YRFEN VERSITA

Information Technology and Management Science

doi: 10.2478/itms-2013-0008
2013/16

Algorithm for Monitoring Minimum Cost in Fuzzy
Dynamic Networks

Alexander Bozhenyuk', Evgeniya Gerasimenko®, "> Southern Federal University

Abstract — The present paper examines the task of minimum
cost flow finding in a fuzzy dynamic network with lower flow
bounds. The distinguishing feature of this problem statement lies
in the fuzzy nature of the network parameters, such as flow
bounds, transmission costs and transit times. The arcs of the
considered network have lower bounds. Another feature of this
task is that fuzzy flow bounds, costs and transit times can vary
depending on the flow departure time. Algorithm, which
implements the solution of considered problem, is proposed.

Keywords — Fuzzy dynamic network, lower flow bounds,
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1. INTRODUCTION

Conventional tasks of finding a maximum flow and
minimum cost flow assume that the instant flow passes along
the arcs of the graph that certainly is simplification of the real
life. Such tasks are called static flow tasks. In fact, it turns out
that the flow spends certain time passing along the arcs of the
graph. Then, we turn to dynamic networks, in which each flow
unit passes from the source to the sink for a period of time less
than given. Dynamic network is a network G = (X, 4), where

X = {xl,xz...,xn} - the set of nodes,

A= {(xi,xj)}> i,jel =1,_n — the set of arcs. Each arc of the
dynamic graph (x;,x;) is denoted by two parameters: transit

time 7;

and arc capacity u; .

determining that all flow units sent from the source must
arrive at the sink within time p is given [1].

Dynamic networks describe complex systems, problems of
decision-making, models, whose parameters can vary over
time. Such models can be found in communication systems,
economic planning, transportation systems and many other
applications, so they have a wide range of practical
applications.

The time horizon T ={0,1,..., p}

II. LITERATURE REVIEW

Historically, the maximum flow finding in dynamic graphs
was the first task in dynamic graphs, described in the
literature. The notion “dynamic flow” was proposed by Ford
and Fulkerson [2] as a task of maximum dynamic flow finding
in a network. This problem is related to finding a maximum
flow, passing from the source (s) to the sink (¢), s,z € X in the
network for p discrete time periods, starting from zero period
of time.

The task of minimum cost flow finding in dynamic graphs
is that of searching for flows of the given value, which have a

minimum cost in dynamic graphs. This field, which appeared
later, is a more complex sphere of investigations. Fleischer
and Skutella [3] examined this problem. Cai et al. [4], Halpern
[5] considered networks with transit parameters. The
subproblem of the minimum cost flow finding in dynamic
graphs is the shortest path problem. This problem was
introduced by Cooke and Halsey [6] and was widely reported
in the literature by such authors as Ahuja et al. [7], Pallottino
and Scutella [8] in terms of nonnegative transit times.

The fact that the flow, passing along the arcs of the graph,
can have lower bounds usually is not taken into account in the
literature. For example, a network that consists of railways,
sea and air roads is considered. Therefore, the freight trains
have a certain level of load, which exceeds a profitability
threshold; transport planes do not fly at a low load. Thus, it is
necessary to introduce lower flow bounds, which can lead to
the absence of feasible flow.

III. PROBLEM STATEMENT

The task of minimum cost flow finding in a fuzzy dynamic
network with fuzzy lower and upper flow bounds has the
following problem statement:

p ~
Minimize z z Ngjj(e)xgij(e)a (N
0=0 (x;,x;)ed
2 ~ ~ ~
D IEO-E,0-7,(ON-F(p)=0, (2
6=0 x;eX

2O =& OO =0, x; #5,60€T, 5

x/-eX

p ~ ~ ~
D DU O &, (0-7,ON+5(p)=0, (@)

0=0 x;eX

1,(0) < E(0) < Ty (0), for@:0+7,(0)< p,OeT. (5)

Equation (1) means that it is necessary to find the minimum
cost transmission route of the given flow value for the
specified number of time periods. Equation (2) indicates that
the given flow value p for p time periods is equal to the flow,
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p
leaving the source for p time periods Z‘fsj (6). Equation (4)

