shows which actions are needed to ensure the
implementation of the flow of EM model configuration
elements through the environments. This model has only
abstract actions. For example, there is an element
“PREPARE BASELINE”, but there is no information about
platform, technology, manufacturers etc.

Metamodel of PIAM — Source of PIAM model. It contains
all the components of which PIAM may consist.

PSAM - PIAM extension model, which eliminates
abstraction from technologies, platforms, manufacturers, and
etc. All actions have specifically selected solutions from a
solution database, so that the model contains certain
information necessary for activity implementation.

Configuration Management Domain — an environment,
where a configuration management system operates: tools,
interaction, project factors that affect the configuration
management process etc.

Rules of Risks, Compilation — Rules, which determine
problem areas in an EM, depending on the problem
characteristics and model component condition. These rules
also contain different types of recommendations to prevent
one problem or another, as well as how to react to changes in a
problematic environment (changing one or more parameters).

E—P — rules that determine how to get a PIAM from an
EM.

Solutions database — a database of solutions of actions from
a PIAM.

Expert System — an expert system that combines
configuration = management  solution  database  and
transformation rules from an EM to a PIAM, as well as “Rules
of Risks, Compilation”.

IV. PRACTICAL IMPLEMETATION OF A MODEL-DRIVEN
APPROACH OF CONFIGURATION MANAGEMENT

EM consists of the following elements:

a) Environment — instance that contains configuration
elements that make up the software product,

b) ConfigurationltemFlow — a flow, through which
configuration items are transferred from one environment to
another,

c) Event — consists of one or more configuration flows.
Event may contain several flows, because sometimes, before
transferring configuration to some environment, at first it is
transferred to the appropriate environment copy to make sure
that transferring will occur correctly. For example, in order not
to jeopardize the test environment, at first configuration may
be transferred to the test environment copy and then to the real

35



Information Technology and Management Science

2014 /17

test environment. In this case, one event will be responsible
for transferring changes from the development environment to
the test environment, and this event includes two configuration
flows: one flow transfers the changes to the copy of the test
environment, and in case of success, the second flow is
triggered, which transfers the same configuration to the real
test environment.

Once an EM has been created and all the environments have
been identified, all the events and flows can create a PIAM,
which at the highest level includes the element “Continuous
Integration Server” — a centralized location, from where all the
events in configuration transfer between environments will be
managed. Continuous Integration Server will contain all the
events of EM with all relevant configuration flows. Then
“E—P” transformation rules will be used, which are based on
configuration management practices, standards or frameworks
[1], [3], [4], and for each configuration flow activities from the
following action set will be determined:

DEVELOPMENT - a process of development is included in
a PIAM model, as configuration management controls what
kind of development regulations should exist that control
principles of configuration item development and changes [1],
[3]. By simulating these activities, it is possible to determine,
for example, certain technology and principles of
configuration item development of a certain project, procedure
that requires changes will be agreed, tools for performing
change management, regulation documents, instructions, etc.
It should always be kept in mind that if the development
process is not controlled and managed, further steps in the
configuration management process will be difficult to predict
[1].

COMMIT CHANGES - an activity that determines
preservation of change development in a version control
system. Activity is controlled by a version control task. All
developed product configuration items should be subjected to
version control, in order to be able to always see when, who
and why made changes [1], [3], [4]. This activity is modeling
a version control of a certain project and specific rules to be
followed by developers, saving changes in a version control
system. Moreover, tools that automatically monitor
compliance with required rules and principles can be recorded
into activity attribute.

PREPARE BASELINE - this activity, depending on a
version control system, controls the procedure and technical
support of environmental baseline preparation. Configuration
management controls how to define a baseline to any changes,
against which the changes will be made [1]. Environment
model assumes that each environment has its own baseline —
an approved condition of product source code that corresponds
to environment configuration. Thus, before any configuration
transmission from one environment to another, it is necessary
at first to rebuild a source code of the relevant environment. In
practice, this activity provides the transfer of changes between
two branches of version control system, which is also called
the merge. This activity describes the process of configuration

36

transfer between two repository branches and provides a
description of tools that support it technically.

COMPILE BUILD - an activity that builds a product from a
corresponding source code. Compilation and the build should
result in the creation of an executable item.

INSTALL BUILD — an activity that installs the built
product into a certain environment (instance).

