VERSITA

Information Technology and Management Science

doi: 10.2478/itms-2013-0021
2013/16

Regression-based Daugava River Flood Forecasting
and Monitoring

Vitaly Bolshakov, Riga Technical University

Abstract — The paper discusses the application of linear and
symbolic regression to forecast and monitor river floods. Main
tasks of the research are to find an analytical model of river flow
and to forecast it. The challenges are a small set of flow
measurements and a small number of input factors. Genetic
programming is used in the task of symbolic regression. To train
the model, historical data of the Daugava River monitoring
station near Daugavpils city are used. Several regression
scenarios are discussed and compared. Models obtained by the
methods discussed in the research show good results and
applicability in predicting the river flow and forecasting of the
floods.
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I. INTRODUCTION

Early forecasting of river floods and prediction of areas to
be flooded is an actual problem in territories located on banks
of big rivers with regular or irregular flood behaviour.
Solution to this problem allows preventing damages and
possible losses in advance on inhabited or agricultural
territories in risk areas. Essential part of forecasting is
monitoring, which allows collecting data of river behaviour
parameters in long time periods. In turn, the application of
mathematical methods allows finding relations and patterns in
this behaviour. Moreover, the monitoring of river physical
parameters allows forecasting the river behaviour in the near
future and correspondingly gives predictions of the flood.

In research [1], the modelling for the evaluation of
aftermath of spring floods of the Daugava River is discussed
with the estimation of the flooded areas. For this estimation a
heightmap model of the investigated area is applied together
with data from local river monitoring station. The main river
monitoring data used for the flood estimation are river flow or
river discharge, i.e., the volume of water flowing through the
current cross-section of the river in a defined time interval.
The problem is that the local station performs the evaluation
of river flow rarely and irregularly. Nonetheless, a river water
level is monitored regularly, which can be used for the
estimation of unknown data.

In this study, the development of an analytical model of
river flow depending on the current or recent river level is
proposed for the determination of river flow discharge values,
which are used in [1]. Application of linear and symbolic
regression is applied to find such a model.

The problem statement is defined in Section II. Section III
discusses regression methods proposed to find the flow
analytical model. Section IV gives an overview on the

problem input data. The application of linear and symbolic
regression methods is discussed in Sections V and VI,
correspondingly. Conclusions are summarised and given in
Section VII.

II. PROBLEM STATEMENT

The goal of the research is to find how to calculate a river
flow, which is based on the data of number of samples of river
water level at the same river monitoring station. Data of the
river level are dynamic.

The available input data of the stated problem are given in
two tables:

1. A table of river water level values for each hour.
2. The data of the river discharge measurements.

Both data tables for the considered area are taken from an
open data source [2]. The data describe the condition of the
Daugava River at the monitoring station near Daugavpils city.

The data of river water level are given with precision of
centimetre for each hour of each day in the analysed time
interval (see TableI). The river level is estimated from a
referencing level, thus, can have negative values.
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In turn, the data table of river flow discharge (see Table II)
contains dates, when the measurements are sampled, as well as
measurement time and the determined water flow in m?/s.
Flow measurements are highly irregular: between some
measurements there are intervals of several months, but other
measurements are performed within one week interval.

TABLE II
WATER FLOW MEASUREMENTS
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In the research it is proposed that the water discharge in the
river is related to the water level. Thus, it is possible to
determine the required water flow value if the current and
recent river levels are known. Due to high availability of river
level measurements, it is proposed to apply a number of recent
level measurements, which are separated by a specific time
interval to calculate the flow.
An analytical mathematical model in the closed form of
algebraic expression, which will relate the water level to the
forecasted water flow with a reliable precision, has to be found
in the research.
The following solution steps and subtasks are planned and
described in this research:
1. to analyse the input data to reveal the patterns and data
incompleteness;

2. to process and prepare data for the following analysis
methods;

3. to perform data statistical analysis;

4. to solve the regression task with the application of least
squares method and to analyse the results;

5. to solve the symbolic regression task with the application
of genetic programming;

6. to compare results and to make conclusions.

