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Abstract — Recent theoretical advances in the learning of deep
artificial neural networks have made it possible to overcome a
vanishing gradient problem. This limitation has been overcome
using a pre-training step, where deep belief networks formed by
the stacked Restricted Boltzmann Machines perform
unsupervised learning. Once a pre-training step is done, network
weights are fine-tuned using regular error back propagation
while treating network as a feed-forward net. In the current
paper we perform the comparison of described approach and
commonly used classification approaches on some well-known
classification data sets from the UCI repository as well as on one
mid-sized proprietary data set.
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I. INTRODUCTION

Theoretical foundations for learning deep belief networks
(DBNs) were laid down by Geoffrey Hinton, for example, see
[1]. Bengio gives a great overview over deep architectures in
general — see [2-3]. DBNs are formed by stacked Restricted
Boltzmann Machines (RBMs). Recently DBNs, RBMs and
other Deep Architectures were successfully applied to a wide
range of classification tasks outperforming other approaches
[4], [6-8]. In [9] there is evidence that adding more layers
helps in recognition/classification tasks. However, [5] showed
that DBNs were outperformed on some classification tasks.
The current paper aims at comparing RBMs and DBNs
classification performance against some well-known
classifiers like SVMs and Random Forest Trees on some well-
known small classification UCI [10] data sets as well as a
single mid-sized proprietary document classification data set.
This paper is structured as follows: Section 2 provides
theoretical background for RBMs and DBNs as well as
describes pre-training procedure for feed-forward error back-
propagation artificial neural networks. Sections 3 and 4
describe experimental setup and present experiments results,
while Section 5 concludes the paper.

II. ENERGY-BASED MODELS

A. Restricted Boltzmann Machine

RBMs are stochastic generative neural networks that can
learn probability distributions over a set of their input vectors.
The main consequence of this definition is that such a neural
network learns p(data) instead of p(label | data) — essentially
these models are modelling data, not labels. This allows us to
deal with unlabelled or partially labelled data. Besides,
restricted Boltzmann machines can be represented as a
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bipartite graph with two sets of neurons — visible and hidden
ones (v, h), refer to Fig.l. Neurons in both layers are
symmetrically connected. RBMs are Energy-based Models
(EBM) [28], that associate scalar energy to each configuration,
so an overall network state can be represented as follows:
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where V;, h; are binary states of visible unit i and hidden units
J, &, bj are their biases and wjj is the weight between them. As
in general RBM contains stochastic binary units, meaning that
its binary unit state is defined by probability of its weights, the
shaping of energy function allows obtaining more plausible
probability distributions for network neurons.
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Fig. 1. Restricted Boltzmann machine neural network

This means that RBM network learns distributions of (v, h); in
other words, the probability of joint configuration over both
hidden and visible units depends on the energy of that joint
configuration compared to energy of all other joint
configurations — this can be written as follows:

| =
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here Z represents all other possible configurations of visible

and hidden units:
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Network assigns probability p(v|h) as follows:
1 —E(v,h)
p(v,hy=—> e
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Thus, to acquire high probability of visible training vector we
need to adjust weights and biases of weights to biases and
hidden units to lower energy of training vector and raise
energy of other training vectors (especially those that have low
energy). According to [14], the derivative of a visible training
vector with respect to weights is as follows:
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Here angle brackets denote probability expectations for data
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or model distributions. We can notice that (1) can be translated
to free energy formula:

Fv)=- Y av,— > log> e ()
hy
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Please refer to [15] in regard to how this (1) - (6) translation is
done. Due to the fact that we deal with stochastic binary
neurons, (6) can be even more simplified:
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Free energy is omitted in next formulas, but it will be reused
in Conditional Restricted Boltzmann Machines.
Equation (5) can be rewritten as:
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Due to the fact that there is no connection between neurons
within a layer, it is relatively easy to get expectations for data
distribution:

©)
p(v, =1|h) = sigm(ai + Zviwijj

where sigm is the sigmoid function — sigm(a)=1/(1+exp(a)).
And similarly for visible units:

. 10
p(h, =1]v)= agm[bj +ZViWu] (19)

In (9) and (10) a, b are biases and v, h, w are visible and
hidden unit states, respectively, Wjj is their associated weight.
Thus, we assign 1 or 0 to hidden or visible neurons with a
defined probability.

