VERSITA

2013/16

Information Technology and Management Science

doi: 10.2478/itms-2013-0010

Reusable Components in Knowledge-based
Configuration Design Systems

Henrihs Gorskis', Arkady Borisov?, ' Riga Technical University

Abstract — This paper takes a look on how components for
knowledge-based intelligent systems can be created for reuse. For
this purpose, we use production rules as inspiration for a system
that uses an ontology description for the method and the domain
ontology for the knowledge about the domain the problem takes
place in. In this paper we give a description of an approach that
hopefully can give insight into such a system. The approach is
based on previous work and other scientific publications
concerning this field of study. The created ontology models are in
no way guaranteed to be useful outside of this example and the
approach itself might still need to be improved in the future.

Keywords — Intelligent system, ontology, production rules

I. INTRODUCTION

One if not the most expensive task of implementing an
information technology solution to a problem is the
development of a software solution [5]. In order to cut the
expenses associated with software development, the reuse of
existing solutions would be preferred.

One possibility for reuse of existing solutions would be the
reuse of problem solving methods in knowledge-based
systems [6].

This is often difficult since any problem-solving methods
and problem solutions would be closely connected with the
problem domain. An approach would have to be introduced
that would disconnect domain knowledge and problem-
solving methods.

This paper strives to provide a possible approach to this
problem. By using production rules from an existing
knowledge system, we try to create an ontology that describes
these rules not only in a way that provides descriptions of all
concepts within the rules, but also is reusable. By reusable we
mean a description that is as independent as possible from the
domain knowledge.

II. ANALYSIS OF THE PRODUCTION RULE EXAMPLE AND
PREPARATION FOR CONVERSION

In order to find an approach we will construct several
ontology models from an example of production rules.

The example used in this paper is a modification of the
rules from the bagger problem. It was originally introduced by
Patrick Winston of MIT [1]. All the rules are given in Table I.

TABLE I
RULE BASE
Rule IF THEN
Bl step is check-order add one bottle of Pepsi to order

there is a bag of potato chips
there is no soft drink bottle

B2 step is check-order

B3 step is bag-large-items
there is a large item to be bagged
there is a large bottle to be bagged
there is a bag with less than 6 large items

B4 step is bag-large-items
there is a large item to be bagged
there is a bag with less than 6 large items

B5 step is bag-large-items
there is a large item to be bagged

B6 step is bag-large-items

B7 step is bag-medium-items
there is a medium item to be bagged
there is an empty bag or a bag with medium items
bag is not yet full
medium item is frozen

start bag-large-items step

put the large bottle item in the bag

put the large item in the bag

start fresh bag

start bag-medium-items step

put the medium item in a freezer bag in the bag

B8 step is bag-medium-items
there is a medium item to be bagged
there is an empty bag or a bag with medium items
bag is not yet full

put the medium item in the bag

66



Information Technology and Management Science

2013/16

B9 step is bag-medium-items
there is a medium item to be bagged

start fresh bag

B10 step is bag-medium-items
BI1 step is bag-small-items
there is a small item to be bagged
there is a bag that is not yet full
bag does not contain bottles
B12 step is bag-small-items
there is a small item to be bagged
there is a bag that is not yet full
B13 step is bag-small-items
there is a small item to be bagged
B14 step is bag-small-items

discontinue bag-medium-items
start bag-small-items step

put the small item in the bag

put the small item in the bag

start fresh bag

stop

From this description we can extract an ontology that
describes the item domain. This ontology holds all the
concepts and individuals that describe the items from the
shopping list. The rules are similar to rules used in such
systems as XCON [3].

But let us first take a look at the rules and their meaning.

Rule B1. Since rules and every test within the rules are
performed in order, the very first test is for the current active
step. In case this test fails, the reasoner can immediately jump
to the next rule and safe time this way.

Next, the rule wants to know if there is a “bag of potato
chips” in the user’s order. There are several ways of looking at
some information given in these rules. There are at least 2
ways of implementing such a request. The first way is a direct
check for the item “chips” not for its class or other property of
the individual. The second way is to define “chips” as a sub-
or super-concept of an item. For example, we could implement
a concept “bag of potato chips” as a sub-concept of “medium-
sized item”. This way the rule would check for the existence
of any potato chip product from several possible ones while at
the same time working with a medium-sized item when
needed. However, this would either indicate that all bags of
potato chips are only ever medium sized or every item concept
would need to be connected to a sub-concept of “bag of
chips”. The structure of the domain ontology and the
connected requirements of the method ontology need to be
defined in a matter that allows such tests. For the purposes of
this paper we will define the test for a “bag of potato chips” as
a direct search for a specific individual in order to explore the
required specifications in the method ontology for such a
search.

