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Abstract – Probabilistic estimates are numerical 
representations of chances of random event occurrence. The 
classical theory of probability is based on the assumption that 
probabilistic estimates are deterministic. If available initial data 
are sufficient, this kind of estimates can be really obtained. 
However, when such data are not available, probabilistic 
estimates become uncertain. This paper analyses and compares 
three widespread approaches to modelling uncertain estimates 
and provides practical recommendations on their use. 
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I. INTRODUCTION 

The classical theory of probability postulates that the 
probabilities of random events have to be determined 
unambiguously. This postulate underlies all other operations 
on probabilities, e.g., calculation of probabilities for unions 
and intersections of the sets of random events, recalculation of 
the posterior probabilities according to Bayes’ theorem, 
probabilistic inference on the networks etc. It is true that 
probabilities of relevant events can be determined 
unambiguously if sufficient initial information is available. 
However, in real life, suitable conditions for obtaining 
deterministic probabilistic estimates are not always ensured. 
Plenty of examples can be provided when objective 
probabilistic estimates are not confident. One evident example 
could be estimating the safety of technical system operation. 
Quite frequently, the probabilities of technical system 
component failures are evaluated on the basis of insufficient 
statistical information. Besides, not always all the factors are 
taken into account that might somehow affect the functioning 
of the estimated component. The use of deterministic 
probabilistic estimates in cases like that is just an attempt to 
shut your eyes to the problem. The matter with the assessment 
of ecological risks looks even worse. The diversity of 
components of ecosystems and the complexity and insufficient 
knowledge of the complicated links between the components 
can lead to a situation when probability estimate of the harm 
that might be made to a certain component as a result of the 
technogenic disaster might not represent real state of things 
at all. 

A lot of examples of other kinds can be given as well. For 
example, the probability estimates of profit level earned 
through investing capital into securities, made on the basis of 
the available information, may become meaningless due to 
various fluctuations and upheavals in the financial market. 
Estimates of probabilities of the development of the political 

situation in a region might also be unreliable due to the effect 
of multiple unknown factors, but the estimates of the chances 
of candidates for the position of President to win might change 
essentially even due to reckless statements of one of 
candidates. 

Even if due to some reasons probabilistic estimates cannot 
be assigned unambiguously, two boundary estimates are 
assigned for each element of the relevant set. Sets of such 
estimates constitute two boundary probabilistic distributions. 
A problem then arises how to manage these uncertain 
probabilistic distributions. This paper examines some 
approaches most frequently used to solve that task. 

II.   FUNDAMENTALS OF THE THEORY OF PROBABILITY 

EVALUATION 

Quite frequently uncertainty is an inherent attribute of 
information. Different types of uncertainty exist; to correctly 
cope with uncertain information, it is necessary to measure 
uncertainties correctly. Although the notion of uncertainty is 
quite specific, it has to be measured according to general 
regulations and requirements of general theory of 
measurement. 

Nowadays the general theory of measurement represents a 
developed scientific and applied discipline, whose main goals 
are correct measurements of attributes and properties of 
different objects, processes and occurrences; determination of 
suitable measurement scales and permissible transformations 
of the numbers expressing results of particular measurements. 
A detailed and competent presentation of the fundamentals of 
measurement theory can be found in [4], while more specific 
issues related to measuring probabilities are discussed in [1]. 

Let us first consider classical additive estimates. Let a 
universal set X be specified, in which a non-empty set (family) 
of subsets A is defined. It is assumed that these subsets have a 
suitable algebraic structure. For example, in the case of 
classical probabilistic estimates it is assumed that the structure 
of subsets in X possesses properties of -algebra. Under these 
conditions, classical estimate is an estimate 

: [0, ],A    
which possesses these properties: 

1. ( ) 0;    

2. For each sequence 1 2,B B  … of pairwise not-connected 

subsets iB A ; 

if 1 ,i iB A
    then     

1

.i i
i

B B 




    (1) 
 

Property 2 is a distinguishing feature of all classical 
estimates. It is called countable additivity. The property of 
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additivity is a strong requirement and in many cases it is not 
met. To enlarge possibilities of measuring uncertainties, other 
more general estimates are needed. It can be achieved by 
replacing the restrictive requirement of additivity for classical 
estimates with a weaker requirement of monotonicity. 

