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Abstract – This article presents an approach in bioinformatics 
data analysis and exploration that improves classification 
accuracy by learning the inner structure of the data. The diseases 
studied in bioinformatics (diagnostic, prognostic etc. studies) 
often have the known or yet undiscovered subtypes that can be 
used while solving bioinformatics tasks providing more 
information and knowledge. This study deals with the problem 
above by studying inner class structures (probable disease 
subtypes) using a cluster analysis to find classification subclasses 
and applying it in classification tasks. The study also analyses 
possible cluster merges that would best describe classes. 
Evaluation is carried out using four classification methods that 
can be successfully used in bioinformatics: Naïve Bayes 
classifiers, C4.5, Random Forests and Support Vector Machines. 
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I. INTRODUCTION 

The advances in genomics and proteomics in the last decade 
have opened a way to the study of diseases from the systems 
biology point of view. Both gene expression microarrays and 
antibody display microarrays allow analysing thousands of 
genes/antibodies and their interactions in medical conditions 
covering several thousand genes/antibodies at a time. This also 
brings a new challenge in data analysis to effectively and 
accurately analyse the expressions. The methods used 
previously are not suitable for such high dimensionality; 
therefore, many bioinformatics researchers have turned to data 
mining methods that allow analysing data with so many 
features and comparably small sets of records. However, these 
methods, as well as data pre-processing, are also to be adapted 
for these new tasks. 

This paper proposes class decomposition that helps deal 
with the data specifics by analysing their inner structures and 
allows discriminating between subclasses rather than existing 
classes in the diagnostic research. It is based on the natural 
properties of the diseases – many of them have several 
mechanisms of work, and many have subtypes that have not 
been distinguished yet. This way a classifier can build 
different models that suit all diseases rather than trying to 
adjust one model to several different diseases. 

This article presents the decomposition approach using 
bioinformatics data (both the gene expression microarray data 
available from different sources on the Internet and the 
antibody display data provided by the Latvian Biomedical 
Research and Study Centre). Then it is validated using 
classification results provided by different classifiers that 
implement different approaches (the probability-based Naïve 
Bayes classifier, SVM that uses functional dependencies to 

discriminate between classes and has been proven to be one of 
the most successful classifiers working with this type of data; 
decision tree classification algorithm C4.5 and Random Forest 
that constructs an ensemble of decision tree classifiers). 

II.   EXPERIMENTAL SETUP 

All of the used data sets are either for genomic (BC1 – breast 
cancer, BC2 – inflammatory breast cancer, carcinoma, Pr – 
prostate cancer; all data sets are available at the website of 
Broad Institute Cancer Program [1]) or proteomic (GaCa – 
gastric cancer, GIS – gastrointestinal disease, Mel – 
melanoma, PrCa – prostate cancer; all antibody display data 
sets are provided by the Latvian Biomedical Research and 
Study Centre) task of diagnostics. Each proteomic data set 
holds information about 1229 antibodies expressed in sick and 
healthy donors. Each genomic set is composed of more than 
10 000 gene expressions. Each dataset is pre-processed, 
imputing missing values (using average values of the 
attribute), and classes are decomposed. 

Class decomposition is done by applying hierarchical 
agglomerative clustering and by analysing the cluster 
structures. First, each class is decomposed into 3 or less 
clusters based on the structure that has the largest distance 
among clusters; more clusters are not used because there are 
very few records comparing to the number of attributes. The 
distance between clusters is calculated using Ward’s 
method [2]. 

The original and the decomposed data sets are evaluated 
using four different classification methods: Naïve Bayes 
classifier [3] (NB; NaiveBayes in Weka [4] software), C4.5 [5] 
(algorithm J48 in Weka software), Random Forests [6] (RF; 
RandomForest algorithm in Weka software) and SVM (SMO 
algorithm [7] in Weka software). 

III. RESULTS AND DISCUSSION 

This section will provide the analysis of the results of single 
data sets gradually shifting attention to more abstract results 
that can help to draw conclusions. 