The final part of the IF statement of the first rule is the
check for a soft drink bottle in the order. This problem is
similar to the “bag of chips” one; however, we can see the
mentioning of a “Bottle of soft drink” and “Pepsi”; therefore,
we can implement this as Pepsi being an individual of the
concept “bottle of soft drink” and it, in turn, is a sub-concept
of a large item. For this item we will implement a more
difficult structure of concepts.

The THEN part of the rule adds a specific individual to the
order.

The next rule B2 exchanges the current step with the next
one. The original version of rules like this made an extra step
of stopping the execution of the current step before assigning
the next.

Rule B3 tests to see if the order has large bottles that need
to be bagged. From the rules alone it is unclear if “Large
Bottle”, “Bottle of soft drink” and “Bottle” are the same
concepts; a concept hierarchy is any other structure of
information. For example, we could have the concept “Bottle”
as a sub-concept of “Item”. The concept “Large Bottle” is a
sub-concept of both “Bottle” and “Large Item”. And, in its
turn, the concept “Bottle of soft drink” is a sub-concept of
“Bottle” or “Large Bottle”. Again it is unclear if in this
domain bottles of soft drink are always large. If they are not
large, there should be additional concepts, such as “Large
Bottle of soft drink”, “Medium Bottle of soft drink” and
“Small Bottle of soft drink”. They all would be sub-concepts
of “Bottle of soft drink™ and the one concepts of either “Small
Item”, “Medium Item” or “Large Item”.

This rule also tests if there are 6 large items in the bag in
order to determine if there is still room to place a large item.

Should the rule fire, the large bottle in question would be
placed inside the bag.

B4 is a shortened version of B3. Since rules are always fired
in order, by the time the reasoner reaches, there will not be
any large bottles left in the order and only remaining large
items would be needed to be bagged.

Rule BS is interesting since by the time this rule is reached
there will be no free space in the bag left. The test for 6 items
was performed in the previous rule. This way the rule system
can determine when a bag change needs to be performed.

When B6 becomes the only available rule, it is clear that the
next big step in the bagging process needs to be taken.

Rule B7 is the first rule of the next step, which bags
medium items. However, in its original wording this first rule
was not clearly meant to put items into a shopping bag.
Instead it searched for items with the property “Frozen” (or
another indicator for this) and put them only into a specialized
freezer bag. Unfortunately there were several things unclear
with this rule and could be interpreted very differently. If this
step is meant to find all frozen items and put them into freezer

67



Information Technology and Management Science

2013/16

bags then the test for room inside the shopping bag is
meaningless since the item is placed inside the freezer bag and
not the shopping bag, and until a rule is hit that will put it into
a bag, the active bag can change. If the freezer bag were
immediately placed inside the shopping bag, the test for room
inside the shopping bag would make sense, however, the test
for the item being inside a freezer bag (as it was in its original
form) would not. Any item in a freezer bag would already be
also inside the shopping bag and would not need to be bagged.
For this paper the rule was changed removing the IF element
“the medium item is not in a freezer bag” and modifying the
THEN element to indicate that the item is put inside a freezer
bag and inside the shopping bag at the same time. This
modification of the THEN part also ensures that there is only
one freezer bag in every shopping bag. This however would
mean that implementation of this element would need to tell
the system to check if there already is a freezer bag inside the
shopping bag and put the frozen item inside that bag.

Another thing that needs to be noted is the test for an empty
bag or a bag that contains medium items. It is interesting in
two ways; first, it contains two tests separated with “or”. And,
second, it begins with the words “there is a(n)”. This wording
indicates that this element is not only a test, but it also changes
the environment, in which the execution takes place. It seems
that if there is a bag that fulfils the criteria of this test, that bag
is made to be the current shopping bag that is being filled. If
the current bag which was being filled at the time this rule
fired did not fulfil the requirement of being empty or
containing a medium item, and at the same time there were
another bag that fulfilled it, from that moment onwards that
bag would be considered the current active bag.

