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Abstract — Probability boxes (p-boxes) are used as a tool for
modeling uncertainty regarding probability distributions in the
sets of relevant elements (random events, values of the random
variable etc.). To combine information produced by two or more
p-boxes, Dempster’s rule for belief combination is commonly
used. However, there are plenty of other rules for belief
combination developed within the theory of evidence. The
purpose of this paper is to present and analyze some widespread
rules of that kind as well as examine their potentialities regarding
combining the information provided by probability boxes.
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1. INTRODUCTION

Probabilistic evaluations represent occurrence chances of
random events. Whenever initial data are missing or
insufficient, the evaluation of relevant probabilities becomes
quite difficult. If the evaluation is made by experts, the
validity of the estimates obtained in principle cannot be
evaluated a priori. To enable consideration of uncertainties
related to probability evaluation, different techniques can be
used. Common idea behind all those techniques is that instead
of a single probability function, boundary probabilities are
specified. It is supposed that a true probability function is
between those boundary probability functions. However,
situations are frequently possible when the accumulated
distribution functions can only be constructed on different sets

of relevant elements. Situations of this kind occur when
analyzing risks and/or safety of technical system operation.
Among the reasons causing this kind of uncertainties, the
following can be mentioned [2]:

- imprecisely defined probability distributions;

- ill-identifiable or even unknown correlations;

- essential measurement errors;

- impact of unrecognized factors on the model output;

- small sizes of samples;

- uncertainty of a model,;

- non-stationarity (inconstant distributions).

To model this kind of uncertainties, the p-boxes technique
was suggested. Theoretical foundations of the technique were
first described in [1], [2]. The use of representation exploiting
probability boxes in the structural analysis based on the
method of finite elements is discussed in [8], whereas p-box
application in the general context of risk assessment is
examined in [3].

In what follows, to make the presentation simple and visual,
it will be assumed that X is a set of real numbers, A . This
assumption in no extent will affect the commonness of
material presentation.

The main idea of the p-box techniques is as follows. If, due
to some reasons, it is not possible to construct a single
probability distribution function on /A, boundary distribution
functions similar to those depicted in Fig. 1 are constructed.

\

Fig. 1. Boundary probability distribution functions in the set of relevant values, R.

It is stated that a real unknown distribution function
F (R ) is in between those boundary functions. F'(R) is the
left boundary of the set of possible distribution functions,

which represents the values of the accumulated distribution
function for R <7 . F(R) is the upper boundary of possible
distribution functions. If a set of the lower probability values

111



Information Technology and Management Science

2014 /17

on R, P(R)is known, the boundary distribution functions
can be expressed as follows:

F(r)=1-P(R>r); (1)

F(r)=P(R<r). 2)

From Fig. 1 it follows that the left boundary F(R) is the
upper boundary for distribution function values and the lower
boundary for value R . Instead, the right-hand boundary
F(R) is the lower boundary for the values of distribution

function and the upper boundary for value R .

The construction of probability boxes can be both
parametric and non-parametric. The non-parametric
construction is based on the assumption that the form and
parameters of wunderlying probability distribution are
unknown. The boundaries of the constructed p-box can have a
deliberate form.

How could information provided by two or more
probability boxes be aggregated? If boundary functions of
distributions for combined probability boxes have a
continuous form, such boxes should be discretized in advance.
There are two techniques of probability box discretization.
The essence of the first one, the so-called boundary
discretization, is depicted in Fig. 2.

The second technique of discretization called discretization
over mean points is illustrated in Fig. 3.
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Fig. 3. Schematic representation of probability box discretization method based on mean points.

Let us assume that we have two stepwise or discretized
probability boxes constructed on the basis of two independent
information sources. The task is to aggregate information from
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those sources. The next section considers basics of the theory
of evidence and Dempster’s belief combination rule that
makes it possible to solve the task in a standard way.
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II. BASICS OF THE THEORY OF EVIDENCE

The basics of the theory of evidence (Dempster-Shafer theory)
were first described in [4]. A more detailed description of the
theory can be found in Chapters 2 and 3 of [8]. Below, short
data about the basic concepts and definitions of this theory are
outlined, which are necessary for the explication of procedures
for combining probability boxes.

