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Abstract – This article presents an overview of artificial neural 
network (ANN) applications in forecasting and possible 
forecasting accuracy improvements. Artificial neural networks 
are computational models and universal approximators, which 
can be applied to the time series forecasting with a high accuracy. 
A great rise in research activities was observed in using artificial 
neural networks for forecasting. This paper examines multi-layer 
perceptrons (MLPs) – back-propagation neural network (BPNN), 
Elman recurrent neural network (ERNN), grey relational 
artificial neural network (GRANN) and hybrid systems – models 
that fuse artificial neural network with wavelets and auto-
regressive integrated moving average (ARIMA). 
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I. INTRODUCTION 

Artificial neural networks (ANNs) are a form of artificial 
intelligence, which attempts to mimic the function of real 
neurons found in the human brain [2]. ANNs are one of the 
most accurate and widely used forecasting models that are 
used in forecasting social, economic, business, engineering, 
foreign exchange, stock problems and others. Structure of 
artificial neural networks makes them valuable for a 
forecasting task with good accuracy.  

As opposed to the traditional model-based empirical and 
statistical methods such as regression and Box-Jenkins 
approaches, which need prior knowledge about the nature of 
the relationships between the data, artificial neural networks 
are self-adaptive methods that learn from data, and only few a 
priori assumptions about data are needed [1].  

Neural networks learn from examples and can find 
functional relationships among the data even if relationships 
are unknown or the physical meaning is the baffling [2]. 
Therefore, ANNs are well suited for problems, whose 
solutions require knowledge that is difficult to specify but for 
which there are enough data or observations.  

Artificial neural networks can generalize [8]. After learning 
from the input data (a sample or pattern), ANNs can often 
correctly process the early unseen sample even if the sample 
data are noisy. Neural networks are less sensitive to error term 
assumptions and they can tolerate noise, chaotic components 
better than most other methods. Artificial neural networks are 
also universal function approximators. It was proved that a 
neural network can approximate any continuous function with 
any accuracy [1].  

 
 
 
 

II. TYPICAL STRUCTURE OF ANN 

ANN structure includes input data and artificial neurons 
that are known as “processing elements”, “nodes” or “units” 
[10]. The multilayer perceptron includes an input layer, an 
output layer and one or more intermediate layers called hidden 
layers. The size and nature of the data set affect the number of 
hidden layers and neurons within each layer. ANNs with one 
or two hidden layers perform better than neural networks with 
the large number of hidden layers. 

A. The Propagation of Information in MLPs 

The propagation of information in MLPs starts when the 
input data are taken into the input layer. The inputs are 
weighted and passed to each node in the next layer. Each 
processing element in a specific layer is fully or partially 
connected to many other processing elements using weighted 
connections [2]. 

For a time series forecasting problem, a training pattern 
consists of history data with a fixed number of observations. If 
we have N observations y1, y2, …, yN in the input data set, then 
using an ANN with n input nodes, we have N-n training 
patterns than can be used for short-term forecasting – one 
value ahead. The first training pattern will contain y1, y2, …, yn 
as inputs and yn+1 as the output. The second training pattern 
will contain y2, y3, …, yn+1 as inputs and yn+2 as the output. The 
last training pattern will contain yN-n, yN-n+1, …, yN-1 inputs and 
yN as the output. Then pattern yN-n+1, yN-n+2, …, yN will be used to 
get forecasting value yN+1. The ANN performs the following 
unknown function mapping  
 

 ptttt yyyfy   ,...,, 11 ,      (1) 

 
where yt is the observation at time t [1].  

The scalar weights along with the network architecture store 
the knowledge of a trained network and determine the strength 
of the connections between interconnected neurons [7]. If a 
weight value is zero, then there is no connection between two 
neurons and if a weight value is negative then a relationship 
between two neurons is prohibitive. An individual processing 
element receives weighted inputs from previous layers, which 
are summed in each node using a combination function, and a 
bias neuron or threshold is added or subtracted. A bias neuron 
is connected to every hidden or output unit and a bias neuron 
value is one.  

