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Abstract — This article presents an approach in biocinformatics
data analysis and exploration that improves classification
accuracy by learning the inner structure of the data. The diseases
studied in bioinformatics (diagnostic, prognostic etc. studies)
often have the known or yet undiscovered subtypes that can be
used while solving bioinformatics tasks providing more
information and knowledge. This study deals with the problem
above by studying inner class structures (probable disease
subtypes) using a cluster analysis to find classification subclasses
and applying it in classification tasks. The study also analyses
possible cluster merges that would best describe classes.
Evaluation is carried out using four classification methods that
can be successfully used in bioinformatics: Naive Bayes
classifiers, C4.5, Random Forests and Support Vector Machines.
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I. INTRODUCTION

The advances in genomics and proteomics in the last decade
have opened a way to the study of diseases from the systems
biology point of view. Both gene expression microarrays and
antibody display microarrays allow analysing thousands of
genes/antibodies and their interactions in medical conditions
covering several thousand genes/antibodies at a time. This also
brings a new challenge in data analysis to effectively and
accurately analyse the expressions. The methods used
previously are not suitable for such high dimensionality;
therefore, many bioinformatics researchers have turned to data
mining methods that allow analysing data with so many
features and comparably small sets of records. However, these
methods, as well as data pre-processing, are also to be adapted
for these new tasks.

This paper proposes class decomposition that helps deal
with the data specifics by analysing their inner structures and
allows discriminating between subclasses rather than existing
classes in the diagnostic research. It is based on the natural
properties of the diseases — many of them have several
mechanisms of work, and many have subtypes that have not
been distinguished yet. This way a classifier can build
different models that suit all diseases rather than trying to
adjust one model to several different diseases.

This article presents the decomposition approach using
bioinformatics data (both the gene expression microarray data
available from different sources on the Internet and the
antibody display data provided by the Latvian Biomedical
Research and Study Centre). Then it is validated using
classification results provided by different classifiers that
implement different approaches (the probability-based Naive
Bayes classifier, SVM that uses functional dependencies to
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discriminate between classes and has been proven to be one of
the most successful classifiers working with this type of data;
decision tree classification algorithm C4.5 and Random Forest
that constructs an ensemble of decision tree classifiers).

II. EXPERIMENTAL SETUP

All of the used data sets are either for genomic (BC1 — breast
cancer, BC2 — inflammatory breast cancer, carcinoma, Pr —
prostate cancer; all data sets are available at the website of
Broad Institute Cancer Program [1]) or proteomic (GaCa —
gastric cancer, GIS — gastrointestinal disease, Mel —
melanoma, PrCa — prostate cancer; all antibody display data
sets are provided by the Latvian Biomedical Research and
Study Centre) task of diagnostics. Each proteomic data set
holds information about 1229 antibodies expressed in sick and
healthy donors. Each genomic set is composed of more than
10 000 gene expressions. Each dataset is pre-processed,
imputing missing values (using average values of the
attribute), and classes are decomposed.

Class decomposition is done by applying hierarchical
agglomerative clustering and by analysing the cluster
structures. First, each class is decomposed into 3 or less
clusters based on the structure that has the largest distance
among clusters; more clusters are not used because there are
very few records comparing to the number of attributes. The
distance between clusters is calculated using Ward’s
method [2].

The original and the decomposed data sets are evaluated
using four different classification methods: Naive Bayes
classifier [3] (NB; NaiveBayes in Weka [4] software), C4.5 [5]
(algorithm J48 in Weka software), Random Forests [6] (RF;
RandomForest algorithm in Weka software) and SVM (SMO
algorithm [7] in Weka software).

III. RESULTS AND DISCUSSION

This section will provide the analysis of the results of single
data sets gradually shifting attention to more abstract results
that can help to draw conclusions.

Table I shows the results of classification using all three
methods for breast cancer antibody data set. The table row
named ‘Bench’ gives the benchmark results that are
classification accuracy percentage without using class
decomposition. Next row gives accuracy results for all clusters
without any merges. The next three rows show the result when
clusters are merged — the first and second in the row named ‘1
and 2’ and so on. The results show that the classification
accuracies of Naive Bayes and C4.5 (J48) are significantly
lower than those of Random Forest and SVM. The accuracy of
Naive Bayes classifier increases in three out of four cases
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when class decomposition is applied but the accuracy of C4.5
drops significantly. While Random Forest and SVM show
identical classification accuracies on the initial data sets, the
performance on data with decomposed class structure differs
significantly, reaching 88.33%, which is the best accuracy for
this data set and is a 5% improvement over the next best result
(Random Forests with decomposed data).