One of the fundamental concepts of the theory is the

concept of frame of discernment ) = {a)l li= 1,...,n} VIt

is formed of the elements under consideration. The notion of
elements can be treated quite widely depending on the context.
Elements can be possible values of unknown variable,
individuals who are suspected of making a crime, certain
events etc. Only one element is true. Let us denote it as @

and call it a real world.

The essence of Dempster-Shafer’s theory is as follows.
Based on the evidences available, subsets of elements
A < Q are determined; the subsets may contain a real world
@, . If a real value of some unknown variable is under
consideration, the role of subsets will be played by respective
intervals. Relevant subsets or intervals are called focal
elements. Function m:2% —[0,1] that is called basic
probability assignment can be correlated with the frame of
discernment; the function satisfies these requirements:

m(D)=0;

> m(A)=1forall A Q.

AcQ
The kernel of the theory of evidence is the concept of belief

function bel:2° —[0,1] that meets the following
requirements:

bel(@) =0; bel(Q) =1

For every integer 1 and every set A,,..., 4, of subsets
we have

bel(4,U...UA,)=bel(4)-Y bel(4NA,)+...+(=1)"bel(4N..N4,).

i<j
Belief functions are correlated with basic probability
assignments in this way:

bel(A)= Y m(B,). (3)

B;cA

An important question in the Dempster-Shafer theory is the
combination of beliefs produced by different evidences. Most
widespread rule of belief combination is Dempster’s rule [5].
Let on the basis of the first group of evidences there be
assigned basic probability masses to certain subsets (focal
elements) on the frame of discernment 4, — Q,i=1,...,m.
Assume that there is another group of evidences on whose
basis there are assigned basic masses of probability to subsets
Bj cQ,j=1,..,n . The combined mass of probability
corresponding to the overlapping of focal elements A, NB ;
is expressed as follows:

mu(Al.ﬂBj):ml{Ai}mz{Bj}. 4)

For any subset C , comprising any number of subsets
A NB It the combined mass of probability can be calculated
as a sum

2 midm, {Bj}' ©)
l;l}]ﬂB_ ,<C
Dempster’s rule of combination foresees the normalization

of the combined masses of probability corresponding to non-
empty intersections of marginal focal elements. The value of

the normalizing constant K is calculated by this expression:
-1

1= > m{4tm{B}| . 6)

i,]
4NB;#J

K=

Let us consider an example illustrating the combination of
probability boxes on the basis of Dempster’s rule (the idea is
borrowed from [8]).

Example 1. Fig.4 shows three probability boxes
constructed on the basis of evaluations of experts A, B and C
in the set of values of random variable =.
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Fig. 4. Probability boxes constructed by three experts A, B and C.

Let us express the information represented by these boxes in
the numeric form.

Expert A: Expert B: Expert C:
[1,4] m;=0.5; [6,8] my=0.2; 1[5 8] m3=0.3;
[2,5] m =05 [7,9] m=04; [7,10] m;=0.4;

[8,10] my=0.4. [9,12] m;=0.3.

The figures in square brackets represent intervals of
probability boxes but the values m(.) are basic probability
assignments related to the corresponding intervals.

It is obvious that the information provided by probability
box A cannot be combined with the information provided by
probability boxes B and C because Dempster’s rule can only
be used for overlapping probability boxes.

By combining basic probability assignments for the
overlapping intervals of probability boxes B and C according
to expression (5) and normalizing the results by expression (6)
we get:

m[.,.]

1,0 —
0,9 —
0.8 —
0,7 —
0,6 —
0,5 —
0,4 —
0.3 —

0,2 —

mpc [6, 8] = 0.0857;mpc[7, 8] = 0.2857; mpc
0.2286; mpc[8, 10] = 0.2286;
mgpc[9, 10] =0.1714.

The combined probability box is shown in Fig. 5. As can be
seen in Fig. 5, the resulting probability box is narrower than
the initial boxes. The reason for that is that Dempster’s rule of
combination takes into account only the overlapping parts of
intervals of the initial probability boxes.

