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Abstract — An important problem in the application of cluster
analysis is the decision regarding how many clusters should be
derived from the data. The aim of the paper is to determine a
number of clusters with a distinctive breaking point (elbow),
calculating variance ratio criterion (VRC) by Calinski and
Harabasz and J-index in order to check robustness of cluster
solutions. Agglomerative hierarchical clustering was used to
group a data set that is characterized by a complex structure,
which makes it difficult to identify a structure of homogeneous
groups. Stability of cluster solutions was performed by using
different similarity measures and reordering cases in the dataset.

Keywords — Agglomerative hierarchical clustering, distinctive
breaking point (elbow), J index, variance ratio criterion

I. INTRODUCTION

Cluster analysis identifies homogenous groups of clusters of
cases without any prior information about the real
classification. Partitioning, density-based, grid-based, and
hierarchical algorithms are main groups of cluster analysis.
The complexity of cluster analysis application is that how to
verify stability of cluster solutions. A variety of methods are
used to estimate and evaluate the number of clusters: cross-
validation, penalized likelihood estimation, bootstrap based on
Anova model [15], and finding the knee of an error curve [4].

Extensive comparative study was carried out in [13] with an
aim to find the optimal number of clusters, comparing 30
methods for hierarchical clustering algorithms on well-
separated data. According to their work, Calinski and
Harabasz index and J-index are the most effective methods to
determine the stability of cluster solutions.

The main goal of this paper is to verify stability and validity
of cluster solution determining optimal number of clusters
based on distinctive breaking point (elbow), Calinski and
Harabasz index, J-index. Different similarity measures —
Euclidean distance and Manhattan distance — were used for
this purpose.

II. HIERARCHICAL CLUSTERING

Hierarchical clustering algorithms consist of the following
steps:
1. choosing a hierarchical clustering technique;
2. selecting a measure of similarity;
3. selecting a Linkage Method;
4. data normalization;
5. representation of cluster results.
Further each step of clustering algorithm is described in
detail.

A. Choosing a Hierarchical Clustering Technique

Hierarchical clustering algorithms are divided into two
groups: agglomerative and divisive ones. In agglomerative

clustering, each case starts in its own cluster and in the next
step the two most closely located cases are merged till all
cases are joined into a single cluster. In divisive clustering, all
cases are located in one cluster and further are subdivided into
clusters until all cases are located in their own clusters. In this
study, agglomerative clustering was chosen for the analysis
based on literature review [7], [8] and to determine a number
of clusters for a data set, the following steps were performed:

1. Start with one n cluster.

2. Find the most similar clusters with cases located closely

to each other and merge them into one cluster.
3. Repeat Step 2 until the number of clusters becomes one

[6].
B. Selecting a Measure of Similarity

Two distance measures were considered. Euclidean distance
(1) was chosen as a measure to express similarity between
pairs as the shortest path between two samples (Fig. 1).

(1

where xi, yj — points in Euclidean space.
Manbhattan distance (2) was chosen because the analysed data
set contains discrete data [16] and calculates distances along
each dimension (i.e., “walking round the block™).
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where Xj, yj — points in n-space.

a) b)

Fig. 1. Distance. a) Euclidean distance; b) Manhattan distance

C. Selecting a Linkage Method

Linkage methods calculate the distance from a cluster
centre to a certain case. The most popular agglomerative
clustering procedures include the followings linkage methods
[11]:

1. Single linkage. The distance between two clusters is

calculated as the shortest distance between any two cases
in the two clusters.
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2. Complete linkage. The distance between two clusters is
calculated as the longest distance between any two cases
in the two clusters.

3. Average linkage. The distance between two clusters is
calculated as the average distance between all pairs of
the two clusters.

a) b)
Fig. 2. Linkage methods. a) Single linkage; b) Complete linkage

Each linkage method could lead to different results for the
same initial data. Single linkage method is based on minimum
distances and tends to organize one large cluster with the other
clusters containing only one or a few objects.

D. Data Normalization

To reduce the influence of variables on the clustering
solution, z-score was used for data normalization (each
variable should have a mean of 0 and a standard deviation
of 1).

E. Representation of Cluster Results

Result of hierarchical clustering is a dendrogram (Fig. 1)
that represents each merge at the similarity between the two
merged groups [15].