PRODUCT DELIVERY - an activity that prepares and
ships the built product to a customer. This activity is necessary
in order to be able to install the product into the environment,
which is supported by a customer, and a developer team does
not have access, for example, to a production environment.
Activity is modeling a procedure, which is necessary to follow
while preparing the product for shipment. For example,
together with the built product it is necessary to send the
description of the version and instructions how to install the
product into instance; these requirements control configuration
management and quality standards or frameworks [1], [3], [4].

ENV_UPDATE NOTIFICATION — an activity that sends a
signal to the development team that environment is updated by
new version of product. At this moment, the development
team should record the fact, and accordingly supplement
configuration item information in a version control system, as
well as install the same version of the product into all
environments, which is a test copy of the customer’s
environment. This process needs an obligatory renewal of the
appropriate environmental baseline. This action controls the
procedure that is mandatory to comply by receiving
information from a customer about any environment restoring.

Each PIAM configuration flow for each activity contains the
following attributes, which will not be completed, because at
this stage a specific solution to any activity has not been
chosen yet:

Platform — a platform specific name, which is necessary for
activity implementation. This attribute is necessary because
one activity may have multiple solutions across multiple
platforms, for example, a script which transmits changes
between two repository branches can be implemented in both
Linux and Windows platforms.

SolutionName — a unique solution name to differentiate and
manage it.

NeededTools — tools needed for technical implementation of
the solution.

LocationsOfSolutions — this attribute is intended to store
any information about the existing solutions for a certain
action. There, for example, the script names, location of
special programs, instruction etc. can be stored.

Description — additional description for a particular action
in the context of the project or solution that could provide
additional information to a configuration manager.

Once a PIAM is ready, a configuration manager chooses a
solution to each configuration management activity from
“Solution Database”. If an appropriate solution is missing,
then it should be developed by putting information into a
solution database and only then the solution should be



Information Technology and Management Science

2014 /17

functioning. As soon as all the activity attributes are filled,
thanks to a solution database, a PIAM becomes a PSAM,
which is an extended version of platform-independent action
model. In order to begin process model functioning in the
problem environment, it remains to realize the selected
solutions for each activity. Fig. 2 shows a visual example of
EM, PIAM and PSAM.

&« @
DEV TEST
e
Environment Model Pre_TEST

‘ E -> P transformation rules

\—PIAM model

L

ContinuousintegrationServer ‘

Platform: ToolName: InstallationNotes: | LocationsOfSolution
<name> <name> <notes> s: <locations>
Event: test

ConfigurationltemFlow:

1 Action: PREPARE_BASELINE (empty attributes)

Action: COMPILE_BUILD (empty attributes)
Action: INSTALL_BUILD (empty attributes)

Action: INSTALL_BUILD (empty attributes)

ConfigurationltemFlow:
2

Define solutions for any action from PIAM

Solution Database

\
PSAM - extended variant of PIAM

ContinuousintegrationServer

Platform: ToolName: InstallationNotes: | LocationsOfSolution
Linux Jenkins <some link> s: <path/to/scripts>
‘ Event: test

Action: PREPARE_BASELINE (filled attributes)
Action: COMPILE_BUILD (filled attributes)
Action: INSTALL_BUILD (filled attributes)

ConfigurationltemFlow:
1

ConfigurationltemFlow:

I Action: INSTALL_BUILD (filled attributes)

Fig. 2. Example of configuration management models.

In the example, shown in Fig. 2, an environment model is
implemented with three environments: DEV, TEST and
Pre_TEST. The task is to transfer configuration from a DEV
to TEST environment, and it is the responsibility of the Event
“test”. ConfigurationltemFlow “1” restores a source code in a
version control system that meets a TEST environment,
compiles the restored source code, and installs it into a
Pre TEST environment. If the process has been successful,
the ConfigurationltemFlow “2” is implemented, which installs
into a TEST environment the same installation package, which
comes from the first flow COMPILE BUILD action. Thus,
the Event “test” has met the main goal and has transferred
configuration from a DEV to TEST instance. To start PSAM
functioning in a problem environment, it remains to
implement the selected solution activities

PREPARE BASELINE, and

INSTALL BUILD.

COMPILE BUILD

V. RESULTS, FURTHER STUDIES AND EXPECTED BENEFITS

Based on studies of configuration management solutions
and solution improvement tendency, a new model-driven
approach has been created for implementation of configuration
management. Within the framework of the research, meta-
models for EM and PIAM models for a new approach have
been developed.