It is much more difficult to get model distributions, but in
2002 G.Hinton discovered [29] an elegant solution to this
problem. Thus, instead of:

Aw; = g(<vi h, >data B <V‘hj >m°de' )

Hinton proposed to use:

AWij = €(<Vi hi >data N <Vi hj >recon) (12)

where reconstructed expectation of distribution can be
calculated by Contrastive Divergence (CD) algorithm [14], see
Fig. 2, which depicts a single step of CD algorithm. As it is
highlighted in (6) and (7), RBM uses stochastic binary units
(there are real valued extensions). One step of CD contains
two phases — positive and negative ones. In the positive phase,
one needs to clamp a training visible vector on a visible layer
and calculate new states of hidden neurons using (7). In the
negative phase, one needs to calculate new states of visible
units. This new state of a visible layer can be thought as
“fantasy”. CD with such a single step is referred to as CDI1,
the more steps are taken, the better approximation to model

(11)

distribution will be acquired. It was discovered that even a
single step is enough,

reconstruction

data

Fig.2. Depicts single step of Contrastive Divergence algorithm

at least at early learning stages. At later stages, one can switch
to CD3, CD5 and CD10. Apart from CD, another algorithm,
called Persistent Contrastive Divergence, was proposed in
[11]. There are some other nuances in regard to CD learning
algorithm, which can be found in [14].

B. Deep Belief Networks

When CD was found, it was proposed in [1] to stack trained
RBMs in a greedy manner to form the so-called Deep Belief
Networks (DBN). The idea was to cleverly train RBM on a
training vector, then after finishing the training process to use
the first RBM hidden layer neuron activations as input for a
visible layer of the second stacked RBM to train it and
continue this procedure for all subsequent layers. When
overall training is performed, the found network weights can
be fine-tuned with a regular Error Back Propagation
algorithm. For graphical representation see Fig. 3.

RBM

h; 000 0O Target vector
W, O--0O

v; |OO00--0O W
000 -0
h, [OOO 0O o

W, W,

v, |OO0O0O--O

(0000

RBM

Wi
v (000w 000 -0
(0000 000 -0

Training vector Training vector

@ (b)

Fig. 3. (a) Denotes DBN formed by stacked RBMs; (b) shows how a regular
Feed-Forward Neural Network (FFNN) is formed using weights acquired
during DBN training to perform fine-tuning using a standard error back
propagation
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It is argued that such a deep network is capable of building
complex hierarchical feature representations. For example,
when one wants to classify digits “3” and “8”, it is quite a
problematic task because digit “3” is somewhat entangled in
the “8”-th digit manifold; thus, the necessity for hierarchical
features arise — and in such tasks DBNs and Deep
Architectures outperform many other classifiers.

It can be worth noting that the reason why neural networks
were abandoned in favour of SVMs is that on the one hand we
did not have enough training data and computational power
and on the other hand it was quite problematic to train really
deep architectures due to a “vanishing gradient” problem,
which shows itself at higher levels or during Recurrent Neural
Network (RNN) training (each RNN can be represented as
regular FFNN with a large number of layers, so this is a
common problem for deep layers). For a vanishing gradient
problem in regard to RNN, see [12]. In [3] Bengio justifies
greedy pre-training, and in [19] the author provides
experimental results that show higher accuracy acquired by
pre-trained FFNN and demonstrates that solutions found lay
in different areas of function space (see page 8 in [19]).

C. Conditional Restricted Boltzmann Machine

Since the introduction of RBMs, different authors have
proposed various modifications of RBMs, especially
Conditional Restricted Boltzmann Machine (CRBM),
proposed in [8], [13], for graphical representation see Fig. 4.
The main idea here was to adjust RBMs for more successful
application to discriminative problems. Apart from [8], [13],
one of the first attempts to use RBMs/DBNs for a
classification task was made by Hinton, Osindero and Yee
Whye Teh in [16].
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Fig. 4. (a) Classification Restricted Boltzmann Machine, (b) Conditional
Restricted Boltzmann Machine

We will consider only (a) type CRBM, which uses target
vector U for which it holds two additional weight matrices W""
and W*' (for hidden and visible layers, respectively. According
to [16], CRBM models the joint distribution of an input X =
(X1, ...X) and target class y using a hidden layer of binary
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stochastic units h = (hy,...,hy). This is done by first defining
an energy function:

13)
E(y,v,hy=-h"Wv-a'v-b"h-c'e, - hT\fey
with parameters 0=(W.ahcY

where
€ = (li:y ).: (14)

is “one out of C” representation for y. From an energy
function, we can assign probabilities to values of y, v and h as
follows:

and
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where Z is the normalization constant (partition function) that
is already known (from (3)) and ensures that (15) is a valid
probability distribution. Similarly to standard RBM computing
p(y,v,h) is computationally intractable, but it is possible to do
Gibbs sampling, which gives conditional distributions. When
conditioning on the visible layer we have:

p(h|y,v)= sigm(bj +Y,, +Zviwijj (16)

And when conditioning for the hidden layer we have:
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It is also possible to compute p(y|v) exactly and hence perform
the classification. Thus, after some transformations (please
refer to [16]) it is possible to derive:

(=F(y,v)

p(Y|V)=W

(19)
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Here F(y,v) is free energy that is already known.

According to [16], one way of interpreting (19) is that,
when assigning probabilities to a particular class y for some
input v, the Classification RBM looks at how well the input v
fits or aligns with the different filters associated with the rows
W; of W. These filters are shared across the different classes,
but different classes will make comparisons with different
filters by controlling the class-dependent biases Yj,. Notice
also that two similar classes could share some filters in W, that
is, both could simultaneously have large positive values of Y,
for some rows W;. Along with that [16] describes a hybrid
RBM learning approach, which uses descriptive learning
combined with generative learning adjusted using some
parameter alpha. Such a generative approach outperformed
RBM+NN approach (RBM used as a pre-training step) on
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MNIST (refer to http://yann.lecun.com/exdb/mnist/) digit
recognition data set.

III. EXPERIMENTAL SETUP

For our experiments we wused generative DBN
implementation (unmodified source codes taken from
https://github.com/rasmusbergpalm/DeepLearnToolbox),
which afterwards was used as a pre-training step for fine-
tuning FFNN. For all experiments we used 10-fold cross-
validation, i.e., we divided the whole data set into ten parts
and used nine parts to train model and the last 10™ part to run
a classification test, in the next run the part used for training
was changed to be different. Thus, on all 10 runs the same 10
data parts were used, but the training part was always
different. We report classification accuracy testing rates
averaged over 10-fold cross-validation runs.

Apart from the mentioned Energy-based models and DBN
architecture, for comparison purposes we used Random
Forests (RF) implementation (unmodified source code was
taken from https://code.google.com/p/randomforest-matlab/),
for classifier details see [17]. Along with RF for some data
sets we provided SVN accuracy rates taken from other studies
[18].
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Fig. 5. Visualization of proprietary data set — 12916 binary bags of words
representing 11 financial document classes

We performed our tests on 2 standard classification

benchmarking data sets: glass identification
(http://archive.ics.uci.edu/ml/datasets/Glass+Identification)
and ionosphere

(http://archive.ics.uci.edu/ml/datasets/ionosphere). Both of
them are multivariate real valued datasets related to
classification problem. We tested the discussed algorithms on
a mid-sized proprietary data set containing 12916 binary data
vectors of length 200 (initially there were vectors of length
5000, but we picked only 200 most representative features).
These vectors represented bags of words extracted from
financial documents. There were 11 classes in this data set and
classes were represented by: 608, 1331, 1542, 995, 1009, 500,

731, 1220, 2788, 78 and 2114 data vectors, respectively. As
can be seen, class 10 is quite poorly represented. There were
numerous overlapping vectors belonging to different classes
and in general such a data set could be considered quite hard
to classify. Figure 5 represents the visualization of this data set
(utilizing data vectors of full length equal to 5000) by means
of fast t-Distributed Stochastic Neighbour Embedding, for
visualization algorithm details refer to [20-22].

IV. EXPERIMENTAL RESULTS

TABLE I
CLASSIFICATION ACCURACY RATES

Accuracy Rates (%) Propr. data set | Ionosphere | Glass
GenRBM (with fine-tuning) 69.5% 89.17% 35.5%
ClassRBM (without fine-tuning) 65.17% 89.17% 34.58%
DBN-(with fine-tuning) 18.12% 65.46% 25.45%
FFNN (single hidden layer) 64.76% 89.17% 35.5%
FFNN (2 hidden layers) 56.09% 89.17% 35.5%
Random Forests 77.15% 91.17% 79.91%
Hybrid SVM/ Gaussian SVM/ - 79.7% 94.8% -

Random Forests were used with default settings for all data
sets.