Fig. 3. Representation of cluster results — a dendrogram

III. STABILITY AND VALIDITY OF CLUSTER RESULTS

Robustness of cluster is an important task in the clustering
analysis to choose representative cluster solutions. To check
cluster solutions for stability, the order of cases was changed.
Cases were sorted randomly and for different order of cases,
different cluster solutions were received. As a result, the
solution with the highest goodness of fit was selected for the
analysis. Multiple runs with different clustering procedures,
algorithms or distance measures were performed. Euclidean
distance and Manhattan distance similarity measures with
single linkage were considered for this purpose.
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To check cluster validity, the appropriate number of clusters
was determined by a distinctive breaking point, Calinski and
Harabasz index and J-index.

A. Distinctive Breaking Point (Elbow)

Hierarchical procedures provide information that allows
identifying the gaps that define logical clusters based on the
output (Fig. 4). Sometimes it is difficult to identify where the
break actually occurs [11].
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Fig. 4. Determination of the optimal number of clusters

According to the study presented in [2], Calinski and
Harabasz index is the most effective method to determine the
optimal number of clusters, followed by Duda and Hart
method (J index). Variance ratio criterion was used to
calculate a number of clusters by Calinski and Harabasz index.

B. Variance Ratio Criterion (VRC) by Calinski and Harabasz

Variance ratio criterion introduced by Calinski and
Harabasz [10] is a widely used criterion that computes ratio of
between and within-cluster sums of squares for k clusters. The
optimal solution of this criterion is the number of clusters that
maximises the value of the variance criterion (3) and
minimises oy value (4).

By

n-k
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k

where VRC; — the variance ratio criterion, k — the number
of clusters, By — the overall between-cluster variation, Wy — the
overall within-cluster variation with respect to all clustering
variables, n — data objects.
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Value oy should be computed for each cluster solution to
determine the optimal or suitable number of clusters.

o, =(VRC,,, —~VRC,)— (VRC, —=VRC, ,). (4

The main limitation factor of Calinski and Harabasz index
is that the number of clusters cannot be less than three,
because the number of cluster is calculated based on the
previous cluster information (VRCy ).

C. The J-index

The J-index proposed by Duda and Hart [11] compares the
within-cluster sum of squared distance with the sum of within-
cluster sum of squared distances and decides whether cluster
should partitioned into two clusters. The hypothesis that
cluster could be subdivided is rejected if DH value (5) is more
than a standard normal quantile. In this study, z;., value is
equal to 3.2 by [18].

oH (Ve 2, 20-8/7"D)
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where p — the number of variables, n — the number of
objects in the studied cluster and z,, — the standard normal
quantile.

IV. EXPERIMENTS

Two types of similarity measures (Euclidean distance and
Manhattan distance) of hierarchical cluster algorithms,
variance ratio criterion by Calinski and Harabasz and J-index
by Duda and Hart were used to calculate an optimal number of
clusters and check validity of cluster solutions.

Initial data for experiments were preprocessed with a
purpose to clean the noisy data and to convert the data into a
proper format. The analysed dataset after preprocessing
includes ten variables and 2000 cases.

Variance ratio criterion and J-index were calculated with
SPSS 16.0 and SAS statistical packages.

A. Distinctive Breaking Point (Elbow)

The elbow points shown in Fig. 4 suggest that it is not a
clear elbow with rapid growth of distance indicating an
appropriate number of clusters. A nine-cluster solution is the
optimal choice for Euclidean distance and eleven clusters —for
Manhattan distance based on numerical results.

B. Variance Ratio Criterion and J-index

Variance ratio criterion by Calinski and Harabasz was
calculated for a number of clusters in the range from two to
fifteen for Euclidean and Manhattan distance similarity
measures.

The optimal number of cluster was a solution with the
smallest wk value. For Euclidean distance the suitable number
of clusters was ten and for Manhattan distance it was twelve.

TABLE I
VARIANCE RATIO CRITERION FOR EUCLIDEAN AN MANHATTAN DISTANCES

Similarity measure: Similarity measure:
Number of Euclidean distance Manbhattan distance
clusters Variance ratio Variance ratio
criterion Ok criterion Ok
2 204.4 127.9
3 104.97 71 68.07 68.3
4 76.54 39.69 76.54 -6.36
5 87.8 -28.41 78.65 -3.75
6 70.65 20.12 77.01 -8.2
7 73.62 -2.51 67.17 5.85
8 74.08 -9.25 63.18 7.31
9 65.29 925.68 66.5 -2.04
10 982.18 -1012.01 67.78 -7.68
11 887.06 20.24 61.38 757.2
12 812.18 17.46 812.18 -806.22
13 754.76 15.94 756.76 -1.03
14 713.28 852.44 700.31 21.99
15 1524.24 494.57 665.85 -7.78

J-index was calculated for the number of clusters in the
range from two to fifteen for Euclidean distance. Eleven
clusters represented the optimal solution with values
0.50/83.88, where the first number — the sum of squared error
within the group and the second one — the sum of squared
error in the two subgroups.