Dempster’s rule of combination has a very strong
underlying logical basis and is characterized by high
conservatism. The result of combination only depends on the
information, which is provided by both sources. The
information provided by a separate source is not included in
the result of combination and serves only for combination
result normalization.

The shortcoming of Dempster’s rule of combination is that
it can produce unnatural results in certain specific conditions

(61, [7].

[7. 9] =

|
o 1 2 3 a E 6

7 8 o 10 11 12 7

Fig. 5. Probability box obtained through the combination of probability boxes B and C according to Dempster’s rule (see Fig. 4).
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III.  ALTERNATIVE METHODS FOR THE COMBINATION
OF PROBABILITY BOXES

Nowadays, a large number of alternative rules for belief
combination exist. More details on this kind of techniques can
be found in [9]). This section considers most famous of them.
One of the rules of this kind is Yager’s rule of combination
[10]. Yager has refused from the idea to ascribe all combined
masses of probability related to empty overlapping of
marginal focal elements to an empty set. Like in Dempster’s
rule, the value of each combined probability mass is calculated
here as an orthogonal sum of the corresponding basic masses
of probability (5). The normalization of the results is not
foreseen. Though Yager’s rule allows one to get rid of the
main shortcoming of Dempster’s rule; it possesses another
shortcoming. It is impossible to construct a probability box on
the basis of the results of combination because the sum of
resulting masses is not equal to 1. Due to that reason, Yager’s
rule cannot be employed for combining probability boxes.

Dempster’s rule of combination assumes as a basis
overlapping marginal focal elements that are determined on
the basis of different groups of evidences. This rule, however,
does not consider the extent of such overlapping, whereas an
alternative rule of combination, Zhang’s rule [12], does take
into account the extents of overlapping of the corresponding
focal elements. If a subset C is the result of overlapping of
subsets A and B, C = A N B, Zhang introduces the evaluation
of the extent of overlapping of these subsets in this manner:

(4.B) IC|  |4nB| .
r . = = N

|4|[B] |48
where ’A ,IBl, |ANnB ’ are cardinalities of subsets A, B,

A N B, respectively.

ma.B[.,.]

1,0 —
0,9 —
0,8 —
0,7 —

0,6 —

Evaluations (7) are calculated for each pair of the overlapping
marginal focal elements. The value of the combined mass of
probability related to a certain subset C — Q is calculated as
follows:

]
m (Hm,(B) |, ®)

mO=K 2. |18

ANnB=C

where K is a normalizing constant.

Zhang’s rule of combination also takes into account only
the overlapping parts of intervals of probability boxes. The
results of combination according to that rule slightly differ
from those obtained using Dempster’s rule. That difference is
due to the principles of combination underlying both rules.

Zhang’s rule can be recommended for the combination of
probability boxes in cases when due to some reasons it is
necessary to take into account the extent of overlapping of
initial boxes.

There are also rules of combination developed that are
based on one or another kind of averaging of the initial masses
of probability. One of widespread rules of this kind is called
p-averaging. The idea of that averaging is quite simple. If,
based on the n groups of evidences basic probability masses
mi(A), i =1, ..., n, are assigned to a subset A — Q , then the
combined mass of probability ascribed to that subset is
calculated by expression

1 n
()=~ 2 wm,(A), ©)
i=1
where w; is a coefficient (weight) characterizing the extent of
reliability of the i-th group of evidences. In particular case the
averaging can be made without introducing coefficients
(assuming the values of all w; equal 1).

0,4 —

0,3 —

0,2 —

0,1 —

o 1 2 3 4 5 6

7 8 9 10 11 12

Fig. 6. A probability box obtained as a result of combination of three initial probability boxes in Example 1 on the basis of the rule of p-averaging.
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Applying the rule of p-averaging to all initial probability
boxes in Example 1, we get the following result of
combination:

magpcll, 4]=1/3%0.5=0.167; mapcl2, 5] = 1/3%0.5 =
0.167; mapc[S, 8]=1/3%0.3 = 0,100;
mapcl6, 8]=1/3%0.2=0.067; mapcl7, 9] = 1/3*0.4 =

0.133; mapc[7, 10]=1/3*0.4=0.133;
ma g[8, 10] = 1/3*0.4 = 0.133;
mapc[9, 12] = 1/3*0.3 = 0.100.
The resulting probability box is shown in Fig. 6.