For a proprietary data set generative RBMs were trained
with 800 hidden neurons and 3000 training epochs, for
Ionosphere and Glass data sets it was trained with 100 hidden
neurons and 1000 training epochs.

Classification RBM without fine-tuning for a proprietary
data set was trained with 800 hidden neurons and 3000
training epochs, for lonosphere and Glass data sets it was
trained with 100 hidden neurons and 1000 training epochs.

DBN and FFNN were trained using 2 hidden layers with
200 neurons for a proprietary data set and with 10 and 32
neurons in each hidden layer, respectively. On
Glass/Ionosphere data sets RBMs were trained on 100 epochs
for RBM and for 100 epochs for FFNN fine-tuning on
Glass/lonosphere datacsets. In all cases FFNN (used in general
setup and fine-tuning stage) was trained using Cross Entropy
as a loss function.

SVM used for classification is fine-tuned implementation
based on 1ibSVM library [23].

Table I shows classification accuracy rates on different data
sets. It is clearly seen that RBMs and DBN networks clearly
lose in terms of accuracy to Random Forests and SVM-based
classifiers. It can be seen that FFNN with two hidden layers
outperforms DBN. Our results resemble ones in [5].
Moreover, DBN network shows extremely low performance
even compared to RBMs. The first observation is that
Ionosphere has 32 features and Glass Classification only 10.
In contrast, our proprietary data set holds 200 features, but all
of them are binary. Thus, it seems that having problems with
lower dimensionality (or with several features preselected by
some other algorithms) can badly influence RBM
classification rates (we should note that we conducted partial
experiments on a proprietary data set with larger feature
vectors (2000 features), but performance was even worse than
with 200 features for DBN). In contrast to real-valued
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vectors representing documents in [1], we used binary vectors.
Nevertheless, SVM and RF given such initial information
were able to outperform RBMs, DBN and FFNN. As to DBN
it was trying to build higher-level hierarchical features based
on quite poor representation given by RBM in the first layer.
However, in our case it seems that all features were
uncorrelated and their combination at higher levels provided a
low value if at all. The same logic applies to FENN with two
hidden neuron layers. We conducted additional experiments,
which showed that adding additional hidden layers did not
help DBN to perform better. Looking at DBNs, their main
point is to learn a hidden layer of filters or sparse bases (sparse
codes) that can be combined in subsequent layer(s) either in
FFNN or even SVM (for example, see [24]). In contrast, for
our data sets it seems that the learning of such filters that
would model the appearance of several bits in a vector instead
of the single one is inappropriate for the reviewed data sets.
While such sparse coding is a good thing for high-dimensional
data, it is obviously not the best choice for dense data sets. In
general, our findings somewhat contradict the results in [25],
where Hinton argues that DBNs with an exponentially large
count of hidden layers and size equal to an input vector can
model an arbitrary input vector with arbitrary accuracy, but
again we performed only partial experiments with 3 and 4
hidden layers, while Hinton talks about much larger amount.
The same discussion about RBM and DBN representational
power is held in [26-27]. While such theoretical discussions
are important in a way they give theoretical justifications of
methods, but as our experiments show for some specific data
sets the referenced classification approaches do not work very
well using acceptable models (both in terms of size and
training time).

All successful DBN and RBM applications reported in the
referenced papers are related to high-dimensional data sets,
such as documents, images and alike. While these data sets are
extremely perspective research area, it is clear that for low-
dimensional or pre-cleared data such approaches with default
settings are not the best choice. LeCunn generalizes many
classification approaches as Energy-based Models and treats
them all as Energy-based Learning, so in theory it is possible
to leave architecture and inference algorithm, but do
adjustments in a loss function and possibly a learning
algorithm.