Results of the determination of number of clusters for
hierarchical clustering algorithm solutions showed that the
optimal number of clusters was eleven because two types of
indices showed the same results.

TABLE 11
VALUES OF THE THREE INDICES FOR THE DETERMINATION OF NUMBER OF
CLUSTERS
Inde Number of clusters
x 9 10 11 12
Euclidean 0.096 0.102 0.109 0.127
« \ distance
Elbow Manhatt
anhattan g gg3 0.081 0.80 0.61
distance
Calinski | Fuclidean | g5 g -1012.01 | 2024 17.46
distance
and Manhattan
Harabasz . -2.04 -7.68 757.2 -806.22
distance
Duda and Euclidean 0.81/ 1.00/ 0.50/ 0.99/
Hart distance 20.99 0.07 83.88 0.03

V. CONCLUSION

In this study, the application of agglomerative hierarchical
clustering algorithm was presented. Distinctive breaking point
(elbow), variance ratio criterion and J-index were calculated to
determine the optimal number of clusters and to check the
hierarchical clustering solutions for validity and stability.
Before clustering all analysed data were pre-processed to
clean noise.

Results of elbow point did not reach clear elbow in the plot
for the considered distances, the number of suitable clusters
was determined from numerical calculations.

The calculation of number of clusters by variance ratio
criterion and J-index showed that the optimal number of
clusters was in the range from nine to twelve. Application of
distinctive breaking point with Manhattan distance and J-index
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with Euclidean distance showed equal results, the number of
cluster was equal to eleven.
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NadeZda Zenina, Arkadijs Borisovs. Klasterizacijas algoritmi celoSanas distances analizei

Klasteru analizi pielieto, lai identificEtu homogénas noveérojumu grupas, nezinot informaciju par ,isto” datu sadalijumu. Klasteru analizes pielietoSanas
sarezgitiba ir saistita ar to, ka novertet klasteru risinajumu stabilitati un noteikt nepieciesamu klasteru skaitu datu sadaliSanai/sagrupésanai. Darba mérkis - noteikt
klasteru skaitu péc ,,elkona” metodes (tick aprékinata starpiba starp apvienoSanas limeniem, klasteru skaits tiek noteikts péc dendrogrammas), Calinski un
Harabasz kritériju un J-indeksa pamata, lai noveértétu klastera risinajuma stabilitati. Aglomerativa hierarhiska klasterizacija tika izmantota, lai sagrupétu datus ar
sarezgTtu struktfiru un identificétu homoggnas grupas. Klasteru risinajumu stabilitate parbaudita, pielietojot dazadus attdluma mérus un mainot objektu kartibu
datu izlas€. Klasterizacijas rezultati, pielietojot ,,elkona” metodi kopa ar Eiklida un Manhhatan distanci, neuzradija spilgti izteiktu izlieci dendrogramma, un
klasteru skaits tika noteikts, pamatojoties uz skaitliskiem aprékiniem. Calinski un Harabasz dispersiju saméra kriterijs tiek rékinats ka starpklasteru distances
matricas attieciba pret ieksklasteru distances matricu. Kriterijs tika aprékinats diviem Iidzibas mériem — Eiklida distancei un Manhhatan distancei, un klasteru
skaitam no diviem lidz piecpadsmit. Analizes rezultati uzradija, ka, pielietojot Eiklida lidzibas meéru, optimalais klasteru skaits ir vienads ar desmit, Manhattan
distances gadijuma — divpadsmit klasteru. J-indekss salidzina ieksklasteru attalumu kvadratu summu, lai noteiktu, vai ir iesp&jams klasteru sadalit divas dalas.
Hipotéze par klasteru sadaliSanu tiek noraidita, ja DH vértiba ir lielaka par standarta normalo sadalfjuma kvantili. Optimalais klasteru skaits p&c J-indeksa
sastadija vienpadsmit klasteru. Klasteru skaita noteikSana, pamatojoties uz dendrogrammu, pielietojot Manhattan distanci, ka arT J-indekss uzradija lidzigus
rezultatus, optimalais klasteru skaits bija vienpadsmit.

