n‘&’n VERSITA

Information Technology and Management Science

doi: 10.2478/itms-2013-0020
2013/16

The Comparison of Approaches Used for Estimating
Uncertain Probabilities

Oleg Uzhga-Rebrov, Rezekne Higher Educational Institution, Galina Kuleshova, Riga Technical University

Abstract -  Probabilistic  estimates are numerical
representations of chances of random event occurrence. The
classical theory of probability is based on the assumption that
probabilistic estimates are deterministic. If available initial data
are sufficient, this kind of estimates can be really obtained.
However, when such data are not available, probabilistic
estimates become uncertain. This paper analyses and compares
three widespread approaches to modelling uncertain estimates
and provides practical recommendations on their use.
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[. INTRODUCTION

The classical theory of probability postulates that the
probabilities of random events have to be determined
unambiguously. This postulate underlies all other operations
on probabilities, e.g., calculation of probabilities for unions
and intersections of the sets of random events, recalculation of
the posterior probabilities according to Bayes’ theorem,
probabilistic inference on the networks etc. It is true that
probabilities of relevant events can be determined
unambiguously if sufficient initial information is available.
However, in real life, suitable conditions for obtaining
deterministic probabilistic estimates are not always ensured.
Plenty of examples can be provided when objective
probabilistic estimates are not confident. One evident example
could be estimating the safety of technical system operation.
Quite frequently, the probabilities of technical system
component failures are evaluated on the basis of insufficient
statistical information. Besides, not always all the factors are
taken into account that might somehow affect the functioning
of the estimated component. The use of deterministic
probabilistic estimates in cases like that is just an attempt to
shut your eyes to the problem. The matter with the assessment
of ecological risks looks even worse. The diversity of
components of ecosystems and the complexity and insufficient
knowledge of the complicated links between the components
can lead to a situation when probability estimate of the harm
that might be made to a certain component as a result of the
technogenic disaster might not represent real state of things
at all.

A lot of examples of other kinds can be given as well. For
example, the probability estimates of profit level earned
through investing capital into securities, made on the basis of
the available information, may become meaningless due to
various fluctuations and upheavals in the financial market.
Estimates of probabilities of the development of the political

situation in a region might also be unreliable due to the effect
of multiple unknown factors, but the estimates of the chances
of candidates for the position of President to win might change
essentially even due to reckless statements of one of
candidates.

Even if due to some reasons probabilistic estimates cannot
be assigned unambiguously, two boundary estimates are
assigned for each element of the relevant set. Sets of such
estimates constitute two boundary probabilistic distributions.
A problem then arises how to manage these uncertain
probabilistic ~ distributions. This paper examines some
approaches most frequently used to solve that task.

II. FUNDAMENTALS OF THE THEORY OF PROBABILITY
EVALUATION

Quite frequently uncertainty is an inherent attribute of
information. Different types of uncertainty exist; to correctly
cope with uncertain information, it is necessary to measure
uncertainties correctly. Although the notion of uncertainty is
quite specific, it has to be measured according to general
regulations and requirements of general theory of
measurement.

Nowadays the general theory of measurement represents a
developed scientific and applied discipline, whose main goals
are correct measurements of attributes and properties of
different objects, processes and occurrences; determination of
suitable measurement scales and permissible transformations
of the numbers expressing results of particular measurements.
A detailed and competent presentation of the fundamentals of
measurement theory can be found in [4], while more specific
issues related to measuring probabilities are discussed in [1].

Let us first consider classical additive estimates. Let a
universal set X be specified, in which a non-empty set (family)
of subsets A is defined. It is assumed that these subsets have a
suitable algebraic structure. For example, in the case of
classical probabilistic estimates it is assumed that the structure
of subsets in X possesses properties of c-algebra. Under these
conditions, classical estimate is an estimate

v:A—[0,00],
which possesses these properties:

1. v(D)=0;

2. For each sequence Bl, B2 ... of pairwise not-connected

subsets B, < A;
it U7, B, c A, then v(UB)=>v(B). ()
i=1
Property 2 is a distinguishing feature of all classical
estimates. It is called countable additivity. The property of
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additivity is a strong requirement and in many cases it is not
met. To enlarge possibilities of measuring uncertainties, other
more general estimates are needed. It can be achieved by
replacing the restrictive requirement of additivity for classical
estimates with a weaker requirement of monotonicity.