Neural networks are similar to linear and non-linear least 
squares regression, and the bias neuron serves a similar 
purpose as the intercept in regression models. The bias unit is 
used to scale the input to a useful range [0, 1] or [−1, 1] to 
improve the convergence properties of the neural network. 
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The result of this combined summation is passed through a 
transfer function to produce the nodal output of the processing 
element (Fig. 1), which is weighted and passed to the 
processing element in the next layer [2]. The combination 
function and transfer function together constitute the 
activation function. In the majority of cases, input layer 
neurons do not have an activation function, as their role is to 
transfer the inputs to the hidden layer. The most widely used 
activation function for the output layer is the linear function as 
a non-linear activation function may introduce distortion to the 
predicated output. The sigmoid (logistic), exponential 
(hyperbolic) tangent, quadratic or linear functions are often 
used as the hidden layer transfer function. The relationship 
between the output – predicted value (yt) – and the inputs – 
past observations of the time series (yt-1, …, yt-p) – is given by 
[5]. 
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where wj are output layer weights, wi,j are input layer weights, 
f is a transfer function, q is the number of hidden nodes, p is 
the number of input nodes, ɛt is a random error at time t. 
 

 
Fig. 1. The propagation of information. 

The network corrects its weights and uses a learning rule 
until it can find a set of weights that will produce the smallest 
possible error between an observed value and a predicted 
value at time t. That process is known as “learning” or 
“training”. For this reason, the network training is actually an 
unconstrained optimization (nonlinear minimization) problem. 

The neural network (2) can approximate any continuous 
function when the number of hidden nodes q is sufficiently 
large [5]. In practice, if a network structure has a small 
number of hidden nodes, then it works well in “out-of-sample” 
forecasting on data that were not used in training. There is an 
overfitting effect that can be found in the neural network 

modeling process. An overfitted model has a good accuracy 
on training data, but poor accuracy on “out of the sample” data 
[9].  

To improve the accuracy of the neural network, each data 
point in the input neurons needs to be normalized – rescaled 
within the range of [−1, 1] or [0, 1] and standardized to scale 
data and transformed to make the time series stationary. 
Transformation can be implemented as taking logarithmic 
returns of the time series, differencing the time series, etc. 

B. Classes of Neural Networks 

ANN learning process can be supervised and unsupervised. 
In supervised learning (e. g., multi-layer feed-forward neural 
network), the network is presented with historical data, where 
a training pattern contains independent variables and the 
corresponding (desired) outputs that are dependent variables in 
training data. The network then processes the inputs, the nodal 
output of the network is compared with the observed value of 
the time series, and an error is calculated. This error is used to 
correct the connection weights between the model inputs and 
outputs to reduce the error between the observed values of the 
time series and outputs predicted by the ANN. The input data 
used for learning is called the “training set”. Supervised 
learning is suitable for forecasting and classification tasks. In 
unsupervised learning (e. g., Kohonen network), there is no 
dependent variable specified in input (training) data. The 
network corrects the connection weights according to the input 
values. The idea of training in unsupervised networks is to 
cluster the input data into classes of similar features or 
clusters, where similar input data should generate the same 
output. This can be referred to as self-organization, and it is 
suitable for clusterization tasks. 

Based on connections between processing elements, ANNs 
structure can be regarded as feed-forward (e. g., back-
propagation) and feedback (e. g., recurrent) networks. Feed-
forward network (FNN) propagates information in the forward 
direction only, while feedback networks propagate 
information in both the forward and backward directions [2]. 

Back-propagation neural networks (BPNNs) are a class of 
feed-forward neural networks with supervised learning rules. 
The back-propagation network is the most popular and robust 
multi-layer network that is used in the majority of all 
forecasting applications. In the learning process, back-
propagation neural networks use the gradient-decent search 
method to correct the connection weights and reduce an error. 
The main problem of a standard back-propagation algorithm is 
its slow convergence, which is a typical problem for simple 
gradient descent methods [1].  

Other neural networks that are also used in time series 
forecasting include recurrent networks, probabilistic networks 
and fuzzy neural networks. Although feed-forward neural 
networks are used in many forecasting applications, another 
type of neural networks – Elman recurrent neural network 
(ERNN) – is also used in forecasting applications with good 
accuracy. According to the general principle of the recurrent 
networks, there is a feedback connection from the outputs of 
some neurons in the hidden layer to neurons in the context 
layer that stores the delayed hidden layer outputs. The most 
important advantage of ERNN is a robust feature extraction 
ability, when the context layer stores useful information about 
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data points in past. Since ERNN contains the context layer, it 
is possible to improve forecasting accuracy by using ERNN 
instead of FNN [3]. 