III. SOLUTION METHODS

A. Linear Regression

One of the most common and widely used approaches to
find the relationships between one dependent variable and a
number of explanatory variables is a linear regression. Linear
regression implies that a dependent variable can be expressed
in a form of linear equation from explanatory variables. The
task is to find such coefficients of linear equation, which will
fit the data with the smallest error [3].

The commonly used method to fit the linear regression data
is the least squares method. The least squares method is an
exact mathematical method and its goal is minimisation of the
sum of squared residuals, where residual is the difference
between the observed value and the value provided by the
regression model [4].

In the current research, a linear regression is performed by
statistical tools embedded in the Microsoft Excel spreadsheet
application, which fits the coefficients for linear model.

B. Symbolic Regression

Symbolic regression or function identification is an
approach to find mathematical expressions in a symbolic form,
which will fit regression data in the best way and predict a
dependent variable from explanatory variables with the
smallest error. In the symbolic regression both the symbolic
form of a model and coefficients for model variables are
found. The symbolic regression differs from a traditional
linear or polynomial regression, where only the best
coefficients for linear or polynomial models should be found [5].

The symbolic regression approach is closely related to the
genetic programming, which is the natural choice to find
symbolic expressions that fit the data.
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C. Genetic Programming

Genetic programming (GP) is an evolutionary algorithmic
approach to find computer programs that perform the defined
task in the best way [5]. Genetic programming is derived from
a genetic algorithm: it works with a population of solution
candidates (i.e., individuals) and performs evolution via
iterative execution of selection, crossover and mutation
operators. The main distinguishing feature of GP is that the
individuals are represented in form of functional trees and the
fitness function determines how well the solution candidate’s
program performs a given task.

In a symbolic regression, the mathematical expression that
should be identified is interpreted as a computer program,
whose input data are explanatory variables and output is a
dependent variable. The following evaluators can be used as
fitness function in a symbolic regression: mean squared error,
mean average error, Pearson R squared (R?) coefficient of
determination [6].

In the current research, the implementation of genetic
programming based symbolic regression in HeuristicLab
optimisation framework [7], [8] is applied.

IV. ANALYSIS AND PREPARATION OF INPUT DATA

A. Input Data Preparation

For the identification of the regression model, the following
data pre-processing tasks are performed.

The measurements from Table II are taken as values of the
dependent variable in the training dataset. As the number of
measured samples is relatively small, all data in the
corresponding table will be used. Explanatory variables are
derived from Table I, but the table is transformed in the
following way.

An analysis of dataset from Table I shows that an hourly
water level has only small changes between neighbour
samples; moreover, the water level often does not change each
hour. Thus, for the regression task only a small part of input
data will be selected.

It is assumed that the following data are related to each
sample of water flow discharge measures:

1. current water level in the river (measurement taken at

time, when the corresponding water flow is measured);

2. water level of the river several hours before the flow

measurement;

3. water level of the river several days before the flow

measurement;

4. water level one week before the flow measurement is

carried out.

In the transformation process of the input data, the
following table with prepared data is obtained (see Table III).
The table has the following attributes:

e flow — the river water discharge in m’/s;

e hO0 - the water level at water flow measuring time;

e h3 — the water level 3 hours before the water flow

measurement (h6, h12, hl18 are levels at 6, 12 and
18 hours, respectively, before the flow is measured);
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e dl — the water level measured 24 hours before the flow
measurement (d2 and d3 are river levels 2 and 3 days
before the flow measurement, respectively);

e d7 — the water level measured a week before the current
flow is measured.