Let us define a class of monotone estimates in a family of 
sets A of the universal set X as follows: 

: [0, ].A    

The monotone estimates have to possess these properties: 

1.   0.    

2. For any ,i jB B A , if i jB B ,    i jB B  . 

For any monotone estimate, if 
, ,i j i jB A B A B B A   , 

      min , .i j i jB B B B                 (2) 

      max , .i j i jB B B B                (3) 

If, besides inequalities (2) and (3) for disconnected subsets 
,i jB B A  and their union i jB B A  the following 

inequality holds: 

      ,i j i jB B B B         (4) 

the estimate   is called superadditive. 
If under the same conditions this inequality holds:  

      ,i j i jB B B B        (5) 

the estimate   is called subadditive. 
Depending on different purposes, sometimes a necessity to 

transform original monotonous estimates to another form 
appears. Such a necessity can be caused for example by 
studying properties of new kind of estimates. One of widely 
known transformations of that kind is Möbius transformation. 
Let us assume that a finite set of elements X is specified and 
denote a set of all possible subsets of X as ( )XF .  Let   be 
a set function defined in subsets X that stands for the estimate 
function of the measured attribute. In its standard form, the 
process of measurement is reduced to the representation of 
intensity (strength) of the measured attribute in ( )XF  to a set 
of real numbers: 

: ( ) .X F R  
The set function   can be correctly transformed into 

another set function 
: ( ) .m X F R  

by means of Möbius transformation 
 

( ) ( 1) ( ).A B

B A

m B B 



            (6) 

Function m  is called Möbius representation for   
(alternatively, m is called Möbius function). 

If Möbius representation, m , is known, the initial function 
  can be uniquely determined by means of inverse 
transformation 

( ) ( ).
A B

B m A


         (7) 

Let us examine some important relationships between the set 
function   and its Möbius representation m . The set 
function   represents monotone estimates, if its Möbius 
representation possesses these properties: 

 1.   0.m    

 2. 
( )

( ) 1.
B X

m B




F

 

 3. ( ) 0
A B

m A



  for all ( )B X F . 

The concept of monotone estimates is quite a broad notion. 
A special class of monotonous estimates is formed of 
estimates called Choquet capacities. Their essence is as 
follows. Let us assign an integer 2k  . The Choquet 
capacity of the k-th order is a monotone estimate   that 
satisfies these inequalities: 

   1
1 ( 1)

k

kk
i i i k i

k N
k

B B  



     (8) 

for all families of k  subsets X . By agreement, any 
monotone estimate that does not satisfy inequalities (8) is 
formally ascribed to Choquet capacities of the 1st order. 

To subsets iB  in expression (8) a requirement of non-
connection is posed, i.e., they must not overlap. In the general 
case, at the overlapping subsets expression (8) looks 
differently. For example, for 2k   we have 

       1 2 1 2 1 2 .B B B B B B        (9) 

In the case of the overlapping subsets, the most general 
character has Choquet capacities of arbitrary order 2k   

   
 

 1 2 1
1 2

...
...

( 1) ...

i j

n i k
i i j k

B B
B B B B

B B B


 




 

 
 


  

  

 .(10) 

There are important connections between Möbius 
representations and Choquet capacities of order 2k  . Let us 
consider the most essential connections of that kind 

1. If   is Choquet capacity of order 2 B k  , 

then ( ) 0m B  . 

2.   is Choquet capacity of order  , if 

( ) 0m B   

for all ( )B XF . 