Further studies should develop the prototype of proposed
approaches to automate the modeling and transformation
process. The results of experiments should determine the
weaknesses of the current solutions, as well as develop
criteria, which will help to determine whether the solution
meets quality standards.

The main expected benefit of the proposed solution is the
opportunity to see common configuration management
processes and to track compliance with the technical
implementation. Thanks to a PSAM that provides information
on what tools are needed and how they exchange information,
there is an opportunity to automate the process. Thanks to the
model, there is an opportunity to configure tools in
compliance with specific process goals, rather than to correct
certain errors or solve only one of the tasks. This allows
spending resources for tool configuration more efficiently,
preventing not a specific error, but its cause, as well as it
minimizes the risk of the error occurrence in the future.
Another benefit could be the process transparency. If a new
person joins the project, he has a chance to get acquainted
with a configuration management process in a whole and
understand how and for what purposes the tools operate.
Process transparency will allow if necessary making changes
in tool configuration more effectively. The main goal of the
solution is to improve the quality of configuration
management process, its transparency, as well as increase the
efficiency of tool configuration and reduce the maintenance
costs, so that there will be more opportunities to eliminate the
causes of error, but not the error itself.

REFERENCES

[1T R. Aiello, Configuration Management Best Practices: Practical
Methods that Work in the Real World, 1st ed., Addison-Wesley, 2010.

[2] K. Altmanninger, “Models in conflict — towards a semantically
enhanced version control system for models,” Lecture Notes in
Computer Science, LNCS, 2008; vol. 5002. pp. 293-304.
http://dx.doi.org/10.1007/978-3-540-69073-3_31

[3] R. Bamford, J. Deibler, Configuration Management and ISO 9001:
SSQC, 1999.

[4]  A. Berczuk, Software Configuration Management Patterns: Effective
TeamWork, Practical Integration, 1st ed., Addison-Wesley, 2003.

[5] T.Buchmann, A. Dotor, B. Westfechtel, “Model-Driven Development
of Software Configuration Management Systems,” 4th International
Conference on Software and Data Technologies, ICSOFT, 2009,
pp. 309-316.

[6] O.Bushehrian, “Automatic object deployment for software
performance enhancement.” The Institution of Engineering and
Technology, vol. 5, Iss. 4, pp. 375-384, 2011.

[71  R. Calhau, R. Falbo, “A Configuration Management Task Ontology for
Semantic Integration,” Proceedings of the 27th Annual ACM

37



Information Technology and Management Science

2014 /17

Symposium on Applied Computing, ACM, New York, NY, USA, 2012,
pp. 348-353. http://dx.doi.org/10.1145/2245276.2245344

[8] H. Giese, A. Seibel, T. Vogel, A Model-Driven Configuration
Management System for Advanced IT Service Management, 2009.
[Online]. Available:
http://www hpi.unipotsdam.de/giese/gforge/publications/pdf/GSV-
MRTO09 paper 7.pdf [Accessed: Sept. 15, 2014].

[91 O. Nikiforova, N. Pavlova, K. Gusarovs, O. Gorbiks, J. Vorotilovs, A.
Zaharovs, D. Umanovskis, J. Sejans, “Development of the Tool for
Transformation of The Two-Hemisphere Model to The UML Class
Diagram: Tehnical Solutions and Lessons Learned,” Proceedings of the
5th International Scientific Conference , Applied Information and
Communication Tehnologies”, 2012, Jelgava, Latvia, pp. 11-19.

[10] Oject-Oriented Software Engineering Using UML, Patters and JAVA
“Software Configuration Management”, 2002. [Online]. Available:
http://www .bilkent.edu.tr/~bakporay/cs_413/Bruegge .28 Configurati
onManagement_ch12lectl.ppt [Accessed: Sept. 28, 2014].

[11] J. Osis, E. Asnina, Model-Driven Domain Analysis and Software
Development: Architectures and Functions: 1GI Global, Hershey —
New York, 2011, 514 p. http://dx.doi.org/10.4018/978-1-61692-874-2

[12] W. Pindhofer, “Model Driven Configuration Management,” Master

http://experience.openquality.ru/software-configuration-management
[Accessed: Aug. 10, 2014].