III.  HYBRID MODEL: ANN AND WAVELETS 

The time series of the real world is often complex in nature 
and any single forecasting model cannot learn on different 
patterns equally well. Many studies in time series forecasting 
have found that forecasting improves in combined models and 
the integrated forecasting techniques outperform the 
individual forecasts. In hybrid models, the aim is to reduce the 
risk that the chosen model will be inappropriate, and 
combination will help obtain results that are more accurate [5]. 
Hybrid models can be homogeneous, such as using differently 
configured neural networks, or heterogeneous, such as with 
both linear and nonlinear models. Hybrid forecasting has been 
implemented using a nonlinear model, using ANN with 
genetic algorithm (GA) or fuzzy logic (FL), or combining 
linear model and the nonlinear model, using auto-regressive 
integrated moving average (ARIMA) model with ANN, since 
in reality time series data typically contain linear and 
nonlinear patterns [6]. 

In study [4], the hybrid wavelet and ANN (WANN) model 
were obtained by combining two methods, discrete wavelet 
transform and ANN model. ANN model used in this study was 
the multi-layer feed-forward network. 

A. Wavelets 

The wavelet transform is a mathematical tool that is used as 
a time-frequency representation of an analyzed signal. There 
are some important differences between wavelets and Fourier 
analysis that is also used as a time-frequency representation of 
signals. The Fourier coefficients contain only globally 
averaged information and the Fourier transform does not give 
local information. Small frequency changes in the Fourier 
transform will produce changes everywhere in time domain. 
Wavelets are local in both time and frequency domain. 
Wavelet transformations provide useful decomposition of the 
original time series and can get useful information on every 
decomposition level. Wavelet transforms can be very effective 
with nonstationary time series data [12]. Many classes of 
functions can be represented by wavelength in way that is 
more compact. For a discrete time series x(t) the discrete 
wavelet transform (DWT) is given by 

   txntW
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where Wmn is wavelet coefficient for the discrete wavelet, m is 
integer, which controls the scale, t is time, N is the number of 
time series data observations, Ψ is a transforming function 
(mother wavelet), n is integer, which controls the time. 
Therefore, a time series of length N is broken into N 
components with zero redundancy. 

 
 
 
 

The inverse DWT is given by  
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where, T is the time subseries mean value, M is the number of  
decomposition level [4].  

B. WANN Model 

In study [4], the Daubechies wavelet, one of the most widely 
used wavelet families, was chosen as the wavelet function to 
decompose the original time series into subtime series 
components, which were passed to ANN to improve the model 
accuracy.  

To choose the number of decomposition levels, the 
following formula was used 

  NL logint ,            (5) 

where L is the optimal (maximum) number of decomposition 
levels. In simple format (4) is given by  

     tDtAtx
M
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

 ,     (6) 

where AM(M) is approximation subseries or residual term at 
levels M and Dm(t) (m = 1, 2, …, M) is detailed subseries 
which can detect small features of interpretational value in the 
data. The optimal number of decomposition levels for original 
time series data in this study was three. Original time series 
was decomposed into three level components (D1, D2 and D3) 
and approximation component (A3). Each of decomposition 
level component series has a determined role in the original 
time series and has different effects on the original time series. 
In this study, the effectiveness of wavelet components was 
determined using the coefficient of determination (R2) 
between each decomposition level component subtime series 
and original data. The wavelet components D2 and D3 showed 
significantly higher R2 compared to the D1 and according to 
the R2 analyses, the effective wavelet components were 
selected as the dominant wavelet components. The 
combination DW was calculated by 

323 DDADW  .      (7) 

Fig. 2 shows the structure of the WANN model. 
The hybrid model showed a great improvement in time 

series modeling and produced better forecasts than ANN 
model alone, as well as GARCH and ARIMA models alone. 
The study concluded that the forecasting abilities of WANN 
model were improved when the wavelet transformation 
technique was adopted for data pre-processing. 
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Fig. 2. The structure of the WANN model. 