3.   is Choquet capacity of order 2k  , if

( ) 0
C A D

m A

 

  for all ( )B XF  and all 

( )C XF , such that 2 C k  . 
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III. CONCEPTUAL PRINCIPLES OF UNCERTAIN PROBABILITIES 

Let us introduce the following denotations: 
 X  – the finite set (universe of discourse) of elementary 
random events; 

  XF  – the set of all subsets X ; 

   – the set of probability distribution functions in X . (In 
literature, this set is frequently called a credal set). 

Using the above system of denotations, the lower probability 
function for all sets  A XF  is determined as follows: 

  inf ( ).p
x A

p A p x




       (11) 

By analogy, the upper probability function is determined as 
follows: 

  sup ( ).p
x A

p A p x




       (12) 

Let us give without proof a summary of properties of lower 
and upper probabilities. 

p p  for all  A XF .   (13) 

  0p p    .       (14) 

    1p X p X   .    (15) 

   1p A p A    for all  A XF .  (16) 

     p A B p A p B     for all 

 , ,A B X A B F  .      (17) 

Expression (17) shows that the lower probability functions are 
superadditive 

     p A B p A p B           (18) 

for all  , ,A B X A B F  . 

 
From expression (18) it follows that the upper probability 

functions are subadditive.  
 

The lower and upper probabilities can be subjected to 
Möbius transformation (see Expression (6)). As a result, two 
Möbius representations (functions), m  and m  are obtained. 

Since functions p  and p  are dual, functions m  and m are 

also dual. The correlation between those dual representations 

for any set  A XF  is expressed as follows: 

   1( 1) A

B A

m A m B



   .      (19) 

The lower and upper conditional probabilities are determined 
as follows: 

 
( )

/ inf
( )

x A B
p

x B

p x

p A B
p x









  for all  , ;A B XF (20) 

 
( )

/ sup
( )

x A B
p

x B

p x

p A B
p x









  for all  , .A B XF

(21) 

Let us consider the main correlations between marginal and 
joint uncertain probabilities. Let us have the Cartesian product 
of two probabilistic spaces X Y . Let us denote the lower 
joint probabilistic function in X Y  as p , the upper 

probabilistic function in X Y as p  but a set of probability 

distributions compatible with p  and p as  . Let us denote 

lower marginal probabilities in X and Y as Xp , Yp  ; upper 

marginal probabilities in X and Y as Xp , Yp  and sets of 

marginal probability distributions compatible with Xp , Xp  

and Yp , Yp  , respectively, as X , Y  Sets  X , Y  can be 

determined using these expressions: 

   / ,x X X
y Y

p p x p x y


 
  
 

  for some distribution 

p  ;               (22) 

   / ,Y Y Y
x X

p p y p x y


 
  
 

  for some distribution 

p  .               (23) 

The marginal lower probabilities are defined as follows:  

   Xp A p A Y   for all  A XF ;  (24) 

   Yp B p X B   for all  B YF .  (25) 

The marginal upper probabilities are defined as follows: 

   Xp A p A Y   for all  A XF ;  (26) 

   Yp B p X B   for all  B YF .   (27) 

The marginal Möbius functions are determined as follows: 

   
/ X

X X
S A S

m A m S


   for all  A XF ;  (28) 

   
/ Y

Y Y
S B S

m B m S


   for all  B XF , (29) 

where { /( , )XS x X x y S    for some }y Y ; 

{ /( , )YS y Y x y S    for some }x X . 

 
From the above analysis it directly follows that all 

operations that are valid for classical probabilities can also be 
performed on uncertain probabilities. It is clear that taking into 
account the specifics of uncertain probabilities, operations on 
them can be quite complicated. 
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IV. INTERVAL PROBABILITIES 

Interval probabilities are a special case of the lower and 
upper probabilities considered in the previous section. The 
theory of interval probabilities was first described in [2]. 