The other rules concerning medium items, similar to the

rules about the large items, continue to become more and more
general until the next step concerning small items needs to
become activated.

B11 is the first rule concerning small items. It searches for a
bag that is not empty. It needs to be noted that “not empty” is
different from “containing 6 large items” or “not empty”. That
makes at least 3 possible tests that can be performed on a bag
concerning its fullness. The rule also searches for a bag that
does not contain a bottle. However, in combination with rule
B12, which puts a small item in any bag that is not full, this
means that small items are preferably put in bags with no
bottle, but can end up with one, if no empty bag is available.
Still in combination with rule B13 a situation can arise that a
small item is put in a bag with a bottle, but after that a new
bag is started, leaving that small item in an undesired situation
with no rule to put it to another bag.

Rule B14 ends the execution of the rules switching to the
step “stop”.

III. THE DOMAIN ONTOLOGY

From the rule description it made sense to arrange the items
around concepts describing the item sizes. It was done this
way since many rules address the items in question as “Large
Item”, “Medium Item” and “Small Item”. Only rarely an item
was addressed directly or as something else. In the case of the
Pepsi item, in order to take a full advantage of all its properties
it was made into an instance of “Bottle”, “Large Item” and
“Soft drink”, making it a “Large Bottle of soft drink”. Figure 1
shows a graphic representation of the domain ontology. Other
items “Pepsi 0.5L” and “Ice Pop” were added to show, that the
domain ontology could hold other information that is not
necessarily used to solve a given task. Let” us assume that the

Fig. 1. Domain ontology

68



Information Technology and Management Science

2013/16

store’s policy is not to put small frozen products into freezer
bags since the shopper might like to enjoy it right away.
Therefore the “Ice Pop” will not be put into a freezer bag by
the current rules. The property “Frozen” in this ontology is
given by using a property with the individual “Frozen” as a
target. Not every domain ontology model might use this
approach. For example one ontology model might have a
literal value “Frozen”. Every frozen item would have a
property with that literal value as a target. Such problems
might be solved by the mapping process if they are considered
correctly.

IV. IMPLEMENTATION OF THE RULE EXECUTION

Depending on the system that is constructed we can have
several different implementations of the bagger method [§],
[9]. They can range from very basic and simple ones to very
specific and complex implementations. For example, it would
be valid to provide a very simplistic method ontology that
simply provides the rules in a concept hierarchy with the rules
as individuals. Such an ontology would only describe the rules
and execution would be manual or in a system that would
access the individuals from the ontology and parse their
names.

However, in this paper we will try to construct a more
complex method ontology that provides all necessary elements
and data for direct execution. This study is the continuation of
the theme of the previous paper about ontology construction
from guidelines [10]. The previous study also provided inside
into ontology models capable of execution, based on GEM
[11] guidelines.

V. METHOD ONTOLOGY

This is a general description of one possible definition of
the method ontology.

The method ontology must contain all elements and
descriptions for the bagger problem to be executed. The
method ontology must have a description of how it works in
general. The concept “Method description” can do this.
However, depending on how fine a description needs to be
provided, it may be better to define several sub-concepts and a
structure that is better suited for providing information of a
method. The main idea is to have a specific element within the
ontology that will describe what information needs to be given
in the beginning and what information is returned in the end.
The bagger method requires a list of items picked by a user to
be provided in the beginning — the order list. In its turn, the
method returns a list of bags and their content.

Next, the method ontology defines an internal and external
part of the execution. In the external part, we can see parts of
the structure of the domain ontology. This is needed since
several IF elements require tests for specific concepts (Large
item, soft drink bottle). Moreover, several individuals are in
the method ontology since they are referenced directly by the
rules. Besides, having the concept structure of the domain
ontology in the method ontology helps finding mapping
solutions in cases of new domain ontology models that do not
have mapping information, since this is the part that will serve

as an interface to the domain ontology after the mapping
process.

In the internal part, the ontology describes all elements
needed for rule execution. First, there is a list of all step values
that are used by the rules. In this case they are: check-order,
bag-large-items, bag-medium-items and bag-small-items.

Next, we have the rule concept and its associated IF and
THEN parts. Dissection of a rule individual can be seen in
Table II.