Table I shows the results of classification using all three 
methods for breast cancer antibody data set. The table row 
named ‘Bench’ gives the benchmark results that are 
classification accuracy percentage without using class 
decomposition. Next row gives accuracy results for all clusters 
without any merges. The next three rows show the result when 
clusters are merged – the first and second in the row named ‘1 
and 2’ and so on. The results show that the classification 
accuracies of Naïve Bayes and C4.5 (J48) are significantly 
lower than those of Random Forest and SVM. The accuracy of 
Naïve Bayes classifier increases in three out of four cases 
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when class decomposition is applied but the accuracy of C4.5 
drops significantly. While Random Forest and SVM show 
identical classification accuracies on the initial data sets, the 
performance on data with decomposed class structure differs 
significantly, reaching 88.33%, which is the best accuracy for 
this data set and is a 5% improvement over the next best result 
(Random Forests with decomposed data). 

TABLE I 

ACCURACY (%) RESULTS FOR BREAST CANCER DATA 

NB C4.5 RF SVM 

Bench 75.00 73.33 81.67 81.67 

All 76.67 66.67 78.33 85.00 

1and2 76.67 65.00 83.33 85.00 

2and3 75.00 68.33 83.33 85.00 

1and3 78.33 65.00 76.67 88.33 

 
Table II shows the results of classification using all three 

methods for gastric cancer data set. It is obvious that C4.5 has 
gained most from any decomposition structure. Naïve Bayes 
classifier, Random Forest and SVM methods have also shown 
improvements, but the class decomposition combinations with 
the best results do not match among methods, meaning that the 
best structure here can be dependent on classification 
algorithm specifics. The C4.5 algorithm has also shown the 
worst accuracy in benchmark results but improved a lot using 
the proper class decomposition, showing even better results 
than the Random Forest method. SVM has shown the best 
benchmark accuracy and also the best result that can be 
reached in the gastric cancer data set after class 
decomposition. 

TABLE II 

ACCURACY (%) RESULTS FOR GASTRIC CANCER DATA 

 NB C4.5 RF SVM 

Bench 60.63 55.63 59.06 64.38 

All 60.63 59.06 56.25 65.63 

1and2 60.94 59.69 59.38 63.75 

2and3 60.31 62.19 56.88 65.31 

1and3 61.56 61.25 60.00 62.81 

 
Table III shows the classification accuracies for the gastro-

intestinal disease data set. C4.5 algorithm again benefits in all 
but one case, whereas Random Forests and Naïve Bayes 
classifier do not benefit at all. SVM that has the highest 
benchmark accuracy also benefits in all but one case, but this 
one case is not for the same structure as it is for C4.5. Once 
again this shows that the same class inner structure 
descriptions can lead to completely different trends in 
classification accuracies in classification methods with 
different approaches. The best accuracy is again achieved by 
SVM method. 

 
 

TABLE III 
ACCURACY (%)  RESULTS FOR GASTRO-INTESTINAL DISEASE DATA 

 NB C4.5 RF SVM 

Bench 56.07 54.29 58.57 61.07 

All 53.93 55.71 57.14 62.86 

1and2 55.36 55.00 56.07 62.86 

2and3 50.36 51.07 56.07 63.57 

1and3 52.86 55.71 51.07 60.36 

 
 Table IV shows the accuracies for the melanoma data set. 

Here the best classification accuracy for the initial data set is 
achieved by C4.5, but the performance of this method does not 
improve when class decomposition is applied (in fact, it 
decreases significantly). Also the accuracy of Naïve Bayes 
classifier shows no improvements when the information about 
class structure is introduced. Random Forest benefits in all but 
one combination, which is also one of the worst decomposed 
class structure combinations for other algorithms. This method 
also shows the overall best result for this data set – 85.42%. 

TABLE IV 

ACCURACY (%) RESULTS FOR MELANOMA DATA 

 NB C4.5 RF SVM 

Bench 74.64 83.09 82.22 79.59 

All 72.59 75.22 85.42 80.76 

1and2 74.05 77.55 84.84 78.13 

2and3 74.05 76.97 84.55 81.34 

1and3 73.76 75.22 80.17 78.43 

 
Table V gives the results for prostate cancer antibody data. 

Here the two methods that benefit from class decomposition 
are Naïve Bayes classifier and SVM. Although C4.5 and 
Random Forests show comparatively good results for the 
initial data set, their performance does not improve when the 
class structure is introduced to the training data. Naïve Bayes 
classifiers perform worse than other methods on initial data, 
but the increase in accuracy from class decomposition is small 
(not more than 1%); therefore, the best result is again achieved 
using SVM method. Although the increase in accuracy for this 
method also does not exceed 1%, the best overall result is 
reached by SVM using class decomposition. 