6=0
reflects that the given flow value p for p time periods is equal
to the flow entering the sink for p time periods

P
Zgﬂ(e—rﬂ). The amount of flow entering the source
0=0

)4
z;is(é)—z-js) for p time periods is equal to the flow
6=0

S

ZE (0) leaving the sink for p time periods and is equal to
H_

0. For each node x; except the source and the sink and for
each time period 6 the amount of flow Ej,.(e—r‘,,,) entering

x; at each period of time (6 —7;) is equal to the amount of

flow &;(0) leaving x; at time € as stated in (3). Inequality
(5) indicates that the flows 5,7(49) for time periods
0:0+7,(0)<p,0eT should be more than lower flow

bounds l ;(0) and less than upper flow bounds u; ;(0) along

the corresponding arcs.

In other words, it is necessary to carry p(p) flow units
with minimum cost in a dynamic network taking into account
lower flow bounds in such a way that the last flow unit would
enter the sink at time period not later than p. In this case,
upper flow bounds, lower flow bounds and transmission costs
are transit.

We represent the formal algorithm describing the solution
to the problem of finding a minimum cost dynamic flow with
upper and lower fuzzy flow bounds in a fuzzy transportation
network with time-varying fuzzy flow bounds, transmission
costs and time-varying crisp flow transit times along the arcs.

Step 1. Go to the time-expanded fuzzy static graph G »

from the given fuzzy dynamic graph G by expanding the
original dynamic graph in the time dimension by making a
separate copy of every node x; € X at every time § €T . Let

G,=(X,.4,
of the original dynamic fuzzy graph. The set of nodes X, of
is defined as X, ={(x;, 0):(x;, 0) eXxT}.

) represent a fuzzy time-expanded static graph

the graph Gp
The set of arcs A4 , consists of arcs from each node-time pair
(x;,0) e X,
x;€l'(x;) and @+7,(0)<p . Fuzzy upper flow bounds

to every node-time pair (x;, @ +7;(6)), where

u(x;,x;,0,0+17;(0)) joining (x;,0) with (x;, & +17,(6)) are
equal to #;(¢) and fuzzy lower flow bounds
1(x;,x;,0,0 +7;(0)) joining (x;,60) with (x;, 0+7,(0)) are

equal to Zj(ﬁ), transmission cost E(x,»,x 0,0 +7;(0)) of
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one flow unit along the arc connecting the node-time pair
(x;,0) with (x;, +17;(6)) is equal to ¢;(6).

Step 2. Determine, if the time-expanded fuzzy graph G »o

corresponding to the initial dynamic graph é, has a feasible
flow. Introduce the artificial source s  and sink ¢
and turn to the graph 5; =(X ;, Z;) without
lower flow bounds according to the method, described in [12].
The set X ; consists of the nodes from the set X, and the

in the

graph G »

artificial nodes s and ¢ . Introduce the arcs, connecting the
node-time pair (¢, V0 e T) and (s, V8 € T) with upper fuzzy

flow bound #(r,5,Y0eT,VOeT)=w, lower fuzzy flow
7 (t,s,VHeT,‘v’HeT):O,
¢ (t,s,Y0eT,¥0eT)=0 in the graph @;

every node ¢ in each time period from p is connected with

bound transmission  cost

. It means that

every node s at all time periods in the graph 5;. Introduce

the following modification for each arc connecting the node-
time pair (x;,) with the node-time pair (x;,0 =3+ 7;())

with nonzero lower fuzzy flow bound lN(xl-,xj,S, 0) # 0: 1)

reduce u(xl,x 3,0) to
0 (xpx 0 8,0) = 1(x;,,%,,9,0) ~ 1 (x;,%,;,9,0) ,
[(x;,x;,9,0) to 0, C (xi,xj,l9,l9)=c(xl.,xj,19,6?); 2)

introduce the arcs connecting s* with (x ;»0), and the arcs

u(x;,x

connecting ¢ with (x;,9) with upper fuzzy flow bounds

equal to lower fuzzy flow bounds
ﬁ:*x,(é)zﬁ,:(g),* =rlw(xl.,xj,l9,6’), zero lower fuzzy flow
bounds Z:x_/(e) = 7;( oy = 0 and zero transmission costs
Coor(0) =T gy =0