The decomposed periodic components obtained from DWT 
technique were found to be most effective in giving accurate 
forecast when they were used as inputs in ANN model. The 
accurate forecasting results showed that WANN model 
provides a good and potentially very useful new method for 
time series forecasting [4]. 

IV. HYBRID MODEL: ANN AND ARIMA 

ANN can model both linear and nonlinear structures in time 
series; however, they cannot capture both structures equally 
well. More hybrid forecasting models have been proposed in 
the last years, using auto-regressive integrated moving average 
and artificial neural networks. These hybrid models showed 
good forecasting accuracy [3]. 

A. Auto-regressive Integrated Moving Average 

One of the most widely used linear time series models is the 
autoregressive integrated moving average (ARIMA) model. In 
the ARIMA (p, d, q) model, the future value of a time series is 
assumed to be a linear function of several past observations 
and random errors. In the ARIMA (p, d, q) model order p is 
non-negative integer that refers to the order of the 
autoregressive function, d is non-negative integer - order of 
differencing, order q is non-negative integer, which refers to 
the order of moving average. An auto-regressive integrated 
moving average process has three different parts – an 
autoregressive (AR) function that describes how each time 
series value is a function of the previous p observations, 
moving average (MA) function describes how each time series 
value is a function of previous q errors, and an integrated (I) 
part that describes how to make the data series stationary by 
differencing d times. The ARIMA model cannot capture 
nonlinear patterns [11]. 

Before the ARIMA model can be used for forecasting, 
check for stationarity is carried out. A stationary time series 
does not depend on time and, therefore, is characterized by 

statistical characteristics such as the mean, variance and 
autocorrelation structure. When in the observed time series 
there are trend and heteroscedasticity, then a time series is not 
stationary. Differencing and power transformation are then 
applied to the data to remove the trend and to stabilize the 
variance before an ARIMA model can be used. 

If a time series is generated from an ARIMA process, it 
should have some theoretical autocorrelation properties. By 
comparing the empirical autocorrelation patterns with the 
theoretical patterns, it is often possible to identify one or 
several potential ARIMA models for the given time series. 
The autocorrelation function (ACF) and the partial 
autocorrelation function (PACF) of the sample data is often 
used as the basic tools to identify the order (p, d, q values) of 
the ARIMA model [5]. 

B. ANN and ARIMA 

In study [5] a time series was considered to be a nonlinear 
function of several past observations and random errors 

    ptttptttt eeezzzfy  ,...,,,,...,, 2121 ,  (8) 

where f is a nonlinear function determined by the neural 
network, et is the residual at time t. Past observation zt is given 
by  

    t
d

t yBz 1 ,            (9) 

where B is the backward shift (lag) operator, yt is the original 
time series value at time t, µ is an ARIMA process generated 
time series mean value. The residuals are given by 

ttt zye  .          (10) 

Next, a neural network was used to model the nonlinear and 
linear relationships existing in residuals and original data 
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where zt is a predicted value of the time series by a neural 
network, f is a transfer function, wj are output layer weights, 
wi,j are input layer weights, q is the number of hidden nodes, p 
is the number of input nodes,  and ɛt is a random error at time 
t. In such hybrids, while the neural network model deals with 
nonlinearity, the auto-regressive integrated moving average 
model deals with the non-stationary linear component.  

Similar approach was used in study [3]. Here seasonal 
ARIMA (SARIMA) models were used to analyze the linear 

part of the time series. Linear part of time series, tL̂ , was 

obtained from the SARIMA model. ANN model used in this 
study was an Elman recurrent neural network. The ERNN 
model was developed to fit the residuals obtained from the 
SARIMA model by 
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ttt Lye ˆ .          (12) 

With p inputs the ERNN model can be written 

  tptttt eeefe   ,...,, 21 ,     (13) 

where f is a nonlinear function determined by the ERNN. The 
estimation of et in (13) will give the forecasting of nonlinear 

component of time series, tN̂ . Therefore, forecasting values 

of the time series were obtained by adding the estimates of 
linear and nonlinear components of the time series 

ttt NLy ˆˆˆ  .         (14) 

It was observed that the following model gave a better 
result than other methods, such as Zhang’s hybrid model of 
feed-forward neural network and ARIMA and Kajitani self-
exciting threshold auto-regressive (SETAR) model. 