Let us introduce some definitions. Let there be a set of 
elements X (random events, values of random variable), 

 1,..., nX x x . To each element ix X  there is 
connected an interval of possible probability values,  ,i il u , 
where il  is the lower boundary but iu is the upper boundary 
of that interval. Let us denote a set (family) of such intervals 
for all elements ix X  as   , / 1,...,i iL l u i n  . The 
values il  and iu  have to meet the requirement:
0 1, 1,...,i il u i n     . Sets of interval boundary 
values can be interpreted as the lower and the upper 
probability distributions in a set of potentially possible 
probability distributions 

    / , 1,.., .i i iP X l p x u i n     P P   (30) 

In other words, L  is a set of probability intervals but P  is 
a set of possible probability distributions correlated to L . 
This statement forms a direct connection with the concepts of 
interval probabilities and the general concept of lower and 
upper probabilities.  

To avoid situations when a set of potential probability 
distributions is empty, P , the following limitations are 
posed on the values of probability interval boundaries 

1 1

1 .
n n

i i
i i

l u
 

         (31) 

Probability intervals that satisfy limitations (30) are called 
proper intervals. 

For the set of potential possible probability distributions, 
P , defined by means of proper intervals for some set 
A X  the lower and the upper functions can be determined 

using these expressions: 

   infPl A P A P ;     (32) 

   supPu A P A P .    (33) 

To avoid the compatibility between interval boundaries and 
the set of potential possible probability distributions, the 
following conditions have to be met: 

1, 1,...,j i
i j

l u i n


    ;   (34) 

1, 1,...,j i
i j

u l i n


    .      (35) 

Sets of probability intervals satisfying inequalities (34) and 
(35) are called reachable.  

Probability intervals considered in this section belong to a 
special class of lower and upper probabilities: they are 
Choquet capacities of order 2k  , i.e., the following holds: 

 

        ,l A B l A B l A l B A X      ; 

        ,u A B u A B u A u B A X      . 
 

The last of the above relationships represents the so-called 
duplicated Choquet capacity of order 2k  . 

Let us consider the procedures of calculating 
marginal probability intervals out of the assigned intervals of 
joint probabilities. Let there be given sets of elements (random 

events, values of a random variable)  1,..., nX x x  and 

 1,..., mY y y . Let us denote a set of probability intervals 

in X Y P as  , / 1,..., , 1,...,ij ijL l u i n j m     . 

In the general case, the lower and the upper marginal 
distributions can be represented as follows: 

       , ;X Xl A l A Y u A u A Y      (36) 

       , .Y Yl B l X B u B u X B      (37) 

The marginal estimates of the probabilities that are obtained 
using expressions (36) and (37) fully correspond to the 
probability estimates that might be obtained via the 
marginalization of the convex set of probability distributions 
connected with L . The boundaries of marginal probability 

intervals  , / 1,...,X X
X i iL l u i n     and 

 , / 1,...,Y Y
Y j jL l u j m    can be calculated at the 

known set L as follows:  
 

1 1

max ,1 , 1,..., ;
m m

X
i ij kj

j k i j

l l u i n
  

 
   

 
    (38) 

1 1

min ,1 , 1,..., ;
m m

X
i ij kj

j k i j

u u l i n
  

 
   

 
    (39) 

1 1

max ,1 , 1,..., ;
n n

Y
j ij ik

i k i i

l l u j m
  

 
   

 
    (40) 

1 1

min ,1 , 1,..., .
n n

Y
j ij ik

i k i i

u u l j m
  

 
   

 
    (41) 

V.  -MEASURES 

 -measures, or  -measures of Sugeno have been 
proposed by М. Sugeno (see, for example, [5]). A detailed 
description of these estimates and their properties is provided 
in [6], while a short description in the context of uncertain 
probabilities can be found in [3]. To represent uncertain 

probabilities, monotone estimates p  are determined using 

the following normative requirement. Let X be a universal set 
of elements (random events, values of a random variable). Let 
us denote a set of all subsets X  as  . If ,A B   and 

A B   , then 

  ( ) ( ) ( ) ( ),p A B p A p B p A p B         (42) 
 

where 1      – the specific parameter. 
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When X  is a finite set and values   ip x
 are 

assigned to all singletons ix X , for any set A   the 

value ( )p A can be calculated as follows: 