Let us define a class of monotone estimates in a family of
sets A of the universal set X as follows:

v:A=[0,00].
The monotone estimates have to possess these properties:
l.v (@) =0.
2.Forany B, B, c A.if B, B,. v(B)<v(B;).

For any monotone estimate, if
B, c A B, gA,BiUBj c A,

V(Bi ﬂBj)Smin{v(Bi),v(Bj)}. )

v(Bi UBj)Zmax{v(Bi),v(Bj)}. 3)

If, besides inequalities (2) and (3) for disconnected subsets
B;,B; = A and their union B, UB ; € A the following
inequality holds:

v(B UB,)2v(B)+v(B,), 0

the estimate V is called superadditive.
If under the same conditions this inequality holds:

v(BUB;)<v(B)+v(B). 5)

the estimate V is called subadditive.

Depending on different purposes, sometimes a necessity to
transform original monotonous estimates to another form
appears. Such a necessity can be caused for example by
studying properties of new kind of estimates. One of widely
known transformations of that kind is Mdbius transformation.
Let us assume that a finite set of elements X is specified and
denote a set of all possible subsets of X as F(X). Let v be
a set function defined in subsets X that stands for the estimate
function of the measured attribute. In its standard form, the
process of measurement is reduced to the representation of
intensity (strength) of the measured attribute in F(X) to a set
of real numbers:

v:F(X)—>R.

The set function V can be correctly transformed into

another set function
m":F(X)—>R.

by means of Mobius transformation

m’(B)= Y ()" "(B). ©
BcA
Function M” is called Mdbius representation for v
(alternatively, m" is called Mébius function).
If Mébius representation, M" , is known, the initial function
V can be uniquely determined by means of inverse
transformation
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v(B)=> m"(A). 7
AcB
Let us examine some important relationships between the set
function V and its Mobius representation M’ . The set
function V represents monotone estimates, if its Mobius
representation possesses these properties:

1. m"(Q)=0.

2. Y m'(B)=L.
BcF(X)

3. ) M (A) =0 forall B F(X).
AcB

The concept of monotone estimates is quite a broad notion.
A special class of monotonous estimates is formed of
estimates called Choquet capacities. Their essence is as
follows. Let us assign an integer K >2 . The Choquet
capacity of the k-th order is a monotone estimate V that
satisfies these inequalities:

v(USB)z X D'v(NLB)  ®

KN,
k=

for all families of K subsets X . By agreement, any
monotone estimate that does not satisfy inequalities (8) is
formally ascribed to Choquet capacities of the 1st order.

To subsets B, in expression (8) a requirement of non-
connection is posed, i.e., they must not overlap. In the general
case, at the overlapping subsets expression (8) looks
differently. For example, for K =2 we have

v(B,UB,)>v(B,))+v(B,)-v(B NB,). (9

In the case of the overlapping subsets, the most general
character has Choquet capacities of arbitrary order K > 2

v(BNB;)+...

v(BUB,U..UB)>> v(B)- (10)
( )22(8) ;{—l)k*‘v(ﬁﬂBzﬂ..ﬂBK)
There are important connections between Maobius

representations and Choquet capacities of order K > 2 . Let us
consider the most essential connections of that kind

1. If v is Choquet capacity of order 2 < |B| <k,
then m"(B)>0.
2. v is Choquet capacity of order o0 , if
m"(B) >0
forall B e F(X).
3. Vv is Choquet capacity of order K>2 , if
z m”(A)>0 for all BeF(X) and all

CcAcDh

C eF(X),suchthat 2<C <Kk.
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III. CONCEPTUAL PRINCIPLES OF UNCERTAIN PROBABILITIES

Let us introduce the following denotations:

X — the finite set (universe of discourse) of elementary
random events;

F ( X ) — the set of all subsets X ;

@ — the set of probability distribution functions in X . (In
literature, this set is frequently called a credal set).
Using the above system of denotations, the lower probability
function for all sets A€ F ( X ) is determined as follows:

p?(A)=inf,_, > p(x). (11)
XeA
By analogy, the upper probability function is determined as
follows:
p’(A)=sup,_, > P(X).
xeA
Let us give without proof a summary of properties of lower
and upper probabilities.