TABLE III
THE DATASET OF THE REGRESSION TASK (FRAGMENT)
flow ho h3 hé h12 h18 dl d2 d3 d7

182,32 -1 -4 -10 -17 -24 -25 -24 -16 24
197 72 71 68 66 62 59 51 44 44
310 30 31 38 29 29 32 31 29 34
408 67 65 62 58 56 52 33 26 51
525 119 117 115 111 106 95 67 52 42
1030 277 278 279 281 283 284 289 250 204
1153 300 299 298 297 297 297 302 i 333
1303 346 348 350 354 359 362 369 362 303
1180,5 347 349 351 356 361 368 389 408 428

The regression experiments are performed with the dataset
described in Table III. A full table contains 93 records with
the Daugava water flow discharge measures from January 1,
2008 to February 28, 2013.

B. Input Data Statistical Analysis

A correlation analysis is performed on the data of Table III
with a statistical tool of Microsoft Excel application. Results
of this analysis are shown in Table IV:

TABLE IV
CORRELATION BETWEEN INPUT DATA ATTRIBUTES
fiow ho h3 hé hi2 hig dl d2 d3 a7
flow 1
hi 0.94308 1
h3 094205 09995 1
hé 094921 0099046 099971 1
hi2 0.94925 0.99838 099911 0.99954 1
h18 0.94918 009622 0.99726 0.09800 0.99937 1
di 0.24845 0.99546 099649 0.99753 0.99895 0.99965 1
d2 0.93949 0.98520 098667 0.98868 0.99097 099300 099523 1
d3 092102 096783 097006 097192 097644 092018 098384 099482 I

d7 077774 083352 083736 084241 08483 085461 086223 0.89484 092647 1

The correlation analysis shows that the lowest correlation is
between a water flow value and a water level measured a week
ago. The highest correlation with a water flow value has water
level values, which are collected during a day before the flow
is measured. For the analysed dataset the highest correlation
has a water level measured 12 hours before water discharge is
measured. Moreover, explanatory values in the training dataset
have a high correlation between each other; thus, most of them
can be omitted.

V. LINEAR REGRESSION

Several experiments to obtain a linear regression model of
the water flow value were performed within a regression
toolbox of Microsoft Excel application.

At first, the model with only one explanatory variable h12,
which has shown the highest correlation with the dependent
variable in the correlation analysis, is fitted with the least
squares method. The obtained model has the following
mathematical expression:

flow = 82.386 + 3.482-h12 (1)

The model with one coefficient has a coefficient of
determination R? =~ 0.9011, which shows its high reliability.

For the linear model with all dataset attributes listed above,
except one week old measurement of water level, the
following linear approximation has been obtained:

flow = 92.703 — 2.770-h0 — 3.078-h3 + 13.033-n6 —
~12.401-h12 + 1.817-h18 + 7.932-d1 + 2.276-d2 —
~3.391-d3 )

Such a model fits the data with coefficient R* = 0.908; thus,
it does not increase the accuracy of the regression model, but
the model becomes large and uses a big number of attributes.

For the validation of the obtained regression models, the
dependency (1) of the river flow discharge from the river level
is visualised in a chart and shown in Fig. 1. As it can be seen,
the linear regression poorly fits the empirical data. The flow
data have a trend, which looks close to the polynomial trend
(see Fig. 1). The linear model is bad for high water levels;
therefore, it can be concluded that it is not feasible in flood
forecasting, where river levels are high.
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Fig. 1. Dependence of a river flow on the river level h12 for the regression
model (1) and empirical data

The linear regression model (2) applied to the training set
also shows the chart, which is visually close to Fig. 1.