V. HYBRID MODEL: GRANN AND ARIMA 

In study [6] GRANN_ARIMA hybrid model (Fig. 3) was 
used. The grey relational analysis (GRA) was integrated with 
ANN to remove the redundancy inputs. 

 
Fig. 3. GRANN_ARIMA model. 

GRANN_ARIMA model integrates a nonlinear grey 
relational artificial neural network (GRANN) and a linear 
ARIMA model, combining the multivariate time series data 
and the grey relational analysis to select the appropriate 
inputs. 

A. Grey Relational Analysis 

Grey relational analysis is an analysis method that can be 
used to evaluate the degree of correlation for different data 
sequences. The degree of correlation between a data sequence 
(x) and the reference sequence (y) is expressed by a scalar 
value in interval [0 1]. If the degree of correlation is near 1, it 

indicates the high correlation between x and y. There are three 
main steps in the grey relational analysis. The first step is data 
pre-processing. Data pre-processing is normally required due 
to the fact that the range and unit of one data sequence may 
differ from others. Therefore, data must be normalized, scaled 
and polarized initially into a comparable sequence before 
proceeding to other steps. In this study  the following equation 
for data pre-processing was used: 
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where i = 1, . . .m; k = 1, . . . n, m is the number of 
experimental data items, n is the number of parameters, xi 

0(k) 
is the original sequences, xi

*(k) is the sequences after data pre-
processing, min xi 

0(k) and max xi 
0(k) are the smallest and the 

largest value of xi 
0(k), respectively. The range of data is 

corrected to be in range [0 1].  
The second step is to calculate the grey relational 

coefficient by using 
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where ξi(k) is a grey relational coefficient at any data point (k), 
ς is known as an identification coefficient within interval [0 1], 
and normally ς = 0.5 is used. Δ0,i  are deviation sequences of 
the reference sequence and comparability sequence 

   kxkx jj
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0,0  ,        (17) 

where x0
*(k) is the reference sequence and xi

*(k) is the 
comparative sequence. Δmin in (16) is given by 
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and Δmax in (16) is given  by 
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The grey relational grade is the average value of the grey 
relational coefficients and is defined as 
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where n is the number of the reference sequence, x0*(k). The 
grey relational grade γi represents the level of correlation 
between the reference sequence and the comparability 
sequence. 

B. GRANN_ARIMA model 

In the GRANN_ARIMA model, ARIMA is used as a linear 
model, Lt and GRANN is used as a nonlinear model, Nt 
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ttt NLy  .            (21) 

Here yt is a value of the original time series. As tN̂  is the 

forecast value of the GRANN model at time t, then the 
residuals et are obtained by 

ttt Nye ˆ  .         (22) 

The residuals now represent the linear part of the data, and 
ARIMA can be used to model the residual. Residual modeling 
by ARIMA can be represented similarly as in (13), but here f 
is a linear function modeled by the ARIMA model. Therefore, 
the hybridized forecast model can be written as in (14), but 

here linear part of model tL̂  is obtained from (13). Unlike 

model in (8), a nonlinear model is implemented first rather 
than followed by the linear model. 

To validate the performance of the proposed model, Kuala 
Lumpur Stock Exchange (KLSE) daily close price was used as 
a time series data. Grey relational analysis was used as a 
feature selection tool, and four factors were found as the most 
influential factors relating to KLSE close price: syarian index, 
trading/service index, composite index and industrial index. A 
three-layer feed-forward neural network with a single output 
unit, nine hidden units and four input units with the learning 
rate 0.5 and momentum 0.9 was used to model nonlinear part 
of forecast. ARIMA (0,1,3) model was used to model the 
residuals of close price – linear part of forecast. The network 
structure and learning parameters were determined by trial and 
error. The forecasting accuracy was compared with several 
models, and these include individual models (ARIMA, 
multiple regression, grey relational artificial neural network), 
several hybrid models (MARMA, MR ANN, ARIMA ANN), 
and the artificial neural network trained using the Levenberg 
Marquardt algorithm. The experiments showed that the 
GRANN_ARIMA model outperformed other models with 
MAPE error of 0.16 % and 99.84 % forecasting accuracy. The 
empirical results obtained showed that the GRANN_ARIMA 
model could be a good alternative for time series forecasting 
due to its promising forecasting accuracy. 