It is clear that the rule of p-averaging allows combining
non-overlapping probability boxes, which might be quite
important in certain specific cases.

As opposed to the rule of p-averaging that averages
probability masses by initial intervals, under x-convolving
averaging specific combination of the initial relevant intervals
is performed. The boundaries of each resulting interval are

A

ma.B[.,.]

1,0 —
0,9 —
0,8 —
0,7 —
0,6 —
0,5 —
0,4 —
0,3 —
0,2 —

0,1 —

determined as the mean values of the boundaries of the initial
intervals.

The combined values of probability masses ascribed to each
resulting interval are calculated in a standard manner as the
multiplications of the marginal probability masses assigned to
the initial intervals.

An essential feature of that rule of combination and also of
the rule of p-averaging is that it forms and takes into account
the resulting intervals even in the cases when the initial
intervals do not overlap.

Applying the rule of x-convolving averaging to probability
boxes A and B in Example 1, we get the following results of
combination:

mag[3,5, 6] = 0.10; map[4, 6,5] = 0.30;
map[4,5, 7] = 0.40; mag[5, 7,5] = 0.20.

The resulting probability box is shown in Fig. 7.

| I |
(] 1 2 3 4 5

|
6 7 $|§ o 10 11 12

| | | I z

Fig. 7. Probability box obtained as a result of combining initial probability boxes A and B in Example 1 on the basis of the rule of x —convolving averaging.

A specific rule of belief combination is the disjunctive rule of
Dubois and Prade. That rule is similar to the rule of x-
convolving averaging, the only difference being in the
determination of the boundaries of the resulting intervals. In
the rule of x-convolving averaging, cach of the boundaries is
determined as the mean of the corresponding boundaries of the
initial intervals. In the given rule, the lower boundary of the
resulting interval is equal to the minimal value of the lower
boundaries of the initial intervals while the upper boundary is

116

equal to the maximum value of the upper boundaries of the
initial intervals.

Let us combine the initial probability boxes A and B in
Example 1 by the disjunctive rule of Dubois and Prade. As a
result, we have

mAB[l,S] = 010, mAB[1,9] = 020, mAB[l,IO] = 020,
mAB[Z,S] = 010, mAB[2,9] = 020, mAB[Z,IO] =0.20.

The resulting probability box is depicted in Fig. 8.
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Fig. 8. A probability box obtained as a result of combining initial probability boxes A and B in Example 1 on the basis of the Dubois and Prade disjunctive rule

of combination.

IV. CONCLUSION

When developing the theory of probability boxes for
combining information provided by two or more probability
boxes, the use of Dempster’s rule of belief combination was
suggested. This suggestion is probably based on the wide
reputation and applicability of rule. However, plenty of other
rules for combining beliefs are proposed. Most widespread
rules of this kind are briefly described in this paper.

All the above-mentioned rules of belief combination except

for Yager’s rule can be in principle used for combining
probability boxes.
It should be noted that all those rules can be divided into three
groups: (1) rules working only on the overlapping of intervals
that form probability boxes; (2) rules based on the averaging
of initial probability masses for initial intervals and (3) rules
based on the specific formation of resulting intervals on the
basis of the initial intervals. Combination rules of Dempster
and Zhang fall to the first group. Zhang’s rule only differs
from Dempster’s rule in that it takes into account the extent of
overlapping of the initial intervals when calculating resulting
probability masses. Both these rules can be used in the cases
when a high confidence of the resulting evaluations is
required. In general case, preference has to be given to
Dempster’s rule as it has a more general character and is
simpler from the computational point of view.

The rule of p-averaging is ascribed to the second group and
has a universal character. It takes into account all initial
probability masses for relevant intervals. The advantage of the
method is the possibility of accounting the extent of
confidence for different groups of evidences (initial
probability boxes).