TABLE I
ACCURACY (%) RESULTS FOR BREAST CANCER DATA
NB C4.5 RF SVM
Bench 75.00 73.33 81.67 81.67
All 76.67 66.67 78.33 85.00
land2 76.67 65.00 83.33 85.00
2and3 75.00 68.33 83.33 85.00
land3 78.33 65.00 76.67 88.33

Table II shows the results of classification using all three
methods for gastric cancer data set. It is obvious that C4.5 has
gained most from any decomposition structure. Naive Bayes
classifier, Random Forest and SVM methods have also shown
improvements, but the class decomposition combinations with
the best results do not match among methods, meaning that the
best structure here can be dependent on classification
algorithm specifics. The C4.5 algorithm has also shown the
worst accuracy in benchmark results but improved a lot using
the proper class decomposition, showing even better results
than the Random Forest method. SVM has shown the best
benchmark accuracy and also the best result that can be

reached in the gastric cancer data set after class
decomposition.
TABLE IT
ACCURACY (%) RESULTS FOR GASTRIC CANCER DATA
NB C4.5 RF SVM
Bench 60.63 55.63 59.06 64.38
All 60.63 59.06 56.25 65.63
land2 60.94 59.69 59.38 63.75
2and3 60.31 62.19 56.88 65.31
land3 61.56 61.25 60.00 62.81

Table I1I shows the classification accuracies for the gastro-
intestinal disease data set. C4.5 algorithm again benefits in all
but one case, whereas Random Forests and Naive Bayes
classifier do not benefit at all. SVM that has the highest
benchmark accuracy also benefits in all but one case, but this
one case is not for the same structure as it is for C4.5. Once
again this shows that the same class inner structure
descriptions can lead to completely different trends in
classification accuracies in classification methods with
different approaches. The best accuracy is again achieved by
SVM method.
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TABLE III
ACCURACY (%) RESULTS FOR GASTRO-INTESTINAL DISEASE DATA
NB C4.5 RF SVM
Bench 56.07 54.29 58.57 61.07
All 53.93 55.71 57.14 62.86
land2 55.36 55.00 56.07 62.86
2and3 50.36 51.07 56.07 63.57
land3 52.86 55.71 51.07 60.36

Table IV shows the accuracies for the melanoma data set.
Here the best classification accuracy for the initial data set is
achieved by C4.5, but the performance of this method does not
improve when class decomposition is applied (in fact, it
decreases significantly). Also the accuracy of Naive Bayes
classifier shows no improvements when the information about
class structure is introduced. Random Forest benefits in all but
one combination, which is also one of the worst decomposed
class structure combinations for other algorithms. This method
also shows the overall best result for this data set — 85.42%.

TABLE IV
ACCURACY (%) RESULTS FOR MELANOMA DATA
NB C4.5 RF SVM
Bench 74.64 83.09 82.22 79.59
All 72.59 75.22 85.42 80.76
land2 74.05 77.55 84.84 78.13
2and3 74.05 76.97 84.55 81.34
land3 73.76 75.22 80.17 78.43

Table V gives the results for prostate cancer antibody data.
Here the two methods that benefit from class decomposition
are Naive Bayes classifier and SVM. Although C4.5 and
Random Forests show comparatively good results for the
initial data set, their performance does not improve when the
class structure is introduced to the training data. Naive Bayes
classifiers perform worse than other methods on initial data,
but the increase in accuracy from class decomposition is small
(not more than 1%); therefore, the best result is again achieved
using SVM method. Although the increase in accuracy for this
method also does not exceed 1%, the best overall result is
reached by SVM using class decomposition.

TABLE V
ACCURACY (%) RESULTS FOR PROSTATE CANCER DATA
NB C4.5 RF SVM
Bench 83.5 85.5 87.5 88.5
All 83.5 74.5 86.0 89.5
land2 82.5 68.5 84.0 89.0
2and3 84.5 70.5 83.5 89.0
land3 84.0 73.5 80.0 87.0
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Table VI shows results for breast cancer (BC1) gene
expression data set. Here again Random Forests do not benefit
from class decomposition, the results for the other algorithms
are very different and do not lead to any more abstract
conclusions. In fact, each algorithm shows the best accuracy in
a data set with different subclass combinations (Naive Bayes
excels in the data set, where subclasses one and two are
merged; C4.5 shows the best accuracy in the data set with
three subclasses; SVM achieves its best result in the data set,
where subclasses two and three are merged). The overall best
result (69,05% accuracy) is shown by Random Forest in the
initial data set and by C4.5 in the data set with original class
decomposed into three subclasses.