TABLE II
DEFINITION OF INDIVIDUAL B1
Individual B1
Property Target
is-a Rule : Concept
IF 1 “step is check-order” : Individual of IF concept
IF 2 “there is a bag of potato chips” : Individual of IF concept
IF 3 “there is no soft drink bottle” : Individual of IF concept
THEN_1  “add one bottle of Pepsi to order” : Individual of THEN concept

Also we can extract from the tasks in the IF and THEN
parts some useful sub-functions that can be called recurrently
rather than having to give the same description of actions for
several rules.

The temporal part is a special part of this ontology. During
execution, individuals contained in it will change several
times.

In this example, a function is a hard-coded set of static
activities and does not need inputs. However, every function
that is connected via an “IF_x” property has a Boolean
operator output, for every such function has to be true for the
rule to be true. Some IF functions and every THEN function
affect the state of a working-ontology. This working-ontology
holds the information necessary to describe the change during
the execution of the rules.

It is necessary to note, that the IF and THEN properties of
rule individuals have to be numbered, for the order of
activating them can have an effect on how a rule is determined
to behave.

One thing that is not given in the picture above is the
element that describes the activity of every function. This can
be given in the ontology as a property value or the individual
itself gives a link to the resource that describes the action.

A sub-function is a simpler and frequently used function. It
is used for actions that can be generalized and, therefore, save
the number of definitions that need to be given for the
execution of actions. A the example of sub-function’ property
is given in Table III.

69



Information Technology and Management Science

2013/16
TABLE III
DEFINITION OF SUB-FUNCTION “STEP IS”
Individual “step is (Step x)”
Property Target
is-a Sub-function : Concept
uses Step : Individual of Step
uses CurrentStep : Individual of temporal variable

Functions that are described in the IF part of the ontology,
the functions of the THEN concept and sub-functions use
other elements given in the method ontology. For example, the
IF function “step is bag-large-items” has to have a reference to
the individual “bag-large-item” of the “Step” concept. This
makes it clear how this function operates and does not have to
rely solely on its personal definition. However, since tests for
the current step are common in this method it also uses a sub-
function — “is step” sub-function. This sub-function receives

v

Fig. 2. Method ontology

the individual “bag-large-items” as an input from the “step is
bag-large-item” function. In order to test whether or not this
individual is in fact the current step it needs to be connected to
the “current step” individual of the concept “current variable”.
Having access to this variable the sub-function can examine it

70

for its current connection to a “step” individual. If they are
equal to the sub-function and the main function, both hold
true.

The temporal part of the method ontology contains
individuals that will change properties during execution. Also
new individuals will be created. Let us take a closer look at it.

VI. TEMPORAL ELEMENTS

Here we can see the ontology that describes the current state
of the bagging algorithm. It will be either part of the method
ontology and actively used in it or a separate instance of this
ontology can be created. The “Active element” concept and
“Current Step” individual will be used in order to point to the
current step, which is being performed. In order to use this
ontology, it will always have to be liked in some way to the
method ontology.

The concept “Bag” describes any bag that is used in the
bagging problem. Another “Active element” concept, that is
“Current Bag”, is linked to the bag that is being used by the

algorithm at the time. During execution, the property of the
individual “Current Bag”, which points to one of the concepts
“Bag”, will change several times.

The concept “Freezer Bag” holds individuals of any freezer
bag used during the bagging process.



Information Technology and Management Science

2013/16

The concept “Cart” (or order) holds only one individual.
This individual describes the current cart or order of the user.
This individual needs to be linked with the items described in
the domain ontology. During execution, the cart will lose
items by giving them to bags. By the end the user’s cart or
order will be empty.

Internal

Freezer
Bag 1

Fig. 3. Temporal working ontology

In order to operate with several items, the properties of bags
and carts will have to hold a numeric value, which indicates
the number of the same item they hold, for example,
“Contains 2”. A more specific graphical representation of the
temporal ontology is given in Fig. 3.

VII. USING THE METHOD ONTOLOGY

If we desire that the method ontology is used as a set of
instructions that describe specific actions of a system, we must
define a way that would make that possible.

One possible way would be to let the structural
representation of the ontology speak for itself. A user or
sufficiently intelligent software agent could understand the
described actions from the element names alone. Another
solution would be to give every function element an additional
description for the actions that need to be taken.