V. CONCLUSION

We performed comparison of RBM+FNN, CRBM, DBN
and FFNN in classification tests using two small
benchmarking UCI data sets and single proprietary mid-sized
data set. It was shown that RBMs lost in terms of accuracy
rates to RF and SVM approaches, while DBN was proven to
be useless because showed very poor performance, FFNN
showed performance slightly worse than RBM with fine-
tuning, which aligned with the reported good influence of pre-
training phase. Tests on proprietary 200 feature data set
showed that even such number of features could be
insufficient to learn good separation hyper-planes for
classification. Building hierarchical features through DBN
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showed to be useless. An increase in the number of neurons in
the RBM hidden layer proved to have some positive effect, but
it badly influenced training time and proved to give a
negligible increase in accuracy. In general, it is obvious that
existing approaches allow RBMs and DBNs to deal with high-
dimensional data, where we have a large number of sample
vectors to be learned from. Moreover, RBMs allow us to
perform training on unlabeled data, which is a huge gain in
certain scenarios.

Future research directions can include searching for reasons
why RBMs are outperformed by RFs and SVMs and looking
for possible solutions to increase performance of RBM.
Energy-based Model framework [27] is a good candidate that
can help in solving the latter problem. Another direction is
searching for metrics that would allow us to tell beforehand
whether specific data set can be successfully modelled by
RBMs and DBNs. Apart from that, experiments with Partially
Restricted Boltzmann Machines and Deep Boltzmann
Machines can be conducted to see how well they perform.
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Andrejs Bondarenko, Arkadijs Borisovs. Dzilas parliecibas tiklu iesp€ju izpéte mazu un vidéju datu kopu klasifikacija

Dotaja bridi maksligie neironu tikli (MNT) tiek pielietoti dazadas nozarés kur ir nepiecieSama daudzdimensionalu datu apstrade, ka ari neklasific€tu datu
apstrade, kur mingtie tikli uzrada labus rezultatus. Més varam drosi runat par MNT jomas otru renesansi. MNT kuri tiek pielietoti darbam ar minétiem datiem
parasti tiek biivéti ka dzili - ar daudziem apsléptiem slaniem. Sadu dzilu MNT apmaciba ir pietiekami griits uzdevums, jo pastav gradienta saplianas probléma.
2002.gadd, Geoffrey Hinton nodarbojas ar ierobeZotiem Boltzmana masinam (IBM) un ir atklajis atru apmacibas algoritmu CD-k (kontrastiva novirze). Sis
algoritms deva iesp&ju apmacit IBM pienemama laika. Pats par sevi IBM ir stohastisks rado$s modelis, kuru ir iesp&jams apmacit bez skolotaja. IBM apmaciba
tika izmantota ka pirmapmacibas solis. Parasti MNT apmacibai iegiitais neironu saistibu svars otraja apmacibas posma tika izmantots ka normalais svars, lai
apmacitu parasto MNT ar atgriezeniskas klidas izplatiSanu, lai preciz&tu neironu saiSu svaru. Vélak tika raditi dzilas parliecibas tikli (DPT) (Deep Belief
Networks), kuros katri divi blakus slani tika apmaciti ar IBM apmacibas algoritmu. DPT izmantoSana, ka pirmapmacibas procedira dziliem MNT ar
atgriezeniskas kludas izplatiSanas apmacibu, uzradija iespaidigus rezultatus tadas jomas, ka att€lu atpaziSanas sist€émas, dokumentu klasifikacijas sisteémas,
sistémas runas atpazisanai un cilvéka kustibu klasifikacijai (skrieSana/ie$ana). Saja raksta ir aplikota IBM un DPT teorija. Tika veikti IBM un DPT salidzinosie
testi klasifikacijas uzdevumos ar mazam un vidéjam datu kopam ar mazu dimensiju skaitu (10/32/200 pazimes). Visos gadijumos abi apliikotie IBM tikli uzradija
sliktus rezultatus, bet DPT paradija sliktako rezultatu. Tadgjadi, runajot par aplikotiem modeliem, rodas jautajums - kadas ipaSibas piemit datu kopam, kas tik
slikti ietekme& IBM un DPT klasifikacijas rezultatus un, no otras puses, kadas izmainas ir javeic IBM un DPT apmacibas algoritma un/vai tikla arhitektiira, lai Sie
modeli varétu stradat ar apliikotajiem datiem.