TABLE V 

ACCURACY (%) RESULTS FOR PROSTATE CANCER DATA 

 NB C4.5 RF SVM 

Bench 83.5 85.5 87.5 88.5 

All 83.5 74.5 86.0 89.5 

1and2 82.5 68.5 84.0 89.0 

2and3 84.5 70.5 83.5 89.0 

1and3 84.0 73.5 80.0 87.0 
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Table VI shows results for breast cancer (BC1) gene 
expression data set. Here again Random Forests do not benefit 
from class decomposition, the results for the other algorithms 
are very different and do not lead to any more abstract 
conclusions. In fact, each algorithm shows the best accuracy in 
a data set with different subclass combinations (Naïve Bayes 
excels in the data set, where subclasses one and two are 
merged; C4.5 shows the best accuracy in the data set with 
three subclasses; SVM achieves its best result in the data set, 
where subclasses two and three are merged). The overall best 
result (69,05% accuracy) is shown by Random Forest in the 
initial data set and by C4.5 in the data set with original class 
decomposed into three subclasses. 

TABLE VI 

ACCURACY (%) RESULTS FOR BREAST CANCER (BC1) DATA 

 NB C4.5 RF SVM 

Bench 60.63 64.29 69.05 59.52 

All 61.90 69.05 66.67 64.29 

1and2 64.29 61.90 57.14 59.52 

2and3 59.52 66.67 52.38 66.67 

1and3 61.90 45.24 54.76 64.29 

 
Table VII gives the classification accuracies for 

inflammatory breast cancer gene expression (BC2) data set. In 
this set, SVM and Naïve Bayes classifier are the algorithms 
that do not benefit from class decomposition, which 
contradicts results from previous data sets. J48 again benefits 
with all combinations and so do Random Forests; this also 
contradicts the conclusions drawn from the previous data sets. 
The overall best result is achieved by Naïve Bayes classifier 
without using the class structure information. Other methods 
could not reach this benchmark accuracy even after 
introducing class structure information. 

TABLE VII 

ACCURACY (%) RESULTS FOR INFLAMMATORY BREAST CANCER (BC2) DATA 

 NB C4.5 RF SVM 

Bench 86.46 64.58 67.71 79.17 

All 70.83 79.17 75.00 76.04 

1and2 80.21 65.63 71.88 77.08 

2and3 76.04 73.96 68.75 76.04 

1and3 79.17 81.25 68.75 69.79 

 
Table VIII shows classification accuracies for carcinoma 

gene expression data set. The carcinoma data set is rather 
small (only 18 records in each of the two classes) and the best 
clustering (class splitting) result was at two clusters; therefore, 

the data set after class decomposition holds only two positive 
classes and the only combinations of subclass merging use all 
found subclasses or the initial data set (the case when two 
found subclasses are merged). Here none of the methods 
improves its performance after introducing the class inner 
structure information.  

TABLE VIII 

ACCURACY (%) RESULTS FOR CARCINOMA DATA 

 NB C4.5 RF SVM 

Bench 91.67 91.67 91.67 97.22 

All 69.44 91.67 83.33 94.59 

 
Table IX shows classification results for prostate cancer 

gene expression data set. Here the results improve after the 
class decomposition in one case for each method, and it is a 
different combination of subclasses for each method except 
Naïve Bayes classifier, which does not show increase in 
classification accuracy from the initial data set result. SVM 
clearly shows the best accuracies in both the initial data set 
and the datasets, where class inner structure information has 
been used.  

TABLE IX 

ACCURACY (%) RESULTS FOR PROSTATE CANCER GENE EXPRESSION DATA 

 NB J48 RF SVM 

Bench 62.75 79.41 79.41 91.18 

All 56.86 68.63 71.57 94.12 

1and2 55.88 76.47 79.41 91.18 

2and3 62.75 83.33 75.49 91.18 

1and3 61.76 67.65 81.37 91.18 

 
Figure 1 shows the performance of Naïve Bayes classifier 

across all data sets with and without class decomposition (the 
result of the best cluster combination). In three out of five 
cases with antibody data, the accuracy of Naïve Bayes 
classifier benefits from class decomposition and the loss in 
accuracy in other cases is very small. In gene expression data 
sets, where the number of attributes reaches 10 000 and 
15 000, the performance of the algorithm is significantly 
worse when class decomposition is applied. Gene expression 
data sets hold few records and have a high dimensionality that 
significantly increases the complexity of Naïve Bayes 
classification models that use all attributes to differentiate 
between classes. If additional information is added increasing 
the complexity of class description, the classification models 
become even more complex in order to explain more complex 
class structures.     