TABLE VI
ACCURACY (%) RESULTS FOR BREAST CANCER (BC1) DATA
NB C4.5 RF SVM
Bench 60.63 64.29 69.05 59.52
All 61.90 69.05 66.67 64.29
land2 64.29 61.90 57.14 59.52
2and3 59.52 66.67 52.38 66.67
land3 61.90 45.24 54.76 64.29
Table VII gives the classification accuracies for

inflammatory breast cancer gene expression (BC2) data set. In
this set, SVM and Naive Bayes classifier are the algorithms
that do not benefit from class decomposition, which
contradicts results from previous data sets. J48 again benefits
with all combinations and so do Random Forests; this also
contradicts the conclusions drawn from the previous data sets.
The overall best result is achieved by Naive Bayes classifier
without using the class structure information. Other methods
could not reach this benchmark accuracy even after
introducing class structure information.

TABLE VII
ACCURACY (%) RESULTS FOR INFLAMMATORY BREAST CANCER (BC2) DATA

NB C4.5 RF SVM
Bench 86.46 64.58 67.71 79.17
All 70.83 79.17 75.00 76.04
land2 80.21 65.63 71.88 77.08
2and3 76.04 73.96 68.75 76.04
land3 79.17 81.25 68.75 69.79

Table VIII shows classification accuracies for carcinoma
gene expression data set. The carcinoma data set is rather
small (only 18 records in each of the two classes) and the best
clustering (class splitting) result was at two clusters; therefore,
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the data set after class decomposition holds only two positive
classes and the only combinations of subclass merging use all
found subclasses or the initial data set (the case when two
found subclasses are merged). Here none of the methods
improves its performance after introducing the class inner
structure information.

TABLE VIII
ACCURACY (%) RESULTS FOR CARCINOMA DATA
NB C4.5 RF SVM
Bench 91.67 91.67 91.67 97.22
All 69.44 91.67 83.33 94.59

Table IX shows classification results for prostate cancer
gene expression data set. Here the results improve after the
class decomposition in one case for each method, and it is a
different combination of subclasses for each method except
Naive Bayes classifier, which does not show increase in
classification accuracy from the initial data set result. SVM
clearly shows the best accuracies in both the initial data set
and the datasets, where class inner structure information has
been used.

TABLE IX
ACCURACY (%) RESULTS FOR PROSTATE CANCER GENE EXPRESSION DATA

NB J48 RF SVM
Bench 62.75 79.41 79.41 91.18
All 56.86 68.63 71.57 94.12
land2 55.88 76.47 79.41 91.18
2and3 62.75 83.33 75.49 91.18
land3 61.76 67.65 81.37 91.18

Figure 1 shows the performance of Naive Bayes classifier
across all data sets with and without class decomposition (the
result of the best cluster combination). In three out of five
cases with antibody data, the accuracy of Naive Bayes
classifier benefits from class decomposition and the loss in
accuracy in other cases is very small. In gene expression data
sets, where the number of attributes reaches 10 000 and
15000, the performance of the algorithm is significantly
worse when class decomposition is applied. Gene expression
data sets hold few records and have a high dimensionality that
significantly increases the complexity of Naive Bayes
classification models that use all attributes to differentiate
between classes. If additional information is added increasing
the complexity of class description, the classification models
become even more complex in order to explain more complex
class structures.
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Fig. 1. Results of Naive Bayes algorithm across all data sets

Figure 2 depicts the classification accuracy of C4.5 method
(J48 implementation algorithm) across all data sets. C4.5
method builds simpler classification models and only uses the
most informative attributes due to the built-in attribute
selection mechanism. For complex data sets, such as
biomedical sets (like the antibody display and gene expression
microarray data used in this study), the simple models can be
too small to describe all the necessary knowledge to
discriminate between classes, whereas more complex, larger

decision trees can be overfitted to the training data. Therefore,
using additional information for class description can either
help the classification trees describe the classes or make them
more prone to overfitting because, while searching for more
complex descriptions, models can incorporate unnecessary
information and be overfitted. That is also visible in the
results — in most cases the accuracy either drops or rises
significantly. Due to the built-in attribute selection, the trend is
not influenced by the dimensionality.
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Fig. 2. Results of J48 algorithm across all data sets
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Figure 3 sums up the performance of Random Forests
(percentage accuracy). It can be seen that in most of the cases
the algorithm benefits from class decomposition, but the
amplitude of the changes is rather narrow. The only exception
is in the data sets BC1 (breast cancer gene expression data
set), where the accuracy rises by almost 10%. It is the smallest

data set holding only 42 records, while its dimensionality
reaches 16 382 attributes. This is a good example of how
additional information about the class structure can improve
the discriminating power of a method even in such complex
data sets with a small number of records and high
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Fig. 3. Results of Random Forests algorithm across all data sets