   1
( ) 1 1 .

i

i
x X

p A p x 
 

 
   

 
   (43) 

Relevant value   can be determined based on the 

requirement that ( ) 1p X  . Expression for calculating   is 

as follows: 
  1 1 .

i

i
x X

p x 


          (44) 
 

Let    0ip x   at least for two elements from X  and 

   1ip x   for all elements ix X . Then solving 

equation (44) produces these results: 

- if   1 1
ix X

p x



 , then   is a unique solution 

of the equation; it is located in the interval  0, ; 

- if   1 1
ix X

p x



 , then 0   is a single 

solution of the equation; 
- if   1 1

ix X

p x



 , then   is a unique solution of the 
equation that is located in the interval  1,0 . 

 
Any  -measure can be fully determined by values 

  ip x
 on singletons ix X . When values   ip x

 

are set for all ix X , the value of   can be calculated by 

expression (44); then the values ( )p A  for all A   can be 

calculated using expression (43). Calculation results can be 
classified as follows:  

-   1 1
ix X

p x



 , 0  , we deal with classical 

probability estimates; 

-   1 1
ix X

p x



 , 0  , the values   ip x
 

are interpreted as lower probabilities; 
-   1 1

ix X

p x



 , 0  , the values   ip x
 are 

interpreted as upper probabilities. 
 
Hence, the latter expressions establish a direct connection 

between  -measures and lower/upper probabilities. 

Let p  - be joint  -measures, set in subsets X Y . 

Then marginal  -measures can be defined in a standard way: 

 ( ) ;X Xp A p A Y        (45) 

 ( ) .Y Yp A p A B         (46) 
 

For calculating marginal  -measures at the known joint  -
measures, these expressions are employed: 

      1
1 , 1 ;X

y Y

p x p x y 
 

 
   

 
  (47) 

      1
1 , 1 .Y

x X

p y p x y 
 

 
   

 
  (48) 

 

VI. A COMPARATIVE ANALYSIS OF THE APPROACHES 

An approach to modelling uncertain probabilities on the 
basis of arbitrary lower and upper probabilities is the most 
common one; it enables managing arbitrary lower and upper 
probabilities. The possibility of representing lower and upper 
probabilities by means of Möbius transformation allows us to 
correctly analyse them. Provided that joint lower and upper 
probability distributions are available, one can calculate lower 
and upper marginal distributions corresponding to them. If 
necessary, a reverse task of calculating lower and upper joint 
probability distributions can be solved using the corresponding 
marginal distributions. 

Interval probabilities are a special case of common lower 
and upper probabilities. These probabilities are Choquet 
capacities of order k=2. The calculation of interval 
probabilities is simpler as compared to general calculations of 
uncertain probabilities. However, if sets of interval probability 
estimates are not reachable, they have to be transformed to the 
required form. Unfortunately, from the computational point of 
view this task is quite complicated. However, when the 
reachable probability estimates are  available, further 
calculations become less complicated, for example, 
transformation of joint probability distributions into marginal 
ones and vice versa.  
λ-measures represent a specific kind of uncertain 

probability estimates. The advantage of λ-measures as applied 
to the representation of lower and upper probabilities is their 
simplicity and clear interpretability, but their shortcoming is 
the necessity to take into account the complexity of relevant 
calculations for the sets including many elements.  

For practical calculations, common uncertain probabilities 
can be employed in all cases. If the initial probability 
estimates are reachable interval estimates, the preference 
should be given to the approach based on interval estimates; 
whereas in the case when these estimates require additional 
transformation to the form of reachable interval estimates, the 
choice between a common approach based on using 
lower/upper probabilities and an interval probability based 
approach can be made on the basis of initial data analysis. As 
regards λ-measures, they have an undoubtful advantage at 
small amounts of initial data. 