Also some sort of language could be introduced in order to
make it machine readable and executable. For example, the
sub-function “set step” could have an additional description
that would state:

Set (target at property ‘“uses_17) to
(target at property ‘“uses 27);

In such a language the system would have to know the

commands “Set” and “to”, and understand what other

individuals are referenced. This way it would be possible to
introduce system specific commands that would carry out the
required actions. Using a system that provides the possibility
for plug-in development that has a component-based ontology
[2], [4], usage in mind would be recommended.

Holds 1

VIII. CONCLUSION

In this paper we described one possible way of creating and
implementing a reusable method ontology that fulfils the
bagger algorithm. Reusability would arise from the possibility
of mapping the method ontology, which describes the actions,
to a new domain ontology model [7]. Some aspects of this
approach need to be tested further. In the provided example a
specific hierarchy of concepts and even some individuals were
given in the method ontology. How will the mapping process
be done, when a new domain ontology model is mapped to
this method ontology? Solving the problem of concept names
not being the same would be easy enough, but what would
happen if the structure were not the same. However it seems
that in the case of the bagger, successful execution would be
possible with a strange domain ontology, as long as only
generic items are used and none of the specific cases happen.
There also needs to be a more specific description of the
reasoning system and how it operates with the ontology
models.

71



Information Technology and Management Science

2013/16

REFERENCES [10] H. Gorskis, Y. Chizhov, T. Zmanovska, “Semi-automatic approach to
domain ontology building”, International Conference on Applied

[1] “Production Rules, Bratko ed. 4, chapter 15, page 343” September 2013. Information and Communication Technologies, 2013.

[Online]. ) Available: [11] R. Shiffman, B. Karras, A. Agrawal, ,,GEM: A Proposal for a More
http://www.cse.unsw.edu.au/~billw/cs9414/notes/kr/rules/rules.html Comprehensive Guideline Document Model Using XML”, J Am Med
[2] M. Musen, R. Fergerson, W. Grosso, N. Noy, M. Crubézy, J. Gennari, Inform Assoc 7, 2000, pp. 488 - 498. ’

“Component-Based Support for Building Knowledge-Acquisition
Systems”, In Proceedings of the Conference on Intelligent Information
Processing of the International Federation for Information Processing
World Computer Congress, 2000, pp. 18 - 22.

[3] B. Neumann, “Configuration Expert Systems: A Case Study and
Tutorial”, 1988.

[4] M. Crubézy, E. Motta, W. Lu, M. Musen, “Configuring Online Problem-
Solving Resources with the Internet Reasoning Service” IEEE
Intelligent Systems, vol. 18, 2002.

[5] J. Gennari, S. Tu, T. Rothenfluh, M. Musen, “Mapping Domains to
Methods in Support of Reuse”, International Journal of Human-
Computer Studies, vol. 41, 1994, pp. 399 - 424.

[6] J. Park, J. Gennari, M. Musen, “Mappings for Reuse in Knowledge-
Based Systems”, 1998.

[7] R. Studer, H. Eriksson, J. Gennari, S. Tu, D. Fensel, M. Musen,

Henrihs Gorskis is the first-year doctoral student majoring in information
technology at Riga Technical University (RTU). He received his Mg.sc. ing.
degree in 2013. His research interests include data mining, ontology
engineering, evolutionary computing and programming. In 2012 he wrote a
paper on ontology development and data mining. In 2013 he participated in
the AICT conference and also provided a paper on ontology engineering. He
is especially fond of the Java programming language and uses it for both work
and personal application development.

E-mail: henrihs.g@gmail.com

Arkady Borisov received his Doctoral Degree in Technical Cybernetics from
Riga Polytechnic Institute in 1970 and Dr.habil.sc.comp. degree in Technical
Cybernetics from Taganrog State Radio Engineering University in 1986.

! % . ! He is a Professor of Computer Science at the Faculty of Computer Science
“Ontologies and the Configuration of Problem-Solving Methods™, in 51 Information Technology, Riga Technical University (Latvia). His research

Proceedings of the 10th BANFF Knowledge Acquisition for jperests include fuzzy sets, fuzzy logic and computational intelligence. He
Knowledge-based System Workshop, SRDG Publications, 1996, has 235 publications in the field.

pp. 11-31.

[8] H. Park, A. Yoon, H. Kwon, “Task Model and Task Ontology for
Intelligent Tourist Information Service” International Journal of U- & E-
Service, Science & Technology, Vol. 5 Issue 2, Jun. 2012, pp. 43 - 59.