(12)

p? > p’forall AcF(X). (13)
p’(D)=p"=0. (14)
p7(X)=p"(X)=1. (1)

p’(A)=1-p”(A) forall AcF(X). (16)

E‘/’(AU B)ZE‘”(A)+E¢(B) for all
A.BeF(X),ANB=0. (17

Expression (17) shows that the lower probability functions are
superadditive

5 (AUB)< 5 (A)+ 7" (B)
for all A,BeF(X),AﬂBz@.

(18)

From expression (18) it follows that the upper probability
functions are subadditive.

The lower and upper probabilities can be subjected to
Mobius transformation (see Expression (6)). As a result, two
Mobius representations (functions), M and M are obtained.

Since functions P and P are dual, functions M and M are
also dual. The correlation between those dual representations

forany set Ae F ( X ) is expressed as follows:

m(A)=-D*"Y m(B).

BcA

19

The lower and upper conditional probabilities are determined

as follows:
Y. pX)
p(A/B)=inf,_, Xeﬁr‘:Bp - forall A,B e F(X);(20)
xeB

> P

xeANB

=SUp,., ~— Z o0

xeB

E(A/B for all A,BEF(X).
21)

Let us consider the main correlations between marginal and
joint uncertain probabilities. Let us have the Cartesian product

of two probabilistic spaces X XY . Let us denote the lower
joint probabilistic function in X xY as P, the upper

probabilistic function in X XY as P but a set of probability
distributions compatible with P and P as ¢ . Let us denote

lower marginal probabilities in X and Y as Py, Py ; upper
marginal probabilities in X and Y as Py, P, and sets of

marginal probability distributions compatible with p, , Py

and Py, Py ,respectively,as @ , @, Sets @, , @, canbe
determined using these expressions:

{px / px Z p X y } for some distribution

Vv
Peg:; (22)
@, = { B/ P (Y)=D p(x y)} for some distribution
- peg. (23)

The marginal lower probabilities are defined as follows:
Px (A)=p(AxY) forall AcF(X); (24)
py(B)=p(XxB) forall BeF(Y). (25)

The marginal upper probabilities are defined as follows:
Py (A)=D(AxY) forall AcF(X); (26)
Py (B)=p(XxB) forall BeF(Y). (27

The marginal Mobius functions are determined as follows:

my (A)= > m(S,) forall AeF(X): (28)
S/AeSy
m (B)= > m(S,) forall BeF(X), (29)
S/BeSy

where

Sy ={xe X/(X,y)€S forsome YyeY};
vy ={Y €Y /(X,y)eS forsome X X}.

From the above analysis it directly follows that all
operations that are valid for classical probabilities can also be
performed on uncertain probabilities. It is clear that taking into
account the specifics of uncertain probabilities, operations on
them can be quite complicated.
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IV. INTERVAL PROBABILITIES

Interval probabilities are a special case of the lower and
upper probabilities considered in the previous section. The
theory of interval probabilities was first described in [2].

Let us introduce some definitions. Let there be a set of
elements X (random events, values of random variable),
X = {Xl,...,Xn} To each element X, € X there is
connected an interval of possible probability values, [|i U ],
where |i is the lower boundary but U; is the upper boundary
of that interval. Let us denote a set (family) of such intervals
for all elements X, € X as L= [|i,Ui]/i =1,...,n}. The
values |i and U; have to meet the requirement:
0<I, <y <1,Vi=1,..,n . Sets of interval boundary
values can be interpreted as the lower and the upper
probability distributions in a set of potentially possible
probability distributions
P={PeP(X)/l <p(x)<u,Vi=1.,n}. (30

In other words, L is a set of probability intervals but P is
a set of possible probability distributions correlated to L .
This statement forms a direct connection with the concepts of
interval probabilities and the general concept of lower and
upper probabilities.

To avoid situations when a set of potential probability
distributions is empty, P =, the following limitations are
posed on the values of probability interval boundaries

Zn:Ii Slgzn:ui.
i=1 i=1

Probability intervals that satisfy limitations (30) are called
proper intervals.