Step 3. Build a fuzzy residual network 5;" depending on
the flow values going along the arcs of the graph é; . Fuzzy
residual network (N};/‘ =(X ;”,Z;”) is constructed according
to the time-expanded fuzzy static graph é; without lower
flow values

fuzzy flow bounds depending on the

5 =lg(xl-,xj,,9,¢9) going along it as follows: each arc in the
fuzzy residual network G.“, connecting the node-time pair
(x{',9) with the node-time pair (x ,0) , whose flow

ef (xl-,x_ j»%,0) is sent along at each period of time 9 €7 has

residual
39)—u (x;,x;,8,0)— rf (x,,x ,3,0)

transit time 7 #(x,.,x.,g,e):r (x;,%;,%,0) and modified

fuzzy capacity

0 (x, x with

transmission cost & (xl, 9 0)=¢"(x,,x,;,9,0), and a

i j’

reverse arc connecting the node-time pair (x;’ ,0) with
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(xf',9) with residual fuzzy arc capacity
0H(x;,x;,0,9) =& (x;,x,,8,0)  and  transit  time
T (x,x,0,9) =7 (x;,x,,9,0)  and modified

transmission cost E*ﬂ(xj,xl-,é?,g) = —E*(xi,xj,S,H).
Step 4. Search for the augmenting minimum cost path 13; #

from the artificial source s  to the artificial sink 7 in the
constructed fuzzy residual network according to the Bellman—
Ford algorithm [13].

(I) Go to step 5 if the augmenting path 13; # is found.

(II) The 5* < Z IN(xi,xj,S,B) is
T(xi,x‘,,9,9)¢6

flow value
obtained, which is the maximum flow in CN}; , if the path is not

found. It means that it is impossible to pass any unit of flow,
but not all the artificial arcs are saturated. Therefore, the time-

expanded graph (N;p has no feasible flow as the initial

dynamic fuzzy graph G and the task has no solution. Exit.
Step 5. Pass the minimum from the arc -capacities

8* =min [ (x;,x;,8,0), (x;,x;)eP,*, included in the
path of minimum cost }N’; # along this path.

Step 6. Update the fuzzy flow values in the graph 5; :
replace the fuzzy flow 5 *(xj,xl-,S,H) along the
corresponding arcs going from (x;,) to (x;,60) from 6; by
EM(x j,xl-,19,49)—5;" for arcs connecting node-time pair

(x{,0) with (x%,9)in 6;” with nonpositive modified cost

E*ﬂ(x X and replace the fuzzy flow

15%;,0,9) <0
g*(xi,xj,S,H) along the arcs going from (x;,9) to (x;,6)
from é; by g*(xi,xj, 9, 9)+gp*” for arcs connecting node-

time pair (x/,9) with (x/,0) in 5;” with nonnegative

modified cost & (x;,x;,9,0)=0 . Replace g*(xi,xj,S,H)
by & (x,,x,,8,0)+6," x P*.
Step 7 (I) If the flow value g*(x[,x_/,9,9)+5~;" xlg;" of
minimum cost E(?(xi,xj,&, 0)+ 5;” x P;”) is less than
z IN(xi,xj,S,H), i.e.,, not all artificial arcs become
T(x;,x;,9,0)0
saturated, go to step 3.
D If the flow value & (x,.x;,9,0)+5,"xP* of
minimum cost E(g*(xi,xj,g,é’) + 5;" xP;”) is equal to
z IN(xi,xj,S, 0), i.e., all arcs from the artificial source
T(x;,x;,9,0)0
to the artificial sink become saturated, then the value
& *(x,-,xj,g, 0)+ 5;“ X ﬁ;“ is the required value of maximum

flow & of minimum cost E(g*(xi,xj,g,é’) + 5;" x P;") .In

this case the total flow along the artificial arcs connecting the
node-time pairs (¢, V8 € T) with (s, V 8 € T) , which is equal