[91 R. Mizoguchi, J. Vanwelkenhuysen, M. lkeda, “Task Ontology for
Reuse of Problem Solving Knowledge” Towards Very Large
Knowledge Bases: Knowledge Building & Knowledge Sharing, 1995,
pp. 46 - 59.

He has supervised a number of national research grants and participated in the
European research project ECLIPS.

He is a member of IFSA European Fuzzy System Working Group, Russian
Fuzzy System and Soft Computing Association, honorary member of the
Scientific Board, member of the Scientific Advisory Board of the Fuzzy
Initiative Nordrhein-Westfalen (Dortmund, Germany).

E-mail: arkadijs.borisovs@cs.rtu.lv

Henrihs Gorskis, Arkadijs Borisovs. Atkartoti lietojamas komponentes konfiguracijas dizaina sistémas, kas balstitas uz zinaSanam

Viens no lielakiem izmaksu c€loniem informacijas tehnologiju risinajumu ievie$ana, ir jaunas programmatiiras izstrade. Tas turklat ir laikietilpigs process. Viens
no iesp&jamiem risindgjumiem biitu jau eso$o risindgjumu atkartota izmantosana. Saja darba bija veikts méginajums piedavat uz ontologijas balstitas zinasanu
sist€émas atkartoti izmantojamas komponentes. Tas tiek panakts, atdalot visas zinasanas, kas ir saistitas ar risinajumu, no zinasanam, kas apraksta vidi, kura tiek
veikta darbiba. Dotaja darba par zinaSanu pamatu tika nemta uz noteikumiem balstita zinaSanu sisteéma. Ta tika parveidota par ontologiju, kura $ie noteikumi ir
doti ka konceptu individi. Sada veida tika panakta atkartoti izmantojama metodes ontologija. Piemérs dotaja darba bija balstits uz noteikumiem, kas aprakstija
iepakosanas procesu. Sada veida pats iepako3anas process bija parveidots par neatkarigu no iepakojamam precém. Iegiito ontologiju ir iesp&jams savienot ar citu
doména ontologiju un izmantot tas sniegto informaciju par citam precém vai lietam iepakoSanas uzdevuma. Turklat batu ar iespgjams lietot tikai noteiktas
funkcijas no visam ontologija aprakstitajam. Lai blitu iesp&jams atkartoti izmantot iepakoSanas uzdevuma ontologiju vai jebkuru citu uzdevuma ontologiju, ir
jadefing ontologiju savienoSanas vai uzklasanas darbibas. Tas tiek saukts par ,,mapping” uzdevumu un sava biitiba ir apraksts, kas nosaka, kadi elementi no
vienas ontologijas atbilst citas ontologijas elementiem. Paslaik joprojam ir daZi neatbild&ti jautajumi. Pieméram, ka var paredzét un izlabot iespgjamas kladas,
kuras var rasties ontologiju savieno$anas rezultata. V&l viens lidz galam neizpétits faktors ir noklusétas ipasibas. Rakstot likumus, dazreiz tiek nokluséta svariga
informacija, jo ta ir passaprotama noteikta doména. Ka ar to apieties, atdalot izpildi no $ada doména? Neskatoties uz §im nepilnibam, darbs paradija $adas pieejas
izmantoSanas iesp&ju. Atkartoti izmantojamas komponentes var atvieglot jaunu risinajumu ievieSanu uz zina$anam balstitas sistémas. Sada veida ir iesp&jams
izmantot ontologijas sniegto informaciju un likumu izpildes funkcionalitati.

T'enpux I'opckmii, Apkanuii BopucoB. KoMnoHeHTbI MHOTOKPATHOT0 MCMOJb30BAaHUA B CHCTeMaxX KOH(GUIypanHOHHOTO JHM3aiiHA, OCHOBAHHBIX HA
3HAHUSAX