Figure 4 demonstrates the results of SVM classifier
(percentage accuracy) that performed better than the other
methods in the most of the data sets without using the class
decomposition. The graph also shows that the SVM method
(SMO algorithm, that works with more than two classes) in
almost all cases performed better when class decomposition
was applied. The other two cases show that the classification

accuracy did not change. This method can handle very
complex data and build appropriate models, which can explain
why its accuracy does not drop when additional information
about the internal class structure is added. It can utilize this
information very well, which allows improving the
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Fig. 4. Results of SVM (SMO algorithm) across all data sets
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If we sum up the best results across all data sets, both
benchmark best and best after decomposition, we get the
graph in Fig. 5. It shows that class decomposition gives higher
accuracy in all data sets but BC2, where the best benchmark
result and the best result after class decomposition are equal
and it is a perfect classification. The most significant increases
are in the data sets with antibody data that hold 1229

attributes. Data sets with more than 10 000 attributes (BCI,
BC2, Carc and Pr) have more similar results with and without
class decomposition, except for prostate cancer gene
expression data set where the accuracy after class
decomposition is significantly higher than the accuracy in the
initial data set.
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Fig. 5. The best results using decomposition compared to the best benchmark results
IV.  CONCLUSION ACKNOWLEDGEMENTS

The article shows that the use of proper class decomposition
can increase the accuracy of almost any classification
algorithm. The method that showed the best results the most
was SVM (the accuracy of the Weka implementation of SMO
algorithm increased in all but two data sets and remained the
same in the other two data sets when compared to benchmark
results (without class decomposition)), whereas Random
Forests improved its accuracy in only five out of nine cases.
C4.5 implementation J48 in Weka improved its accuracy in
four cases out of nine and suffered some significant decreases
in three cases due to overfitting while searching for more
complex classification models that would incorporate the
additional information about the class structure.

The overall results show that when the best benchmark
(without using class decomposition or any other additional
information about the class structure) results (out of all
classification algorithms) are compared to the best result
where class decomposition was applied, the best results were
achieved using class decomposition.

The proposed approach gives a better overall description of
the classes but it still leaves room for future research to
describe the classes even better and represent the information
in a way that would not make classifiers like decision tree-
based methods prone to overfitting. Other clustering
algorithms and distance metrics can be studied to give even
more precise information about class structures using the
approach presented in this article.

The research has been supported by the European Social
Fund within the project “Support for the Implementation of
Doctoral Studies at Riga Technical University”.
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Inese Polaka, Arkadijs Borisovs. Klasu struktiiras izmanto$ana klasifikacijas uzdevumos

Pétijuma tiek risinata bioinformatikas probléma — datu klasifikacija tiek izmantotas datu ieguves metodes, lai noteiktu diagnostikai svarigu informaciju, kas ir
Sajos datos. Ta ka tipiskas klasifikacijas metodes reti ir pietiekami precizas, tiek veikts papildus datu priek$apstrades solis, kura ar klasteru analizes palidzibu tiek
izzinata un aprakstita klasu ieksgja struktiira, atrodot viegli noskiramus blivuma apgabalus, kas talakaja darba tiek uzskatiti par apakiklasem. ST pieeja balstas uz
medicinisko hipotézi, kas daudzkart apstiprinajusies citam slimibam, ka vienu un to pasu slimibu var izraisit atskirigi géni (atskirigi slimibas fenotipi) vai
antigéni, pret kuriem darbojas humorala imiinsistéma. ApaksklaSu atraSanai tiek izmantota hierarhiska aglomerativa klasterizacija ar vidgjo attalumu un Varda
attalumu. Datu kopas, kuras veikta klaSu dekompozicija, tika talak analizétas, izmantojot klasifikacijas metodes. Klasu ieksgjas struktiiras izmantoSanas (klasu
dekompozicijas) novértesana tika veikta, par metriku izmantojot klasifikacijas precizitati. Ja klasu iek§€jas struktiiras izmantosana palidz atklat papildus
zinaSanas, kas saistitas ar slimibu, klasifikacijas precizitatei péc klaSu dekompozicijas biitu japieaug, tapec klasifikacija tiek veikta datu kopas pirms un péc klasu
dekompozicijas, izmantojot bioinformatika popularas klasifikacijas metodes — Naivo Baijesa klasifikatoru, atbalsta vektoru masinas, lémumu koku un to
ansamblu klasifikatorus. Rezultati uzrada klasifikacijas precizitates paaugstinasanos, izmantojot klasu dekompoziciju, bet lielakoties ta uzlabo to metozu darbibu,

kuras spgj veidot pietickami sarezgTtus klasifikatorus, lai aprakstitu ne vien klases, bet arT apaksklases.