LA ~
to D E(1,s,Y0eT,VOeT) in G, determines the feasible
6=0

flow in time-expanded graph G , Wwith the flow value

p =k
Z & (t,s,Y0eT,NOeT)=06 of minimum cost. Turn to
6=0

the graph (N;p from the graph é; as follows: reject artificial
nodes and arcs, connecting them with other nodes. The
feasible flow vector & = (&(x;,x;,8,0)) of the value & of
minimum cost is defined as
E(x;,x;,9,0) = & (x;,x;,9,0) + 1 (x;,x;,9,0)

follows:
, where
5 *(xl-,xj,S, 8) — the flows, going along the arcs of the graph
5; after deleting all artificial nodes and connecting arcs. The
network 6(5~ ) is obtained. Go to step 8.

Step 8. Construct the residual network G(E H(x;,x »%.0))
taking into account the feasible flow  vector
& =(5(x;,x;,8,0)) in G, adding the artificial source and
sink and the arcs with infinite arc capacity and zero cost,

connecting s with true sources and ¢ with true sinks
according to the following rules: for all arcs, if

E(xi,x_,,g,e) < ﬁ(xi,xj,g,ﬁ), include the corresponding arc
in G (x.x;.8.0))
(% ,8,0) = (x;,x;,9,0)~ E(x,,x;,9,0) , and the

modified cost E”(x[,xj,&,é’) =¢(x;,x;,9,0). For all arcs, if

with  the arc capacity

f(x[,x_,,g, ) > IN(x,-,xj,S, @) , include the corresponding arc
in G (x.x;.8.0))
a#(x_/sxiseslg) = E(xhxjs‘gse)_T(xisxjslgse)

modified cost E”(x_/,x[,H,S) =—¢(x;,x;,9,0).

with  the arc capacity

and the

Step 9. Define the minimum cost path 13;’ according to the

Bellman—Ford algorithm from s to ¢ in the constructed
residual network G(E"(x,-,xj,él,@)).

Step 10. Pass the
. -
o, =min[u* (x;,x;,9,0)], (x;,x;) € P,” along the found

path.

flow value

Step 11. Update the flow values in the graph G » : Teplace
the flow &(x;,x;,9,0) by &(x,,x.,%60)-5/ along the

Jori
corresponding arcs, going from (x;,9) to (x;,0) from 6p
for arcs, connecting node-time pair (x{,6) with (x7,9) in

(N}(E”(xi,xj,g,ﬁ)) with  nonpositive  modified cost
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¢*(x;,x;,0,8)<0 and replace the flow E(x,.,xj,s,e) by
gﬂ? (x;,x;, 4,0) + 5 p” along the corresponding arcs, going from
(x;,9) to (x;,0) from 517 for arcs, connecting node-time
pair (xf,9) with (x*,0) in G(&“(x;,x;,9,0)) with

nonnegative modified cost E”(xl-,xj,g, 6) > 0 and replace the

flow value in G,
E(x;,%;,8,0) > E(x;.x;, ,0)+ 5 x Pl

Step 12. Reject the artificial nodes and arcs with flows,
connecting them with artificial nodes and find the total flow
from the set of sources to the set of sinks for all time periods
not later than p.

(1) If the flow value & (x;,x;, 9,0)+ 5 X ﬁp” from the set
of sources to the set of sinks of minimum cost
E(E(xi,xj,é‘, 49)+ng‘ x P)') for p time periods is less than
the given flow value p(p) , then go to step 8.

I) If the flow value (,?(x,-,xj, 3,0)+ 5;’ xﬁp/‘ for p time
periods from the set of sources to the set of sinks of minimum
cost 5((,?(xi,xj, 3,0)+ gp” x P)') is equal to p(p), the given
flow value of minimum cost in CN}p is found and go to step
13.