OpHUM M3 CcaMbIX OOJIBIIMX HMCTOYHHUKOB TPAT HPH BBEICHUH HH(POPMAIMOHHO-TEXHOJOIMYECKUX DPEIICHHH SBIISETCS pa3paboTKa HOBOTO IMPOrPaMMHOIO
obecrieyeHus. DTOT NPOLECC, B TOM YHCIE, 3aHMMAeT MHOro BpeMeHH. OIHMM M3 BO3MOXHBIX DEIICHUI SBJIAETCS INOBTOPHOE MCIIOJIL30BAHUE YKE
CYLIECTBYIOLIMX KOMIIOHEHTOB. B 3Toii pabore Obuia clenaHa IMOMBITKA MPEIJIOKUTH MOIXO[, UCIOJIB3YIOUMHA OHTOJIOTHIO. DTO OBUIO JOCTUTHYTO IyTEM
OTJICJTICHHS 3HAHWI, CBSI3aHHBIX C BBIMOJIHEHUEM 3a/1a4, OT 3HAHUi{, ONMKCHIBAIOIIMX CPEIy, B KOTOPOH 3amava BeINONHSAETCS. B jaHHOW paboTe OCHOBOM st
3HAHMH NOCIHYXWIa CUCTEeMa IpPOJYKUMOHHBIX mpaBwil. OHa Obula IiepejesaHa B OHTOJOTHIO, B KOTOPOH YacTAMM IPaBHJ BBICTYNAIM WHIUBHIBI
COOTBETCTBYIOIMX KOHIENTOB. TakuMm 00pa3oM, OblIa MOCTPOSHa HOBTOPHO HCIOJIb3yeMasi OHTOJOTUS MeTona. [Ipumep, pacCMOTpEHHBIH B JaHHOW pabote,
OCHOBaH Ha IpaBHJIaX, KOTOPbIE OIHCHIBAIOT MIPOIIECC YIIAKOBKH TOBApOB. B pe3ynbpTare 3T0ro mpouecc yrnakoBbIBaHHS CTaJl HE3aBUCHMBIM OT TOBapOB, KOTOpHIE
obpabatbiBatoTcs. [1oyyeHHYI0 OHTOJIOTHIO METO/Ia BO3MOXKHO COEAMHHUTH C JPYroil OHTOJIOTHEH IOMEeHa, ONUCHIBAIOILEH JIpyrie BElH, KOTOPbIE CTAaHOBSTCS
MpeAMETaMH Mpolecca YIaKOBKH. TakiKe BO3MOKHO HCIIOJIBb30BaHUE TOJIBKO HEKOTOPBIX OTAENBHBIX MOAQYHKIMH B HOBOM oOmactu. [ TOro 4todbl ObLIO
BO3MOKHO IIOBTOPHOE MCIIOJIb30BAHIE OHTOJIOTHH YITAKOBKH WITH JTIF0O00H JPYyroif OHTOJIOTHH METO/a, HEOOXOAUMO OIUCATH MPOLECC COSAUHEHHS. DTOT MPOLIECC
HAa3bIBACTCS «Mapping», OH OMUCHIBACT, KAKUE DJIEMEHTBI OJHOU OHTOJOTHH COOTBETCTBYIOT JJIEMEHTaM JApYyroil oHtonoruu. Ha JaHHBIH MOMEHT CyLIECTBYET
HECKOJIbKO BOIPOCOB, HE MMEIOUIMX OTBeTa. Hampumep, Kak NMpeaycCMOTPETh U MCIPABUTh BO3MOJXKHBIE OIIMOKH, KOTOPBIE MOTYT BO3HHKATh B PE3YJIbTATE
00beAMHEeHUs BYX OHTOJOrWi? EmE OoXHMM 10 KOHI[A HEHCCICIOBAaHHBIM (DaKTOPOM SIBISIFOTCSL CKPBIThIC CBOMCTBA. [IpM HamucaHWW TpaBHJI HHOTIA
MPOIYCKAIOT BXKHYIO HH(OPMALHIO, TAK KaK OHA MOHATHA caMa o cebe B JaHHOH cpejie, ¥ 4TO JeaTh, OTAENSIs METOA OT Takoi cpenpl? HecMoTps Ha naHHbIE
BOIIPOCHI, pa00Ta MOKA3bIBAET BO3MOXKHOCTH TaKOTo 1oaxozaa. [JoBTOPHO UCIIOIb3yeMble KOMIIOHEHTBI MOTYT OOJIETYUTh BBEJCHUE HOBBIX PEIICHUI B CHCTEMAX,
OCHOBaHHBIX Ha 3HaHUX. TakuM 00pa3oM, BO3MOYKHO HCIIOJIb30BaTh HHPOPMALIUIO, 3AJI0KEHHYIO B OHTOJIOTHSAX, U ()YHKIIMOHAJIBHOCTH BBITIOJIHEHUS MTPaBHIL.

72