VI. CONCLUSION 

In this paper, an overview of artificial neural network 
applications in forecasting and possible forecasting accuracy 
improvements was presented. Artificial neural networks are 
computational models and universal approximators that can be 
applied to the time series forecasting with a high accuracy. 
Back-propagation neural networks are a class of feed-forward 
neural networks and are most popular and robust multi-layer 
networks used in the majority of all forecasting applications. 
Although feed-forward neural networks are used in many 
forecasting applications of ANNs, other type of neural 
networks – Elman recurrent neural network (ERNN) – is also 
used in forecasting applications with good accuracy. In the 
case of comparison with other types of multi-layer network, 
the most important advantage of ERNN is robust feature 
extraction ability. Since ERNN contains the context layer, it is 
possible to improve forecasting accuracy by using ERNN 

instead of FNN. The time series of the real world is often 
complex in nature and any single forecasting model cannot 
learn on different patterns equally well. Forecasting improves 
in combined models and the integrated forecasting techniques 
outperform the individual forecasts. Hybrid models can be 
homogeneous, such as using differently configured neural 
networks, or heterogeneous, such as with both linear and 
nonlinear models, since in reality time series data typically 
contain both linear and nonlinear patterns. Hybrid models 
WANN, ARIMA ANN and GRANN_ARIMA showed good 
forecasting accuracy and outperformed other forecasting 
models. 
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Artūrs Stepčenko, Arkādijs Borisovs. Prognozēšanas metodes, kas balstītas uz mākslīgajiem neironu tīkliem 
Mākslīgie neironu tīkli (MNT) ir elastīga skaitļošanas struktūra un universāls aproksimators, kurus var pielietot plaša spektra laika rindu (ekonomikā, biznesā, 
inženierzinātnēs, valūtu apmaiņā un citās sfērās) prognozēšanai ar augstu precizitāti. Atšķirībā no tradicionālām empīriskām un statistiskām metodēm, kā, 
piemēram, regresijas analīzes vai Boksa-Dženkinsa pieejām, kur ir nepieciešamas plašas zināšanas par problēmas datu īpašībām, mākslīgie neironu tīkli ir 
pašmācības metode, kas prasa zināt tikai nelielu informācijas daudzumu par konkrēto problēmu. MNT spēj vispārināt − tie mācās no paraugiem un spēj atrast 
sakarības starp datiem pat tad, ja šīs sakarības nav zināmas, vai to fiziskā nozīme ir grūti izprotama, kā arī ja ieejas dati satur troksni un haotiskas komponentes.  
Tāpat MNT var aproksimēt jebkuru nepārtrauktu funkciju ar jebkādu vēlamo precizitāti. Visplašāk laika rindu prognozēšanai tiek lietoti daudzslāņu kļūdu 
atgriezeniskās izplatīšanas neironu tīkli, kas pieder vienvirziena tīklu klasei, taču ir arī cits neironu tīklu veids – Elmana rekurentais neironu tīkls. Tas ir uzrādījis 
labus prognozēšanas rezultātus. Daudzslāņu mākslīgais neironu tīkls sastāv no ieejas slāņa, viena vai vairākiem slēptiem slāņiem un izejas slāņa. Uz treniņa 
datiem apmācīto modeli ar noteiktiem svariem var pielietot jau nezināmas laika rindas vērtības prognozēšanai testa datos. Tā kā reālās problēmas ir sarežģītas 
pēc dabas, tad neviens atsevišķs prognozēšanas modelis nespēj mācīties no dažādiem datu paraugiem vienādi labi. Prognozēšanas precizitāte uzlabojas, ja modeļi 
tiek kombinēti. Prognozēšanas hibrīdmodeļu mērķis ir samazināt risku, kas var rasties, izmantojot nepiemērotu modeli, un paaugstināt prognozēšanas precizitāti. 
Hibrīdmodeļi var būt homogēni, piemēram, apvienojot dažādu konfigurāciju neironu tīklus, vai heterogēni, apvienojot lineāru un nelineāru modeli, tātad  reālas 
laika rindas parasti satur gan lineāras, gan nelineāras komponentes. Labu prognozēšanas precizitāti ir sasnieguši modeļi, kas apvieno veivletu  analīzi 
(dekompozīciju) ar MNT, un modeļi, kas apvieno autoregresijas integrēto mainīgo vidējo (ARIMV) ar MNT. Veivletu dekompozīcija tiek izmantota, lai iegūtu 
laika rindas laika-frekvenču reprezentāciju. Oriģināla laika rinda ar veivletu dekompozīcijas palīdzību var tikt sadalīta vairākās laika apakšrindu komponentēs, un 
jauna laika rinda, kas sastāv no šīm komponentēm, tiek nosūtīta MNT prognozēšanai. Kā citu hibrīdu veidu var izmantot MNT ar ARIMV. Tā kā ARIMV ir 
paredzēts lineāru procesu prognozēšanai, tad to var izmantot lineāru prognozes komponenšu iegūšanai, bet MNT var izmantot nelineāro prognozes komponenšu 
iegūšanai, un vēlāk šīs komponentes tiek saskaitītas un dod galīgo prognozi.  
 