Hapesxna 3ennna, Apkagnii Bopucos. AIropuT™MBI KIacTepH3alHH B AHAIN3€E PACCTOSIHUSA MyTelleCTBHS

KactepHblit aHanu3 NPUMEHSETCs! AT MACHTH(OHUKALIMK OZHOPOIHBIX IPYII HaOJIOACHHH 0e3 HCXOAHOI MH(POPMALMH O «HACTOSIIEM» Pa3IC/ICHHN JaHHBIX.
CIIO)XHOCTh PUMEHEHHS KIIACTEPHOTO aHaIN3a 3aKJII0YAeTCsl B TOM, KaK OLCHUTh CTAOMIBHOCTH KIACTEPHBIX PEIICHUIl H ONpeeNuTh, Ha KAKOe KOJIHYECTBO
KJIaCTepOB HEOOXOQUMO pa30uTh BEIOOPKY. Llenb paboThl - ONpeneinnTh KOIMYECTBO KJIACTEPOB HAa OCHOBE PA3HUIBI MEXIYy YPOBHIMH OOBEIHHEHHS
(ompezenieHre KOJIMYECTBA KJIACTEPOB Ha OCHOBE JCHIPOrPaMMBI), MAKCHMAIbHOIO 3HAa4eHHWs Mokasarelns ncespo-F-crarucruku Calinski u Harabasz, u J-
MHZEKCAa IS OLICHKH PabOTOCIIOCOOHOCTH KIACTEPHOTO peIlcHHs. ATTJIOMEpaTHBHAs HepapXuuecKas KIAacTepus3alus Oblia NMPUMEHEHa IS IPYHITHPOBKH
JIAHHBIX, XapaKTePU3YIOMIUXCS CIOXKHOH CTPYKTYPOIi, Ul HACHTH(HKALMN OJHOPOIHBIX Tpynil. CTaOMIBHOCTD KJIACTEPHBIX PELICHUH IPOBEpeHa, IPHMEHSIS
pa3IHYHbIE MEPhI CXOXKECTH 0OBEKTOB U MEHsIs IOPAJIOK HAOIOICHHIT B Oa3e JaHHBIX. Pe3ynbTaThl Ha OCHOBE JICHAPOTPAMMBbI HE IIOKA3aIH APKO BBIPAXKEHHOTO
n3ruda Ha ACHAPOrpaMMe, HPUMEHSS DBKINI0BO U MaHXETTEHCKOE PACCTOSHUS, M KOJIMYECTBO KJIaCTEPOB OBLIO OMPEAEICHO Ha OCHOBE YHCIICHHBIX PACYETOB.
Kputepuii coornomrenust aucnepcuii (Calinski and Harabasz) paccuuThiBaeTcsi Kak COOTHOIICHWE MAaTPUIBI MEXKKJIACTEPHBIX PACCTOSHHN K MaTpHIle
BHYTPHUKJIACTEPHBIX paccTosiHuil. Kpurepuil ObT paccuuTaH Ha OCHOBE ABYX MEp CXOXECTH MEXIYy 00BbEeKTaMu - DBKJIHIOBO PAcCTOSHHE U MaHXETTEeHCKOe
paccTosiHUe, Ul KOJMYECTBAa KJIACTEPOB OT ABYX A0 IATHAALATH. Pe3ynbTaThl aHamm3a IOKa3alld, YTO HPUMEHss DBKIMAOBO PACCTOSHHE ONTHMAIbHOE
KOJIMYECTBO KJIACTEPOB pAaBHO IECATH, B Cilydae MaHXETTEHCKOTO DAacCTOSHHS — JBEHAILaTh KJIACTEpPOB. J-HHIEKC CpaBHHBAeT CyMMYy KBaJpaToB
BHYTPHKJIACTEPHBIX PACCTOSHUMI C LIEJIBIO ONPEIEINTh, MOXKHO JIM KJIACTEp pa30MTh Ha JBa. [ MIoTE3a 0 TOM, 4TO KJIacTep MOXKET ObITh pa3zielieH, OTKIOHSETCS,
ecnu 3HaueHne DH Gosbliie, yeM KBaHTHIb CTaHAapPTHOTO HOPMAIBHOTO pactpeaencHns. ONTHMalbHOE KOJIMYECTBO KIACTEPOB IO J-MHACKCY COCTaBHIIO
OJMHHAIATh KIacTepoB. OmpeeneHHe KOMHYECTBA KJIACTEPOB Ha OCHOBE JCHAPOIPAMMEI C HCIONB30BaHHEM MAaHXETTEHCKOTO PacCTOSHHS U J-HHIEKC
HOKa3aJIM CXOXKHE PE3yJIbTaThl, ONTUMAIBHOE KOJIMYECTBO KJIACTEPOB COCTABUIIO OJMHHA/ILATh.
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