Huece Monsika, Apkaguii bopucos. IlppMeHenne CTpyKTypbI KJIacCOB B 3aJa4aX Kiaaccupukanuu

B mccienoBannn penraetes 3a1a4a B 001acTiH OHOMH(POPMATHKH — B KIIACCH(HUKALNY TAHHBIX IS OTPEAENICHIS CyIIECTBCHHON HH()OPMALIMU UCTIONB3YIOTCSI
METOJIbI HHTEIUIEKTYaIBHOTO aHAIH3a JaHHBIX. [[0CKOIBKY THITHYHBIE METO/IBI KIACCU(UKAIINN PEIKO OBIBAIOT JOCTATOYHO TOYHBI, BBIIOIHSIETCS
JIOTIOJTHATEIBHBIH IIar peJBapHTEIIbHOM 00paboTKH, Ha KOTOPOM HCCIIEAYETCs M OIMCHIBACTCS BHYTPEHHSIS CTPYKTYpa KJIAaCCOB, UCIIOJB3YsI KIIACTEPHBIN aHaIN3.
Ha 3ToMm 3Tame Haxo/sTCs JIETKO OTAelsieMble 00JIaCTH IIOTHOCTH, KOTOPBIE B AanbHeiiiieit paboTe OyayT HCIONB30BaHbI KK MOAKIACCH. DTOT MOAXO.
OCHOBAaH Ha MEIHIIMHCKO THIIOTE3€, KOTOPasi HEOTHOKPATHO ObLUIa JOKa3aHa st IPYTHUX 3a00JIEBAHUIA, - OJJHO M TO e 3a00JI€BaHIE MOYKET OBITH BHI3BAHO
pa3HBIMU TeHaMH (pa3inyHble PEHOTHUITBI OOJIE3HH) HIIM aHTUTCHAMH, TIPOTHB KOTOPBIX JEHCTBYET ryMOpaibHas HMMyHHast cucteMa. Jlisi Hax0XK IeHHUsI
MOZIKITACCOB OBbLIIa MCIOIb30BaHA HEPAPXUUCCKAsI arIOMEPATHBHAS KIIACTEPU3ALIHs, CPEeIHEE PACCTOSTHUE U paccTosiHue Yopaa. HaGops! JaHHBIX, B KOTOPBIX
MPOBOJIIIACH JIEKOMITO3UIINS KJIACCOB, OBLITH Jlaliee MPOaHaTH3HPOBAHEI ¢ TIOMOIIBIO METOIOB Kiiaccudukarmu. OIeHKa HCIOIb30BaHUS BHYTPEHHEH CTPYKTYPBI
KJIACCOB (IEKOMITO3HIMH KJIACCOB) MPOBOJIMIIACH C IIOMOILBI0 TOYHOCTH KIIACCH(PUKALNK KaK METPUKHU. ECin HCrosb30BaHne BHYTPEHHEH CTPYKTYPBI Kilacca
OMOTaeT OOHAPYKHUTH TOMOIHUTEIBHBIC 3HAHHS O OOJIE3HH, TO TOYHOCTH KITACCH(DUKALIMH MOCTIE JEKOMITO3HUIMH KIIACCOB JOJDKHA OBITH yIydIleHa, TOITOMY
KITacCU(UKAIMS TPOBOIUTCS B HAGOPaX JaHHBIX JIO U TIOCIIE JEKOMITO3UIINH KIACCOB C TIOMOIIIBI0 METO/IOB, KOTOPBIE MOMYJISIPHEI B OnonHpopmatrke — Naive
Bayes classifier, Support Vector Machines, C4.5 u Random Forests. Pe3ybraThl HOKa3bIBAIOT YIIyUYIICHHES TOYHOCTH KJIACCU(PHUKALMHU ITOCIIE ISKOMITO3HIIUH
KJIaCCOB, HO B OOJIBIIMHCTBE CIy4aeB MOBBILIACTCSI TOYHOCTH METOZOB, KOTOPhIE MOTYT CTPOHTH CIOKHBIE KIaCCH(PUKATOPHI, CIIOCOOHBIE OMUCATH HE TOJIBKO

KJIaCChI, HO M IMOAKJIACCHI.
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