(IID) If the flow value &(x;,x

Su L pH _
15X, $,0)+ 06, x P = a(p) for
p time periods from the set of sources to the set of sinks of
minimum cost ¢(&(x;,x;,9,0)+6, xP)') is more than

p(p) and less than V(p), then the required flow in Gp is
E(x;.x;, 8,0)+ (5} —@(p)+ p(p))x P of minimum cost
E(E(x;,x;, 9,0)+ (5} — @(p)+ p(p)) x P{*) and go step 13.
Step 13. Turn to the initial dynamic graph G from the
time-expanded static graph G, as follows: the given dynamic
flow of minimum cost in the graph G for p time periods is
equal to the flow, leaving the set of sources for all time

periods and entering the set of sinks for all time periods not
later than p. Each path, connecting the node-time pairs (s,4)

with (t,c=9+7,(9), el , with the flow &(s,t,9,¢)
passing along it in G » of the cost E(g (s,t,9,¢)) corresponds

to the flow Est(g) of the cost E(fst(g)) inG.

Therefore, the proposed algorithm allows finding the
minimum cost flow in a fuzzy dynamic transportation network
with time-varying parameters and lower and upper fuzzy flow
bounds.

IV. NUMERICAL EXAMPLE

Let us consider an example, which illustrates the
implementation of the algorithm. Let the transportation
network, which is the part of railway network, be presented as
a fuzzy directed network, obtained from GIS “Object Land”
[14], as shown in Fig. 1.
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The node x; is the source, the node x4 is the sink. Fuzzy

flow bounds, arc costs and crisp parameters of time, which
depend on the flow departure, are presented in Tables I, II, III.

Fig. 1. Initial dynamic graph G

TABLE I
FLOW BOUNDS DEPENDENT ON THE FLOW DEPARTURE
4
iy T, 0 1 2 3
(10,1.5,2)
(x1,x7) (10,1.5,2) (183.3) (8,1,1) (10,1.5,2)
(x3) | (10,15,2) (1532) | (1833) | (183.3)
(18,3,3)
(x1,x4) (203.4) (20,3,4) (25,4,5) (18,3,3)
(x2,x6) (30,5,6) (25,4,5) (40,7,7) (30,5,6)
(x3,x4) (25,4,5) (18,3,3) (20,3,4) (20,3,4)
(x4,%5) (30,5,6) (30,5,6) (25.4,5) (25,4,5)
(x5,x¢) (30,5,6) (30,5,6) (45,8,8) (25,4,5)
TABLE II
TRANSMISSION COSTS DEPENDENT ON THE FLOW DEPARTURE
- 4
Cjj 0 1 2 3
(x1,x2) (30,7,6) (60,10,9) (60,10,9) (30,7,6)
(x1,x3) (75,11,12) (50,9,8) (18,3,3) (18,3,3)
(x1,x4) | (70,10,10) (30,7,6) (20,3,4) (18,3,3)
(x2,x6) (30,7,6) (25,4,5) (50,9,8) (30,7,6)
(x3,%4) | (254.5) (30,7,6) | (80,15,15) | (20,3.4)
(x4,x5) (30,7,6) (100,20,17) | (80,15,15) (25,4,5)
(x5,%6) (30,7,6) (30,7,6) (80,15,15) (25,4,5)
TABLE III
TRANSMISSION TIMES DEPENDENT ON THE FLOW DEPARTURE
17
Ty 0 1 2 3
(x1,x2) 5 1 3 2
(x1,x3) 1 3 2 1
(x1,x4) 1 3 3 3
(x2,x6) 4 4 1 2
(x3,x4) 5 1 2 3
(x4,x5) 4 1 1 1
(x5,x6) 4 4 1 1

Add the artificial nodes and arcs, connecting them with
other nodes to the constructed graph in Fig. 2 and turn to the
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graph 5; without lower flow bounds, which is shown in

Fig. 3.