The next two methods are labeled to the third group. An
essential feature of the rule of x-convolving averaging is the
specific creation of the resulting intervals, which are the result
of averaging of the initial intervals. However, under such a
combination, the uncertainty of the resulting evaluations may
be higher than that of the initial evaluations, which essentially
impedes the interpretation of the results obtained and makes
the deduction of validated conclusions quite problematic. That
is why the given rule can be recommended for practical use

only in those cases, when it is desired to use considerable
amount of the initial information not taking into account its
potentially contradictory character.

These conclusions are even more relevant for the Dubois
and Prade disjunctive rule of combination. The advantage of
the rule is that it makes use of the whole initial information.
The shortcoming of the method is a high uncertainty of the
results. Due to that, the rule can only be used in exceptional
cases.

A general conclusion that can be made on the basis of this
paper is — when combining probability boxes researchers
should not restrict themselves to Dempster’s rule of
combination; instead, alternative rules of combination have to
be widely used. The choice of proper rule of combination has
to be dictated by conditions of a specific task and specific
requirements to the results.
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Olegs UzZga-Rebrovs, Galina KuleSova. Alternativas metodes varbiitibas kastu kombinésanai

Liela dala lietiSko uzdevumu varbiitibas lielumu novértésanai tiek veikta uz ekspertu subjektivo spriedumu pamata. Ta ka ekspertiem biezi ir griitibas ar
viennozimigu relevanto varbiitibu novert§jumu, tiek izstradatas pieejas, kuras lauj modelét papildu nenoteiktibas, kas ir saistitas ar ekspertu varbitibas
novértg§jumiem. Tada veida zinamas pieejas ir nenoteiktas varbitibas un izpludusas varbutibas. Ar varbitibu kastu palidzibu tiek model&tas nenoteiktibas, kas ir
saistitas ar varblitibu sadalfjuma ekspertu novértéjumu. Ja eksperts nav parliecinats, ka novertéjama sadalijums ir ticams, viena varbiitibu sadalijuma vieta vins
uzdod divus varbiitibu sadalijumus, kuri veido varbutibu kasti. Varbiutibu sadalijumiem, kuri veido varbutibu kasti, var but dazada forma. Sadalijumi var bt art
nesimetriski. Problémas rodas tad, kad jakombin€ informacija, kas tiek piedavata ar divam vai vairakam varbiitibu kastém, kuras konstrugja neatkarigi eksperti.
Originalos darbos par varbatibu kastém $im mérkim tiek piedavats izmantot Dempstera parliecibu kombing$anas likumu. Metodes trikums — nepiecieSamiba
normét rezult&josas parliecibas. ST raksta mérkis ir paradit iespgjas izmantot alternativas metodes informacijas kombingsanai, kura tiek iegiita no divam vai
vairakam varbiitibas kastém. Sis metodes var pielietot tiesi, ja varbatibu koki tiek ierobeZoti ar diskrétiem varbiitibu sadalfjumiem. Nepartraukto varbiitibu
sadalfjumu gadijuma sakotngjiem sadalfjumiem jabut diskretizétiem pirms kombingSanas operaciju izpildes. Darba ir mingtas divas varbitibas koku
diskretizacijas metodes: robezdiskretizacija un diskretizacija vid€jos punktos. Varbiitibas koku kombingSanas alternativo metozu esamiba lauj izvél&ties
piemérotako metodi konkréta uzdevuma konteksta.

Ouer Yikra-Peopos, l'annna Kynemosa. ATbTepHATHBHBIE MeTObl KOMOMHHPOBAHHUS BEPOSTHOCTHBIX AINKOB