Information Technology and Management Science 
 

___________________________________________________________________________________________________________ 2013 / 16 

117 
 

 
Fig. 1. Results of Naïve Bayes algorithm across all data sets 

Figure 2 depicts the classification accuracy of C4.5 method 
(J48 implementation algorithm) across all data sets. C4.5 
method builds simpler classification models and only uses the 
most informative attributes due to the built-in attribute 
selection mechanism. For complex data sets, such as 
biomedical sets (like the antibody display and gene expression 
microarray data used in this study), the simple models can be 
too small to describe all the necessary knowledge to 
discriminate between classes, whereas more complex, larger 

decision trees can be overfitted to the training data. Therefore, 
using additional information for class description can either 
help the classification trees describe the classes or make them 
more prone to overfitting because, while searching for more 
complex descriptions, models can incorporate unnecessary 
information and be overfitted. That is also visible in the 
results – in most cases the accuracy either drops or rises 
significantly. Due to the built-in attribute selection, the trend is 
not influenced by the dimensionality. 

 

 
Fig. 2. Results of J48 algorithm across all data sets 
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Figure 3 sums up the performance of Random Forests 
(percentage accuracy). It can be seen that in most of the cases 
the algorithm benefits from class decomposition, but the 
amplitude of the changes is rather narrow. The only exception 
is in the data sets BC1 (breast cancer gene expression data 
set), where the accuracy rises by almost 10%. It is the smallest 

data set holding only 42 records, while its dimensionality 
reaches 16 382 attributes. This is a good example of how 
additional information about the class structure can improve 
the discriminating power of a method even in such complex 
data sets with a small number of records and high 
dimensionality. 

 
Fig. 3. Results of Random Forests algorithm across all data sets 

Figure 4 demonstrates the results of SVM classifier 
(percentage accuracy) that performed better than the other 
methods in the most of the data sets without using the class 
decomposition. The graph also shows that the SVM method 
(SMO algorithm, that works with more than two classes) in 
almost all cases performed better when class decomposition 
was applied. The other two cases show that the classification 

accuracy did not change. This method can handle very 
complex data and build appropriate models, which can explain 
why its accuracy does not drop when additional information 
about the internal class structure is added. It can utilize this 
information very well, which allows improving the 
performance significantly. 

 
Fig. 4. Results of SVM (SMO algorithm) across all data sets 
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 If we sum up the best results across all data sets, both 
benchmark best and best after decomposition, we get the 
graph in Fig. 5. It shows that class decomposition gives higher 
accuracy in all data sets but BC2, where the best benchmark 
result and the best result after class decomposition are equal 
and it is a perfect classification. The most significant increases 
are in the data sets with antibody data that hold 1229 

attributes. Data sets with more than 10 000 attributes (BC1, 
BC2, Carc and Pr) have more similar results with and without 
class decomposition, except for prostate cancer gene 
expression data set where the accuracy after class 
decomposition is significantly higher than the accuracy in the 
initial data set. 

 

 
 
Fig. 5. The best results using decomposition compared to the best benchmark results 

IV. CONCLUSION 

The article shows that the use of proper class decomposition 
can increase the accuracy of almost any classification 
algorithm. The method that showed the best results the most 
was SVM (the accuracy of the Weka implementation of SMO 
algorithm increased in all but two data sets and remained the 
same in the other two data sets when compared to benchmark 
results (without class decomposition)), whereas Random 
Forests improved its accuracy in only five out of nine cases. 
C4.5 implementation J48 in Weka improved its accuracy in 
four cases out of nine and suffered some significant decreases 
in three cases due to overfitting while searching for more 
complex classification models that would incorporate the 
additional information about the class structure.  
 The overall results show that when the best benchmark 
(without using class decomposition or any other additional 
information about the class structure) results (out of all 
classification algorithms) are compared to the best result 
where class decomposition was applied, the best results were 
achieved using class decomposition. 