Connectors, which have the same shape (for example, &),
connect the corresponding pair of nodes in Fig. 3. Therefore,
each node x4 for all time periods is connected with each node

x, for all time periods. It is represented by the connectors of
the same shape. All arcs, going from x, for all time periods to
the nodes x; for all time periods have infinite upper flow

bounds, zero lower flow bounds and zero costs.
Applying the steps of the algorithm, we find the paths of

minimum cost. Find the fist path of minimum cost from s to
t according to the Bellman—Ford algorithm in the residual

network, which initially corresponds to CN}; We get two
identical paths of the minimum cost: s*,(x2 ,2),(x6,3),(x1,1),t*

57 (%2,2),(x6,3),(x,,0),°  of  the (50,9,8)
conventional units.

and cost

T in%e periods

of the initial dynamic graph G

Fig. 2. Expanded graph 6 »

Let us choose the first path and push min from
[(10,1.5,2),(40,7,7),0,(10,1.5,2)] , i.e., (10,1.5,2) flow units
along it, i.e., the flow 0 goes to (10,1.5,2)><}~’1*”. Find the
second path of minimum cost P, according to the Bellman—
Ford residual
P =" (x4,1),(x5,2),(x6,3),(x,,0),¢° . Push min from
[(18,3,3),(30,5,6),(45,8.,8),0,(18,3,3)], i.e., (18,3,3) flow units

along the path P =5 (x,,1),(x5,2),(x4,3),(x,,0),2" , i.e.,

algorithm in  the network 5;“

flow (10,1.5,2) x B goes to

(10,1.52)x B"* +(18,3,3)x B,*.  The  flow  value

10,1.5,2)x P +(18,3,3) x P, * is equal to
1 2 q

z lN(xi,x ;»%,0), so the maximum flow is found in the
T(x,x;,9,0)%0

expanded graph CN}; with introduced artificial arcs and nodes.
This flow is equal to the sum of lower flow
bounds: (10,1.5,2)+(18,3,3) , i.e., (28,4,5) units. Therefore,
there is the feasible flow in (N?IJ and it is equal to the total

flow, passing along the reverse arcs, connecting the nodes
(x5,V0eT) with (x,Vv@eT) for all time periods, i.e.,
(28,4,5) units.

10152) Tlmle perzods 3
Qs 5, s O
0(10,13 Ty
R %
1833
3 s ©

37
D, ot i e ol
Fig. 3. E@nanded graph P of the initidl dynamic grap\G

This flow value is less than the given flow rate
(30,5,6) units; therefore, we turn to determining the given
flow cost in the initial expanded graph. Construct the network
with flow (N} (&), deleting artificial nodes and arcs and taking

into account that the feasible flow vector § = (5 (x;,x;,9,0))
of the Value c is defined as
i(x,,x 9,0) = 5 (xi, x;,4,0)+ i (x;,x;,4,0) where

<4 (x,,)il*,&’ 6) — the flows, passing along the arcs of the
graph G, after deleting the artificial nodes and connected
arcs. Construct a network with the feasible flow, as shown in
Fig. 4.

Introduce the artificial source and sink, connecting them
with the true sources and sinks by the arcs with infinite arc
capacities and construct the residual network for the graph in

Fig. 4, as shown in Fig. 5. Find a path of minimum cost B*
according to the Bellman—Ford algorithm in the residual
network (N}(E”(xi,xj,g,é?)) : IN)I” =5 ,(x,1),(x,2),(x6.,3), 1 .
Pass min from [,(8,1.5,2),(30,5,6),], i.e., (8,1.5,2) flow
units along this path, the feasible flow turns to
E(x;,%,,8,0) +(8,1.5,2) x B from &(x;,x,,9,0), therefore,
the flow value (28,4,5)+(8,1.5,2)x1~’1" exceeds the given
flow (30,5,6), thus, the given flow value can be found as
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(28,4,5) +((8,1.5,2) - (36,6,7) + (30,5,6)) x (s' , (x5 1),
(x5,2),(x4,3), t') =((28,4,5) +(2,1.5,2)) x (s',(xl,l),
(x2,2),(x4,3), 1).