Артур Степченко, Аркадий Борисов. Методы прогнозирования, основанные на искусственных нейронных сетях 
Искусственные нейронные сети (ИНС) являются гибкой вычислительной структурой и универсальным аппроксиматором, они могут быть 
использованы в прогнозировании временных рядов широкого спектра (в экономике, бизнесе, инженерной науке, обмене валют и других сферах) с 
высокой точностью. В отличие от традиционных эмпирических и статистических методов, как например, регрессионного анализа или подходов 
Бокса-Дженкинса, где необходимы широкие знания о свойствах данных проблемы, ИНС являются методом самообучения, которым необходим только 
небольшой объём данных о проблеме. ИНС способны к обобщению – они обучаются по образцам, и могут найти взаимосвязь между данными, даже 
если эта взаимосвязь неизвестна или её физический смысл трудно понять, или даже если входные данные содержат шум и хаотические компоненты. 
ИНС могут аппроксимировать любую непрерывную функцию с любой желаемой точностью. Самый распространённый вид ИНС для 
прогнозирования временных рядов это многослойная сеть обратного распространения ошибки, которая принадлежит к классу сетей прямого 
распространения, но и другой вид нейронных сетей - рекуррентная сеть Элмана - показала хорошие результаты прогнозирования. Модель, обученную 
на тренировочных данных с определёнными весами, можно использовать для прогнозирования неизвестной величины временного ряда в тестовых 
данных. Так как реальные проблемы по природе являются сложными, то ни одна отдельная модель не может обучаться на разных выборках данных 
одинаково хорошо. Точность прогнозирования увеличивается, если модели комбинируются. Целью гибридных моделей прогнозирования является 
уменьшение риска, который может возникнуть при выборе неправильной модели, и повышение точности прогнозирования. Гибридные модели могут 
быть однородные, например, объединяя ИНС разных конфигураций, или неоднородные, объединяя линейную и нелинейную модель, так как реальные 
временные ряды содержат и линейную и нелинейную компоненту. Хорошей точности прогнозирования достигли модели, которые объединяют 
вейвлет-анализ (декомпозицию) с ИНС, и модели, которые объединяют интегрированную модель авторегрессии скользящего среднего (ИМАРСС) с 
ИНС. Вейвлет-декомпозиция используется, чтобы получить частотно-временное представление временного ряда. Оригинальный временной ряд с 
помощью вейвлет-декомпозиции может быть разложен на несколько компонент, и новый временной ряд, который состоит из этих компонент, 
передаётся в ИНС для прогнозирования. Другим видом гибрида может быть ИНС вместе с ИМАРСС. Так как ИМАРСС предназначен для 
прогнозирования линейных процессов, то с его помощью можно получить линейную компоненту прогноза, а ИНС может использоваться для 
прогнозирования нелинейной компоненты прогноза, потом эти компоненты складываются и дают окончательный результат. 
 

 