For the set of potential possible probability distributions,
P , defined by means of proper intervals for some set
A c X the lower and the upper functions can be determined
using these expressions:

I(A)=inf,_, P(A); (32)
u(A)=sup,, P(A). (33)

To avoid the compatibility between interval boundaries and

the set of potential possible probability distributions, the
following conditions have to be met:

dli+u <L Vi=1,..,n;
i#]
duj+k<LVi=1,..,n.

i)

€2))

(34

(35)

Sets of probability intervals satisfying inequalities (34) and
(35) are called reachable.

Probability intervals considered in this section belong to a
special class of lower and upper probabilities: they are
Choquet capacities of order K = 2, i.e., the following holds:

I(AUB)+I(ANB)=1(A)+I(B),VAc X ;
u(AUB)+u(ANB)>u(A)+u(B),vAc X .
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The last of the above relationships represents the so-called
duplicated Choquet capacity of order K = 2.

Let us consider the procedures of calculating
marginal probability intervals out of the assigned intervals of
joint probabilities. Let there be given sets of elements (random

events, values of a random variable) X = {Xl,...,Xn} and

Y = {yl yeres ym} . Let us denote a set of probability intervals
in P=XxYas L={{l,u; J/i=L..nj=1.,m}|.

In the general case, the lower and the upper marginal
distributions can be represented as follows:

I, (A)=1(AxY),u, (A)=u(AxY); (36
l,(B)=1(XxB),u, (B)=u(XxB). (37

The marginal estimates of the probabilities that are obtained
using expressions (36) and (37) fully correspond to the
probability estimates that might be obtained via the
marginalization of the convex set of probability distributions

connected with L . The boundaries of marginal probability
L ={[Iu* ]/i=1...n}

Lv :{[I},u}]/jzl,...,m} can be calculated at the

intervals and

known set L as follows:

1 :max{ilij,l—Ziukj},i =1..,n;  (3%)
i=1 k=i j=1

uX :mm{iuij,l Zilkj},lzl, N (39)
i=1 k=i j=1

I =max{il l;,1 ;Z:uik},jzl, LM (40)

uj =min{ n U.,al—Zihk},J—L JM. (41)
i=1 k=i i=1

V. A -MEASURES

A -measures, or A -measures of Sugeno have been
proposed by M. Sugeno (see, for example, [5]). A detailed
description of these estimates and their properties is provided
in [6], while a short description in the context of uncertain
probabilities can be found in [3]. To represent uncertain

probabilities, monotone estimates p/I are determined using

the following normative requirement. Let X be a universal set
of elements (random events, values of a random variable). Let

us denote a set of all subsets X as @ . If A/Be ¢ and
AN B =, then
p*(AUB)=p”(A)+p*(B)+Ap"(A)p’(B), 42)

where —1 < A <00 — the specific parameter.
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When X is a finite set and values p”“({xi}) are pﬂ ({X})—l H(1+/1p*({x y}))—l .4
assigned to all singletons X; € X , for any set A€ @ the § A yeY ’ ’
2 .
value p“(A)can be clalculated as follows: p\? ({y})z%[H(HlW ({x,y}))—l}.ms)
p*(A)=I H(1+/1p*({xi}))—1 . @3) <

X eX
Relevant value A can be determined based on the

requirement that p* (X ) = 1. Expression for calculating A is

1+A:H[1+Ap*({xi})].

X eX

Let p* ({XI}) >0 at least for two elements from X and

as follows:
(44)

p” ({Xi})<l for all elements X, € X . Then solving

equation (44) produces these results:
- if Z p* ({X1 }) <1, then A is a unique solution
X eX
of the equation; it is located in the interval (0, oo) ;
- if z p* ({Xl}) =1, then A =0 is a single
X eX
solution of the equation;

-if z pi ({X1}) >1, then A is a unique solution of the
equatiogethat is located in the interval (—1, O) .

Any A -measure can be fully determined by values
yl . yl

p ({XI}) on singletons X, € X . When values P ({X,})

are set for all X, € X , the value of A can be calculated by

expression (44); then the values p*(A) forall A€ @ canbe

calculated using expression (43). Calculation results can be
classified as follows:

- Z p/I ({X1 }) =1, 1 =0, we deal with classical
X eX

probability estimates;

B} XIZE;( p” ({xl})<1, A >0, the values pi({Xi})
l({Xi}) are

are interpreted as lower probabilities;
. Z p’l({xl})>l, A <0, the values P
interpreted as upper probabilities.