The proposed approach gives a better overall description of 
the classes but it still leaves room for future research to 
describe the classes even better and represent the information 
in a way that would not make classifiers like decision tree-
based methods prone to overfitting. Other clustering 
algorithms and distance metrics can be studied to give even 
more precise information about class structures using the 
approach presented in this article. 
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Inese Poļaka, Arkādijs Borisovs. Klašu struktūras izmantošana klasifikācijas uzdevumos 
Pētījumā tiek risināta bioinformātikas problēma – datu klasifikācijā tiek izmantotas datu ieguves metodes, lai noteiktu diagnostikai svarīgu informāciju, kas ir 
šajos datos. Tā kā tipiskās klasifikācijas metodes reti ir pietiekami precīzas, tiek veikts papildus datu priekšapstrādes solis, kurā ar klasteru analīzes palīdzību tiek 
izzināta un aprakstīta klašu iekšējā struktūra, atrodot viegli nošķiramus blīvuma apgabalus, kas tālākajā darbā tiek uzskatīti par apakšklasēm. Šī pieeja balstās uz 
medicīnisko hipotēzi, kas daudzkārt apstiprinājusies citām slimībām, ka vienu un to pašu slimību var izraisīt atšķirīgi gēni (atšķirīgi slimības fenotipi) vai 
antigēni, pret kuriem darbojas humorālā imūnsistēma. Apakšklašu atrašanai tiek izmantota hierarhiskā aglomeratīvā klasterizācija ar vidējo attālumu un Varda 
attālumu. Datu kopas, kurās veikta klašu dekompozīcija, tika tālāk analizētas, izmantojot klasifikācijas metodes. Klašu iekšējās struktūras izmantošanas (klašu 
dekompozīcijas) novērtēšana tika veikta, par metriku izmantojot klasifikācijas precizitāti. Ja klašu iekšējās struktūras izmantošana palīdz atklāt papildus 
zināšanas, kas saistītas ar slimību, klasifikācijas precizitātei pēc klašu dekompozīcijas būtu jāpieaug, tāpēc klasifikācija tiek veikta datu kopās pirms un pēc klašu 
dekompozīcijas, izmantojot bioinformātikā populāras klasifikācijas metodes – Naivo Baijesa klasifikatoru, atbalsta vektoru mašīnas, lēmumu koku un to 
ansambļu klasifikatorus. Rezultāti uzrāda klasifikācijas precizitātes paaugstināšanos, izmantojot klašu dekompozīciju, bet lielākoties tā uzlabo to metožu darbību, 
kuras spēj veidot pietiekami sarežģītus klasifikatorus, lai aprakstītu ne vien klases, bet arī apakšklases. 
 
Инесе Поляка, Аркадий Борисов. Применение структуры классов в задачах классификации 
В исследовании решается задача в области биоинформатики – в классификации данных для определения существенной информации используются 
методы интеллектуального анализа данных. Поскольку типичные методы классификации редко бывают достаточно точны, выполняется 
дополнительный шаг предварительной обработки, на котором исследуется и описывается внутренняя структура классов, используя кластерный анализ. 
На этом этапе находятся легко отделяемые области плотности, которые в дальнейшей работе будут использованы как подклассы. Этот подход 
основан на медицинской гипотезе, которая неоднократно была доказана для других заболеваний, - одно и то же заболевание может быть вызвано 
разными генами (различные фенотипы болезни) или антигенами, против которых действует гуморальная иммунная система. Для нахождения 
подклассов была использована иерархическая агломеративная кластеризация, среднее расстояние и расстояние Уорда. Наборы данных, в которых 
проводилась декомпозиция классов, были далее проанализированы с помощью методов классификации. Оценка использования внутренней структуры 
классов (декомпозиции классов) проводилась с помощью точности классификации как метрики. Если использование внутренней структуры класса 
помогает обнаружить дополнительные знания о болезни, то точность классификации после декомпозиции классов должна быть улучшена, поэтому 
классификация проводится в наборах данных до и после декомпозиции классов с помощью методов, которые популярны в биоинформатике – Nаive 
Bayes classifier, Support Vector Machines, C4.5 и Random Forests. Результаты показывают улучшение точности классификации после декомпозиции 
классов, но в большинстве случаев повышается точность методов, которые могут строить сложные классификаторы, способные описать не только 
классы, но и подклассы. 