Arturs Bartusevics currently is a Doctoral Student at Riga Technical
University, the Faculty of Computer Science and Information Technology, the
Institute of Applied Computer Systems. He obtained BSc (2008) and MSc
(2011) degrees in Computer Science and Information Technology from Riga
Technical University. His research areas are software configuration
management, release building and management process and its optimization.
He works at Ltd. Tieto Latvia as a Software Configuration Manager.

E-mail: arturik16@inbox.1v.

Leonids Novickis, a Head of the Division of Applied Systems Software. He
obtained Dr. sc. ing. degree in 1980 and Dr. habil. sc. ing. degree in 1990
from the Latvian Academy of Sciences. He is the author of 180 publications.
Since 1994 he has been regularly involved in different EU-funded projects:
AMCAI (INCO COPERNICUS, 1995-1997) — WP leader; DAMAC-HP
(INCO2, 1998-2000), BALTPORTS-IT (FP5, 2001-2003), eLOGMAR-M
(FP6, 2004-2006) — scientific coordinator; IST4Balt (FP6, 2004-2007),
UNITE (FP6, 2006-2008) and BONITA (INTERREG, 2008-2012) — RTU
coordinator; LOGIS, LOGIS-Mobile and SocSimNet (Leonardo da Vinci) —

partner. He was an independent expert of IST and Research for SMEs in FP6
and FP7. He is a corresponding member of the Latvian Academy of Sciences
and an elected expert of the Latvian Council of Science. His research fields
include Web-based applied software system development, business process
modeling, e-learning and e-logistics.

E-mail: Inovickis@gmail.com.

thesis, Wien University, Wien, 2009.

[13] P. N. Sindhuja, G. Surajit, “Software Deployment: Concepts and
Technologies,” ICFAI Journal of Systems Management, 2008.

[14] J. Wanga, Lin Yung-I, “A fuzzy multicriteria group decision making
approach to select configuration items for software development,”
MathematicsWEB, Fuzzy Sets and Systems, 2002, pp. 343-363.

[15] Y. Udovichenko, Upravlenije projektami ili kessonnaja boleznj
projektov, 2011. [Online]. Available:

Artiirs Bartusevics, Leonids Novickis. Modelu vadamais programmatiiras konfiguracijas parvaldibas process

Programmatiiras konfiguracijas parvaldiba ir viena no svarigakajam programmatiiras izstrades disciplinam, kas kontrol& produkta evoliciju un nodrosina to, lai
produkta gala versija biitu tikai kvalitativas un notestgtas komponentes. Lai to nodrosinatu, konfiguracijas parvaldiba veic vairakus uzdevumus: konfiguracijas
vienumu identifikaciju, versiju kontroli, biivéjumu un instalaciju parvaldibu, konfiguracijas vienumu uzskaiti. So uzdevumu risinaganai tiek izmantoti konkréti
riki, kas implement€ uzdevumus tehniski. Biezi ir situacijas, kad konkréts riks ir implementgts, lai risinatu konkr&tu mazu problému vai uzdevumu, tacu pilniga
konfiguracijas parvaldibas procesa parskata nav. Tada veida implement&tu risindjumu ir loti griiti uzturét, tas atri apaug ar labojumiem un pielagojumiem, un to
vairs nav iesp&jams pielietot citd projekta bez papildu modifikacijam. Lidz ar to sanak patérét neracionali daudz lidzeklu konfiguracijas parvaldibas procesu
atbalstam. Raksts piedava jaunu mode]vadamu pieeju konfiguracijas parvaldibas ievieSanai. Jaunas pieejas ietvaros tiek piedavats izveidot abstraktu vides modeli
un vélak to transformét cita veida modelos, pakapeniski ievieSot risinajumu tehniskas detalas. Jauna metodologija lauj ieviest konfiguracijas parvaldibas
risindjumus atbilsto§i planam, atkartoti izmantojot jau eso$os risinajumus. Atskirtba no citam lidzigam metodologijam, 1 pieeja neuzspiez kadu noteiktu riku.
Tas lauj reorganizét esoSos risinajumus, palielinot iesp&u izmantot tos atkartoti. Raksta sakuma ir sniegta literatliras analize, kuras ietvaros eso$os
mode]vadamos risinajumus parada konfiguracijas parvaldiba. Tiek analizéti esoSo risindjumu trikumi. Turpinajuma jauna pieeja tiek aprakstita kopuma, dotas
modelu definicijas. Raksta nobeiguma tiek dots modelu vizualais piemérs, aprakstiti turpmakie p&tjjumi un jauna risinajuma sagaidamie ieguvumi.