Hence, the latter expressions establish a direct connection
between A -measures and lower/upper probabilities.

Let p* - be joint A -measures, set in subsets X XY .
Then marginal A -measures can be defined in a standard way:
px (A) = py (AxY); (45)

Py (A) = p; (AxB). (46)

For calculating marginal A -measures at the known joint A -
measures, these expressions are employed:

VI. A COMPARATIVE ANALYSIS OF THE APPROACHES

An approach to modelling uncertain probabilities on the
basis of arbitrary lower and upper probabilities is the most
common one; it enables managing arbitrary lower and upper
probabilities. The possibility of representing lower and upper
probabilities by means of Mobius transformation allows us to
correctly analyse them. Provided that joint lower and upper
probability distributions are available, one can calculate lower
and upper marginal distributions corresponding to them. If
necessary, a reverse task of calculating lower and upper joint
probability distributions can be solved using the corresponding
marginal distributions.

Interval probabilities are a special case of common lower
and upper probabilities. These probabilities are Choquet
capacities of order k=2. The calculation of interval
probabilities is simpler as compared to general calculations of
uncertain probabilities. However, if sets of interval probability
estimates are not reachable, they have to be transformed to the
required form. Unfortunately, from the computational point of
view this task is quite complicated. However, when the
reachable probability estimates are available, further
calculations become less complicated, for example,
transformation of joint probability distributions into marginal
ones and vice versa.

A-measures represent a specific kind of uncertain
probability estimates. The advantage of A-measures as applied
to the representation of lower and upper probabilities is their
simplicity and clear interpretability, but their shortcoming is
the necessity to take into account the complexity of relevant
calculations for the sets including many elements.

For practical calculations, common uncertain probabilities
can be employed in all cases. If the initial probability
estimates are reachable interval estimates, the preference
should be given to the approach based on interval estimates;
whereas in the case when these estimates require additional
transformation to the form of reachable interval estimates, the
choice between a common approach based on using
lower/upper probabilities and an interval probability based
approach can be made on the basis of initial data analysis. As
regards A-measures, they have an undoubtful advantage at
small amounts of initial data.

All the techniques examined in this paper are only valid if
uncertain probabilities are assigned in one and the same set of
relevant elements. Otherwise, other approaches to modelling
uncertain probabilities have to be applied, e.g., the probability
box (p-box) technique.

Since all the above-mentioned uncertain probability
measures are in essence monotone, their development has
become possible due to the successful development of general
theory of monotone uncertainty measures.
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Olegs UZga-Rebrovs, Galina Kulesova. Nenoteiktu varbiitibu novértésanas pieeju salidzinajums

Klasiskas varbiitibu teorijas pamata ir piepémums par varbit€jo noveért&jumu determinéto raksturu. Tacu $adi novert§jumi var tikt ieguti, kad ir pietickami
sakotngjie dati. Praktiskas situacijas biezi ir nepiecieSams novertét relevanto notikumu varbiitibas gan pilnigas objektivas informacijas neesamibas apstaklos, gan
ar1 tas buitiskas nepietiekamibas apstaklos. Dazadu iemeslu dé] ekspertiem var biit apgriitinosi noteikt pieprasitos viennozimigos varbiit€jos novertejumus. Un pat,
ja tadi novert&jumi ir noteikti, noveértéjumu ticamiba var biit Joti zema. Liekas priekSroka tiek dota eksplicéta veida model&t varbiit€jo novertejumu nenoteiktibu.
P&dgjos gados ir izstradatas lietderigas pieejas nenoteiktu varbiitgjo novertéjumu modeléanai. Sadu pieeju attistiba kluvusi par iespgjamu, pateicoties monotono
nenoteiktibu novértéjumu teorijas attistibai. Mebiusa transformaciju un Soke kapacita§u izmanto$ana deva iespgju uz stingra pamata analizét dazadu
nenoteiktibas novertgjumu ipasibas. Saja raksta izskatitas tris izplatitas pieejas nenoteiktu varbiitgjo noveértéjumu model&sanai: apakigjas un augigjas vispariga
veida varbitibas, intervalu varbitibas un A-novert€jumi. Visi Sie novertéjumu veidi ir monotonie varbut€jie novertéjumi. Raksta konspektiva forma tiek doti
apskatito novert§jumu veidu teorStiskie pamati un tiek analiz€tas novertéjumu ipasibas. Uz analizes pamata tiek piedavatas praktiskas rekomendacijas
novertéjumu izmantosanai dazadas situacijas.