VI. SYMBOLIC REGRESSION WITH GENETIC PROGRAMMING

In search for more precise models, the symbolic regression
experiments with the application of genetic programming are
performed. In the following experiments, HeuristicLab
optimisation framework is applied [7]. The following
parameters are defined for the algorithm of genetic
programming: a population size equal to 200 individuals; a
subtree swapping crossover and all GP mutation operators
implemented in HeuristicLab with a mutation rate of 5% [9].
The proportional selection operator is used in the algorithm
with one elite individual. Fitness function is evaluated by
Pearson R coefficient. Available tree nodes are: real value
constants in a range [-100, 100], explanatory variables,
arithmetic functions (+, -, *, /), trigonometric functions (sin,
cos, tg), exponential, logarithm and power functions. Maximal
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tree depth is limited to 10 nodes and a maximal tree length —
to 25 nodes. The termination condition of the GP algorithm is
defined as 1000 generations. Input dataset was randomly
divided into a training set and a test set. The training set
includes 80% of records and test set includes 20%.

Results obtained in genetic programming show that the
found symbolic models in most cases are close to linear
models and actually are polynomial models. In 20 GP
experiments the optimisation framework has found several
models with very close fitness. The model with the best found
fitness, which is expressed as a formula, is given in (3) and is
shown in tree representation in Fig.2. Here tree leaves
correspond to an explanatory variable multiplied by
coefficients or to constants, and intermediate nodes are
multiplication and addition operators.

flow = (((~0.033-d3 — 0.032-h0) + (((0.677-h0 — 0.033-d3) —
~0.031-h6) — (0.666-h12 — 0.031-h6))) + 0.361-h18) -

- ((-0.361-h18 + 0.230-12) — 24.078) - (-0.202) +

+216.678 3)
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Fig. 2. Regression model (3) represented in form of a tree in an optimisation
framework

The model (3) can be easily transformed in a more readable
form, such as:

flow = 216.678 — 0.202 - (0.645-h0 — 0.666-h12 + 0.361-h18 —
~0.066-d3) - (—0.361-n18 + 0.290-h12 — 24.078) )

As it can be seen, the main factors, which affect the water
flow, are the same attributes h12 and h18. The model fits data
with coefficient R* ~ 0.963 for the training set and R* =~ 0.953
for the test set. The model expresses the river flow in the
polynomial form and has higher accuracy than a linear model.
Line chart of the model is shown in Fig. 3 and a scatter plot is
shown in Fig. 4, respectively. Both charts are obtained in the
output of the experiment in the HeuristicLab framework. In
the line chart, a blue line corresponds to the empirical values,
red and yellow lines — to the model response. The division of
the data in training and test datasets can be observed. In the
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scatter plot, the mapping of the model output to a dataset
empirical flow is shown.
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Fig. 3. Line chart of the model (3)
Data visualised in the scatter plot (Fig. 4) shows that the
model is accurate for the majority of the records. High

mismatch between the estimated and target values for several
records is determined for low water data.
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Fig. 4. Scatter plot of the symbolic model (3)

It should be noted that all models obtained after the
termination condition of genetic programming include only
simple mathematical operators, such as multiplication,
addition and subtraction, but the solutions with trigonometric,
exponential and logarithmic functions have bad fitness. Thus,
the flow discharge should be described as a polynomial model.

Results of the validation experiments for the regression
model (4) are shown in Fig. 5. It can be seen that the model is
well fitted, and in the dataset there are only a few records that
are very different from the model. These outliers probably are
caused by some other river physical parameters, which were
not included in the input data of the problem statement.
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Nevertheless, the model (4) shows good results for records
with a high water level; thus, it is applicable for flood
forecasting.
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Fig. 5. Dependence of a river flow on the river level h12 for the regression
model (4) and empirical data

As a majority of the explanatory variables are chosen as the
measurements taken in the near past, a symbolic regression
can be applied to the flow forecasting in the near future. In this
case a regression model is obtained in GP that is applied to a
dataset with the excluded current river level measurements
(e.g., h0, h3). In the series of 20 GP experiments with the
above-mentioned algorithm parameters and dataset with
excluded h0, the following regression model was obtained:

flow = 208.214 — 0.011 - h12+0.014 - (1.123 - h6 —
~0.415-h3+1.503 -h18 — 1.262 - h12) - (-0.814 - h12 +
+1.123 - h6 + 98.845); )

The model (5) can be applied to situations, when the current
water level hO in the river is not known, but it is possible to
operate with measures that are made at least 3 hours ago. The
model (5) has the Pearson’s R* ~ 0.957 for the training set and
R?~0.981 for the test set.