All the techniques examined in this paper are only valid if 
uncertain probabilities are assigned in one and the same set of 
relevant elements. Otherwise, other approaches to modelling 
uncertain probabilities have to be applied, e.g., the probability 
box (p-box) technique.  

Since all the above-mentioned uncertain probability 
measures are in essence monotone, their development has 
become possible due to the successful development of general 
theory of monotone uncertainty measures. 
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Oļegs Užga-Rebrovs, Gaļina Kuļešova. Nenoteiktu varbūtību novērtēšanas pieeju salīdzinājums 
Klasiskās varbūtību teorijas pamatā ir pieņēmums par varbūtējo novērtējumu determinēto raksturu. Taču šādi novērtējumi var tikt iegūti, kad ir pietiekami 
sākotnējie dati. Praktiskās situācijās bieži ir nepieciešams novērtēt relevanto notikumu varbūtības gan pilnīgas objektīvās informācijas neesamības apstākļos, gan 
arī tās būtiskas nepietiekamības apstākļos. Dažādu iemeslu dēļ ekspertiem var būt apgrūtinoši noteikt pieprasītos viennozīmīgos varbūtējos novērtējumus. Un pat, 
ja tādi novērtējumi ir noteikti, novērtējumu ticamība var būt ļoti zema. Liekas priekšroka tiek dota eksplicētā veidā modelēt varbūtējo novērtējumu nenoteiktību. 
Pēdējos gados ir izstrādātas lietderīgas pieejas nenoteiktu varbūtējo novērtējumu modelēšanai. Šādu pieeju attīstība kļuvusi par iespējamu, pateicoties monotono 
nenoteiktību novērtējumu teorijas attīstībai. Mēbiusa transformāciju un Šoke kapacitāšu izmantošana deva iespēju uz stingra pamata analizēt dažādu 
nenoteiktības novērtējumu īpašības. Šajā rakstā izskatītas trīs izplatītas pieejas nenoteiktu varbūtējo novērtējumu modelēšanai: apakšējās un augšējās vispārīgā 
veida varbūtības, intervālu varbūtības un λ-novērtējumi. Visi šie novērtējumu veidi ir monotonie varbūtējie novērtējumi. Rakstā konspektīvā formā tiek doti 
apskatīto novērtējumu veidu teorētiskie pamati un tiek analizētas novērtējumu īpašības. Uz analīzes pamata tiek piedāvātas praktiskās rekomendācijas 
novērtējumu izmantošanai dažādās situācijās.  
 
Олег Ужга-Ребров, Галина Кулешова. Сравнение подходов, используемых для оценивания неопределенных вероятностей  
Классическая теория вероятностей базируется на предположении детерминированности вероятностных оценок. Однако, такие оценки могут быть 
получены при наличии достаточных исходных данных. В практических ситуациях часто необходимо производить оценивание вероятностей 
релевантных событий либо при полном отсутствии объективной информации, либо при её существенной недостаточности. В таких случаях широко 
используется экспертное оценивание. По ряду причин экспертам может быть затруднительным назначить требуемые однозначные вероятностные 
оценки. И даже если такие оценки назначены, их доверительность может быть очень низкой. Представляется предпочтительным эксплицитно 
моделировать существующую неопределённость относительно вероятностных оценок. В последние годы разработаны действенные подходы к 
моделированию неопределённых вероятностных оценок. Развитие таких подходов стало возможным в связи с бурным развитием теории монотонных 
оценок неопределённостей. Использование трансформаций Мёбиуса и мощностей Шоке позволило на строгой основе анализировать свойства 
различных оценок неопределённостей. В настоящей статье рассматриваются три распространённых подхода к моделированию неопределённых 
вероятностных оценок: нижние и верхние вероятности общего вида, интервальные вероятности и λ-оценки. Все эти типы оценок являются 
монотонными вероятностными оценками. В статье в конспективной форме даются теоретические основы рассматриваемых типов оценок и 
анализируются их свойства. На основе анализа предлагаются практические рекомендации по использованию этих оценок в различных ситуациях. 
 