Outer Yikra-Pe6pos, I'asmna Kyiemopa. CpaBHeHHe 0/IX0/10B, HCIIOJIb3YeMbIX /LISl OLleHHBAHMSI HeOlpe/le/IeHHbIX BePOsITHOCTEIi

Kiraccudeckasi Teopusi BeposITHOCTEl OasupyeTcsi Ha MPEIIOI0KEHHH JIeTePMUHUPOBAHHOCTH BEPOSTHOCTHBHIX OIEHOK. OJHAKO, TaKHe OLECHKH MOTYT OBITh
[OJy4YEHbl [PHM HAIMYUM JOCTATOYHBIX HMCXOJHBIX JaHHBIX. B MPaKTHYECKHX CHTYaIlMsIX 4YacTO HEOOXOMMMO MPOM3BOAWTH OLCHHBAHUE BEPOSTHOCTEH
PETEeBAHTHBIX COOBITHII OO MPH IMOIHOM OTCYTCTBHU O0BEKTHBHON MH(OpMAIHH, MO0 NpH €€ CYIECTBEHHOH HeJIOCTaTOYHOCTH. B Takux ciydasx MIMPOKO
HCIIONB3YeTCs DKCIIepTHOE oueHUBaHMe. [1o psy NMpUUYMH SKCIEpTaM MOXET OBITH 3aTpyJHUTENILHBIM HAa3HAUUTh TPeOyeMble OJHO3HAYHBIE BEPOSTHOCTHEIC
oneHkn. M fgaxe ecnam Takue OLECHKM HA3HAYCHBI, MX JOBEPUTEIBHOCTh MOXET ObITh OdYeHb Hu3KOW. [IpeacraBisiercss MpeamOYTUTEIBHBIM SKCIUIMIUTHO
MOJIEITHPOBATh CYMIECTBYIONIYI0 HEOIPENeNEHHOCTh OTHOCHTENFHO BEPOSTHOCTHBIX OIEHOK. B mocienHme roasl pa3paOoTaHbl IEHCTBEHHBIE MOIXOIBI K
MOJICJIHPOBAHHIO HEONIPEICIEHHBIX BEPOSITHOCTHBIX OLICHOK. Pa3BHTHE TaKHX MOAXOJOB CTAIO BO3MOXKHBEIM B CBSI3H C OYPHBIM pa3BUTHEM TEOPUH MOHOTOHHBIX
OLICHOK HeompeaenéHHocTeil. Mcnonp3oBanue Tpancopmannii Mébuyca u momnocted 1lloke MO3BOMHIO Ha CTPOroil OCHOBE aHAIM3HPOBATH CBOICTBa
Pa3IMYHBIX OLIEHOK Heompenen¢HHOcTedl. B HacTosmieldl cTaTbe paccMaTpUBAIOTCS TPU PACHPOCTPAHEHHBIX IIOAXOAA K MOJCIMPOBAHHUIO HEONpPEeIeNEHHBIX
BEPOSITHOCTHEIX OLCHOK: HIDKHHE W BEPXHHE BEPOSTHOCTU OOINEro BHIA, WHTEPBAIBHBIC BEPOSTHOCTH M A-OLECHKH. Bce 3TH THIBI OLEHOK SBILIOTCS
MOHOTOHHBIMH BEpOSTHOCTHBIMH OLCHKaMH. B cTaTbe B KOHCIEKTHBHOWH (pOpME HAIOTCS TEOPETUYECKUE OCHOBBI PACCMATPHBAEMBIX THIIOB OLICHOK H
aHaIM3HPYIOTCS UX cBoiicTBa. Ha ocHOBe aHanM3a mpeiaraloTcst IpakTHIeCKUue PeKOMEHIAINH 0 UCIONIB30BAHHIO 9TUX OLCHOK B PA3/IMUHBIX CUTYAIIHSIX.
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