HasnaveHne BepOSTHOCTHBIX OLEHOK B OOJIBIIIOM YHCIIE MIPUKIAIHBIX 33a4 IPOM3BOJUTCS HA OCHOBE CyOBEKTUBHBIX MHEHHI DKCIIEPTOB. [10CKOIBKY 9KCIIEPTHI
9acTO 3aTPYAHSIOTCS AaTh OJHO3HAYHBIC OLCHKU JUIS PEICBAHTHBIX BEPOATHOCTEH, pa3pabOTaHBI MOAXOMBI, MO3BOJIONINE MOJECINPOBATH AONONHHUTEIbHEIE
HEOIPENIeIEHHOCTH, CBSI3aHHBIE C JKCIICPTHBHIM Ha3HAYeHHEM BeposTHOCTei. Hambonee M3BECTHBIMH IOJXOAAMU TaKOTO POJa SIBIIOTCS HEONpPENeNEHHbIE
BEPOSITHOCTH M HeyéTKHe BeposTHOCTH. C MOMOMBIO BEPOSTHOCTHBIX SIIUKOB MOJCTUPYIOTCS HEONPEAENEHHOCTH, CBA3aHHBIE C OKCIEPTHBIM
KOHCTPYHPOBAHHEM BEPOSTHOCTHBIX paclpeeneHuil. Ecim skcmepT He yBepeH B JOCTOBEPHOCTU OIIEHUBAEMOIO BEPOSTHOCTHOIO DAaCHpEeNeHHUs, BMECTO
OJJHOTO BEPOSTHOCTHOTO paclpeleleHHs OH 3a4aéT [Ba TPAHMYHBIX BEPOSTHOCTHBIX pACHpEIeNeHUs, KOTOpble M 00pa3ylOT BEPOSTHOCTHBIM SIIHK.
BeposTHOCTHBIE pacnpejienenus, 0opasyromue AMUK, MOIYT HMETh CaMylo pa3HooOpasHyto GpopMy U He ObITh CHMMETPUYHBIMU. [Ipo6IIeMbl BO3HUKAIOT B TOM
cllydae, Korja HyXXHO CKOMOHHHPOBAaTh HH(OpPMAIUIo, AaBaeMyl0 IByMs WM 0OojJee BEpPOSTHOCTHBIMHU SIHKAMU, CKOHCTPYHPOBAHHBIMH HE3aBHCHMBIMU
9KcIepTaMy. B opuruHaiIbHBIX paboTax II0 BEpPOSTHOCTHBIM SIIUKAM ULl 9TOW IIENH IpeularaerTcsl HCIOIb30BaTh NPAaBUIO KOMOMHUPOBAHUS YBEPEHHOCTEH
Jemmcrepa. HemocraTkoM 3TOro Merona ciieayeT MPU3HATH HEOOXOAMMOCTh HOPMHPOBAHHUS PE3yNbTUPYIOLIMX yBepeHHocTeil. llenb HacTosiue# cratbu —
II0Ka3aTh BO3MOJKHOCTH IIPUMEHEHHS albTePHATHBHBIX METOA0B KOMOMHHPOBAHUS yBEPEHHOCTEH Ul KOMOMHUPOBAHUS MHGOPMAINH, 1aBaeMOU IBYMs HIH
OoJyiee BEpPOSTHOCTHBIMHU SIIIMKAMH. OTH METOJbI HENOCPEJCTBEHHO NPHMEHHMBI B CIy4asX, KOTAA BEPOSTHOCTHBIC SIIUKH OrPAHHYCHB! IHUCKPETHBIMU
BEpPOSTHOCTHBIMH paclpe/ielleHusIMU. B cilyuae HempepbIBHBIX BEPOSITHOCTHBIX paclpelie]IeHHH 3TH pacnpeeNneHus TOJKHBI ObITh IUCKPETH3UPOBAHBI 10
BBITIOJTHEHNUS ollepaniii KOMOMHHpoBaHUs. B paboTe mpencraBieHs! ABa METOa AUCKPETH3AIUH BEPOSTHOCTHBIX SIUKOB: METOJ IPAHUYHOM JUCKPETH3AIUH U
METOJ JVCKPeTU3alMi Ha CPEIHHMX TOUYKax. Hanwdme anbTepHaTHBHBIX METOOB KOMOMHHMPOBAHHUS BEPOSTHOCTHBIX SIIMKOB IO3BOJISIET BEIOpATh Hambolee
MOAXO/ISIIINM METOJ] B KOHTEKCTE KOHKPETHOH 3a1aun.
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