Anapeii Bonnapenko, Apkaamnii Bopucos. HccinenoBanue BO3MOXKHOCTelH ceTell Iiy0OKoOil yYBepeHHOCTH ISl KiIacCH(pUKAUMU MaJbIX U CPeJIHHX
Ha00pPOB JaHHBbIX

B Hacrosimee BpeMs IpEMEHEHHEe HCKYCCTBEHHBIX HelpoHHBIX ceTeil (IHC) B pa3nu4HBIX 0Tpacisx, TpeOyommx paboThl ¢ JaHHBIMU OOJIBIIONH pa3MEpHOCTH, a
TaKXKe ¢ HeKIaCCU(UIMPOBAHHBIMY JaHHBIMH, IMOKA3bIBAET XOPOIIE Pe3yIbTaThl. MOKHO C YBEPEHHOCTBIO TOBOPHUTH O BTOPOM peHeccaHce B obnactu MHC.
HelipoHHsle ceTu, MpUMEHseMBbIe U PAaOOTHl C YIOMSHYTHIMH JaHHBIMH, KaK IPaBHJIO, CTPOSTCS ITyOOKUMH - C OOJIBIIMM KOJIMYECTBOM CKPBHITHIX CIIOEB.
OOyueHne Takux ceTedl sBISIETCS TPYJOEMKOH 3amadeil, Tak Kak cyllecTByeT IpobiieMa wucuesatomiero rpaguenta. B 2002 romy JDxeddpn XuHTOH,
3aHMMAaBILHICS OrpaHHYeHHbIMH MainnHaMu bosbimana (OMB), otkpsut anroputm obydenus CD-k (Contrastive Divergence). [{aHHBIH aqropuT™ Mo3BOJIUI
obyuats OMB B mpuemnemoe Bpemst. Camu mo cebe OMB - 3To croxacTHdeckue TeHepaTHBHBIE MOJENH, CIOCOOHbIEe K 00ydeHuto Oe3 yuntens. OOydeHHbIE
OMB crany ucnonp3oBath Kak mar npegodydenns MHC — Beca, morydeHHbIE IPH TaKOM 00YYEHHH, Ha BTOPOM LIare UCHOJIb30BAINCH KaK Beca OOBIYHOM CeTH ¢
0OpaTHBIM pacrpocTpaHeHHEeM OIIHOKH Jist Gosiee ToUHON GUHATBHOI HACTPOHKH BecoB. Elie mo3ixe ObuTH co3aanbl ceTu rirydokoit yepernoctu (CI'Y) (Deep
Belief Networks), xoTopsie o0yuanuck mocioiHo no aiaroputmy oOydenus OMB. Hcnonw3oBanue CI'Y s npenoOyueHusi riryOOKUX ceTell ¢ 0OpaTHBIM
pacrpocTpaHeHHeM OIIMOKU MO3BOJIMIIO JOCTHYD BIEYATILIIOIINX PE3yJIbTaTOB B CHCTEMaX PacIo3HaBaHMS 00pa3oB, NOKYMEHTOB, PeUH, PACIIO3HABAHUS THUIIA
JBIDKeHUs 4desioBeka (Oer/xonp6a). B nmaHHOW craThe MPHBOAUTCS Teopws, Jexamias B ocHoBe OMbB u CI'Y. B pamkax uccienoBaHus ObUIH NPOBEICHBI
CPaBHMTENIbHBIE TECTHI IO KIACCHU(HUKALMKM MAJbIX M CPeIHMX Ha0OpOB NaHHBIX Mayod pasmepnoctd (10 / 32 / 200 mpusnakoB) cpencrBamu OMB,
kinaccudukanronnoir OMB, a taxxe CI'Y. B cpaBHHTENBHBIX TECTaX BO BCEX CIydYasX BCE TPH PACCMOTPEHHBIE apXUTEKTYpPhI OKa3aJli Xy (IIHe Pe3yIbTaThl, a
CI'Y oka3anach xyuieit Mozienbio. Takum 00pa3oM, IPUMEHHUTEIBHO K CYIECTBYIOIMM MOJEISM BO3HHKAIOT BOMPOCH! - KAKUMH XapaKTEPHCTHKAMH 00J1a1aioT
naHsble, Ha KOTopeiX CI'Y u OMbB mokasbIBaroT IUIOXHE pe3ylbTaThl, a C IPYroi CTOPOHBI - KaKHe M3MEHEHHUS IIO3BOIAT CTPOUTH KOHKYPEHTOCIIOCOOHBIE
Mozen OMB u CI'Y Ha paccMOTpeHHBIX HabOpax JaHHBIX.
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