It should be noted that the obtained models, when compared
between different runs of GP, have different algebraic forms
and values of coefficients, but at the same time they describe
the training dataset in the same way and with a very close
error. It can be concluded that the search algorithm performs
well and converges to similar models that are just expressed in
different forms.

VII. CONCLUSION

The main result of the research is that river flow discharge
can be estimated through water level recent measurements
taken at a particular monitoring station. To obtain the
analytical model of the flow discharge, the regression model
has to be fit with an application of genetic programming. The
obtained river flow regression models used in the real life
validation of the river flood prediction [1] have shown good

results and the proposed methods are applicable for the
solution of similar tasks.

The linear model obtained in the Microsoft Excel tool can
be used as the simple equation for the flow calculation at a
medium river level, but the model is not feasible in flood
situations, when a water level is high. For a higher accuracy of
output data, the model obtained in genetic programming has to
be applied.

However, the best models obtained in a symbolic regression
also have small errors and do not fit perfectly several records
in the dataset. This can be explained by a small number of
input factors, which include only values from river level
measurements. Thus, more parameters obtained at a river
monitoring station, which affect the water flow, should be
included in the dataset to search for more precise flow
discharge models in the future.
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Vitalijs Bolsakovs. Regresija bazéta Daugavas upes plidu prognozésana un parraudzisana

Raksta ir apskatita linearas un simbolu regresijas pielietoSana upes pliidu prognoz&Sanas un parraudziSanas uzdevumos. Apskatitaja p&tfjuma tiek risinati
uzdevumi, kuru atrisinaSanas rezultati ir pielietoti daudz plasaka upes pliidu seku noteikSanas metodika. P&tfjuma galvenie uzdevumi ir upes pliismas
caurpliduma analitiska modela noteikSana, kura caurplidumu var noteikt, balstoties uz eso$o un neseno upes tidens limeni, ka arT caurpliduma vértibu
prognozeésanu tuvaka nakotné. Formul€tas problémas galvenie izaicindgjumi ir upes caurpliduma mérjjumu maza kopa un mazs ieejas faktoru skaits.
Caurpliiduma modela apmaciSanai ir izmantoti Daugavas parraudzisanas stacijas vesturiskie dati, kas ir savakti netalu no Daugavpils pilsétas. Uzdevuma ieejas
dati ir transformgti tada veida, lai eso$o upes caurplidumu biitu iesp&jams aprekinat, balstoties uz vairakiem Gdens limepa merjjumiem nesena pagatné. Raksta ir
apskatiti un salidzinati vairaki regresijas modelu ieguves scenariji. Pirmaja scenarija uzdevuma risinaSanai ir paredz&ts pielietot linearu regresiju un tai atbilstoSas
metodes. Otraja scenarija tiek risinats simbolu regresijas uzdevums, pielietojot genétisko programmésanu un konfigurgjot eso§o programmlidzekli. Simbolu
regresija iegitie analitiskie modeli rada mazaku apmacibas kltidu un labak tuvina datus, neka linearie modeli. legiito modelu precizitate ir papildus validéta
grafiska veida, veicot empirisko un ieglito datu salidzinasanu. P&tfjuma iegitie aprékinu modeli rada labus rezultatus un ir teicami pielietojami upes pliismas vai
caurpliduma prognozesanas uzdevumos, ka arT tos ir iesp&jams pielietot, prognozgjot upes pliidu sekas.