Aprtyp BbapryceBuy, Jleonna HoBuukuii. Ilpouece ynpapjienusi KOHPpUIypanusiMm nporpaMMHoOro ogecrnieyeHusi, OCHOBAHHbI Ha MOJeJIsIX

VipasiieHre KOHQUTYpalysAMH IPOrPaMMHBIX IPOJYKTOB SIBJISICTCS OJHON M3 CaMbIX BaXKHBIX JMCIHUILIMH, KOTOPas KOHTPOIHPYET BOJIONUIO IPOrPaMMHBIX
MPOAYKTOB M 00ECIIEYNBAET BXOXKICHHE TONBKO KAYECTBEHHBIX U MIPOTECTUPOBAHHBIX COCTABIIAIONINX B KOHEUHYIO BEPCHIO IIPOrPaMMHOr0 MpoAyKTa. [l Toro,
9TOOBI 00ECIIeUUTh JaHHOE YCIOBHE, HEOOXOANMO BBINONHHUTE PsJ 3a/a4: HACHTH(OHUKAINSI KOHQUTYPaIHOHHBIX 3JIEMEHTOB, KOHTPOIb BEPCHSIMU, YIIPABICHHE
cOOpKaMH M MHCTALMSAMU NMPOAYKTA, YIET KOH(MUIYPaMOHHBIX 3JIeMEHTOB. /I pemieHust MOZOoOHBIX 3aJad HCHOJB3YeTcs Psi MPOrpaMM M PasiIMYHBIX
CaMOJIeNIbHBIX IPHIOKEHUH. BO3HUKAIOT CUTyanuH, KOTAa TeXHHYECKHe PeIleHHs IMOKPHIBAIOT JIMIIb y3KUH Kpyr 3amad U mpoOjeM, B TO BpeMs Kak MOJHas
KapTHHa IIpoliecca YNpaBIEHHS HEW3BECTHA. Takue pElIeHUs SBIIOTCS OYeHb CHeNU(UUECKHMMH A1 KOHKPETHBIX HPOEKTOB, PEIICHHS OYeHb TSDKEIO
MIOAICP)KUBATh, TaK KaK OHM OOpACTAlOT UCHPABICHUSIMH M OOHOBIECHMSAMH. [1o0OHBIE peleHns] Hellb3sl MCIONB30BaTh IIOBTOPHO B APYIHX MPOEKTax. DTo
IPUBOJUT K TOMY, YTO Ha yIpaBieHHe KOH(HUIYpalUsMH TPATHTCS HEPAlMOHATbHO MHOTO cpeicTB. CTaTbs IpeaiaracT HOBBIM MOAXOA IV BHEIPEHHS
mporecca ympaBlIeHHs KOH(UTYparusAMH, OCHOBAaHHOTO Ha MojensiX. CHawama Ipe/ularaercst COCTaBUTh aOCTPaKTHYIO MOJENb CpEdbl, MOCTEIICHHO
TpaHchopMUpys e€ B IPyrue MOJEIH, IOATAITHO YTOYHSS TEXHUISCKUe AeTalH peann3anuy. HoBbli moaxox He TpeOyeT BHEAPEHNS KOHKPETHBIX IIPOTrpaMM WIIH
TEXHOJIOTHI U MO3BOJIAET PEOPTraHU30BaTh UMEIOIIHECs PeLIeHNs A1 yBeIMYeHHUs] HX MOBTOPHOTO HCIONIB30BaHMA. B Haudane cTaTbu aHANU3HPYIOTCS OpYTUe
MOAXOJBI, OCHOBAHHBIC HAa MOJENAX, MX HemocTaTkd. [lo3ke OmMCHIBaeTCs HOBBIA IOAXOA B IIEJNIOM, JAlOTCS ONpeJeleHHs MojelsM. B koHme paGoTs
MIPUBOAMTCS BU3YallbHbIN IIPUMEP MOJIETIEH, 0XKMIaeMble IPEUMYIIECTBA, & TAKXKE JIETAt0TCS BBIBObIL.

38