Buranuii Boibmakos. IIporHo3upoBanue 1 MOHUTOPMHI HABOAHEHMIT U1l pexu JlayraBa Ha ocHOBe perpeccuu

B cratee paccMOTpeHO NMpHMEHEHHe JUHEHHOW M CHMBOJIPHON perpeccHH B 3ajadax NPOTHO3MPOBAHMS M MOHHTOPUHra PEeYHBIX HAaBOAHEHHH. B cTarbhe
pelIarTCs 3aa4uM, pe3yJIbTaThl PELICHHUs] KOTOPBIX UCIIOJIB3YIOTCS B OOJiee OOIIMPHONW METOAMKE ONPECICHHS TOCICICTBII peUHbIX HaBOAHEHNH. OCHOBHOM
3a7a4ell JaHHOTO HCCIEJOBAHUS SBIISICTCS HAXOXKACHHE AHAIUTHYECKOW MOJENHM OIpPEACNEHHs DPAcXoja BOJABI B pPEKe B 3aBHCHMOCTH OT TEKYyLIEro M
MPEABIAYIIEr0 YPOBHs BOJIBI, @ TAK)KE NMPOTHO3UPOBAHME MPEIOIaraéMoro pacxoja BOAbl B Ommkaiimiem OyaymieM. I'JIaBHBIMU Npo0JIeMaMu B HaXOXKJICHUU
TaKoOi MOJIeNH SBISIOTCS Majoe KOJIMYECTBO MCTOPHUYECKMX 3aMEpOB pacxojia BOJBI, a TAaKXKe Majloe KOJIMYECTBO BXOJHBIX INEpeMEHHbIX. JIsi rmosryyeHus
MOJIETIM MCIOJIb30BaHbl HCTOPUYECKHE JTAaHHBIE CO CTaHIMU HaOmoaeHus pexu Jlayrassl Bosne ropona Jlayrasmuic. BxonHble naHHbIE 3a1a4n 1peoOpa3oBaHbL
TakuM 00pa3oM, 4TOOBI TEKYIIMi pPacxoj] BOJABI B PEKe MOXXHO ObLIO Obl pPacCCUMTHIBATH Ha OCHOBAHMM HECKOJBKHX 3aMEPOB YPOBHS PEKH B Onmkaiimiem
npouuioM. B cratee paccMOTpeHBI M CPaBHUBAIOTCS HECKOJIBKO CLEHAPHEB MOJIYYEHHUS PErpecCHOHHBIX Mojesel. B mepBoM cirydae mpesmonaraercsi pernenme
3a7a4M JIMHEWHOH perpeccuy M NPUMEHEHHE COOTBETCTBYIOIIMX MeETOZ0B. Bo BTOpoM ciydae pemiaercs 3ajada CUMBOJBHOW PErpeccHu ¢ MPUMEHEHHEM
TEeHETHYECKOr0 MPOTPaMMHUPOBAHNUS U CYIIECTBYIOIIEr0 ONTHMHU3AIMOHHOTO HHCTPYMEHTa. AHATUTUYECKUE MOJIeIH, HaliIeHHbIe ITyTEM CUMBOJILHON perpeccuu
MMOKa3bIBAIOT MEHBIIYI OMIMOKY OOYyYCHHS W allpPOKCHMHUPYIOT IaHHBIC JIyYIIMM OO0pa3oM, 4YeM JIMHEHHble MOJeiad. TOYHOCTh HaWJCHHBIX Mojenei
JIOTIOJTHUTENBHO TPOBAIMIMPOBaHA TPaUUECKUM COMOCTABICHUEM SMIIMPUYECKUX U TOJIyYeHHbIX 3HaueHHH. [loiydeHHbIe B MCCIEJOBAaHUM MOJEIH pacuéra
TIOKa3bIBAIOT XOPOIINE pe3yJIbTaThl U BHICOKYIO NMPUMEHHMOCTh B 3a/ladyax MPOTHO3MPOBAHUS pacxojia BOJBI B peKe M B PEIIEHHM 3a7ad MPOrHO3UPOBAHUS
MOCJICJICTBUN HABOTHEHUI.
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