Fig. 5. The residual network 6(5”()61-,)6/,19, 0)) for the graph G(é:)

Therefore, the graph with a feasible glow is shown in Fig. 6.
The found feasible flow (30,5,6) has minimum cost

(18,3,3) x((70,10,10) + (100,20,17) + (80,15,15)) +
(12,1.5,2) x((60,10,9) + (50,9,8)) = (5820,20,17)
conventional units.
Turning to dynamic graph G from expanded static graph
(N?p , we come to a conclusion that the given flow value for 3

time periods is equal to the flow, leaving from the “node-time”
pairs (x;,0) and (x;,1) and entering the “node-time” pair
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(x¢,3), i.e., (30,5,6) flow units, which are defined by a path
X; —> X4 —> X5 —> Xg, which departs at € =0 and arrives at
the sink at ¢ =3 and by a path x; = x, = x4, which departs

at @ =1and arrives at the sink 6 =3.
T ime periocés

Fig. 6. Graph (N;p with the feasible flow (30,5, 6)

V. CONCLUSION

This article examines the task of minimum cost flow
finding in a dynamic graph. The distinguishing feature of the
problem lies in the fuzzy nature of network parameters. The
relevance of this task is that the time factor and the tendency
of the flow bounds, costs and transit times change over time,
when finding the minimum cost flow for the given number of
time periods. The necessity of introducing the lower bounds is
taken into account due to the complex nature of the network.
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Aleksandrs BoZenuks, Jevgenija Gerasimenko. Minimalas izmaksas monitoringa algoritms izpliidus$ajos dinamiskajos tiklos

Saja raksta tiek aplikota plismas minimalas izmaksas izplidusa dinamiska transporta tikla probléma, nemot véra plismu zemakas robezas, kuras defingtas ka
grafa loki. Literatira plismas ir definétas ka dinamiskie grafi, bet tie neatt€lo parametru izpluduSo raksturu transporta tikla, caurlaides sp&jas atkaribu,
parvadajumu izmaksas un laika parametrus no plismas izsttiSanas sakuma. Aplikojamas problémas Ipatnibas ir saistitas ar to, ka transporta tikla parametri, tadi
ka augsgjas plusmas robezas, apaks$€jas pliismas robezas un izmaksas, tiek definéti izpludusa veida, jo uz tiem iedarbojas apkartgjas vides faktori, merjjumu
kladas un benzina cenu izmainas. Probléma ietver ari transporta tikla parametru atkaribu no pliismas izsiitiSanas sakuma laika, kas norada uz aplikojama
transporta tikla dinamiskumu, pretstata klasiskaja literattira aplikotajam stacionari-dinamiskam plismam. Lai atrisinatu raksta apliikoto problému, tika izstradats
algoritms, balstits uz ,,laika izstieptu” grafu, kas nodrosina korektu pareju no izplidusa dinamiska grafa uz statisku izejas grafa variantu. PEc parejas uz statisku
izejas grafa variantu tiek meklétas minimalo izmaksu saites, pa kuram tiek novadita plisma, kamer tiek sasniegts nepiecieSamais pliismas limenis. Raksta
piedavatais algoritms var tikt izmantots reala celu tikla, lai izpilditu uzdevumus, kas risina parvadajumu marsSrutu minimalo izmaksu atraganu, nemot véra laika
diapazonu, kura plismai ir jabut parvaditai. Algoritma darbibas rezultata tiek ieglita plismas minimalas izmaksas nepiecie$ama vertiba, kas tiek definéta
izpludusa veida un nodro$ina pareju uz dinamisku grafu.

Anexkcanap Boxkenwok, EBrenusi I'epacuMeHKko0. AJITOPUTM MOHUTOPHHTAa MUHUMAJILHOI CTOUMOCTH B HEYETKHUX IMHAMUYECKHX CeTAX

JanHas cTaThs paccMaTpUBaeT 3alady HaXO)XKICHHS MOTOKA MHUHHUMAIBHON CTOMMOCTH B HEYETKON NMHAMHYECKOHW TPAaHCIIOPTHOH CETH C yd4eTOM HIDKHHX
TpaHHI] IOTOKOB, 3aJ]aHHBIX Ha Ayrax rpada. B mureparype 1o moTokaM BCTPEYAIOTCS MOCTAHOBKH 3a/ad HAa JMHAMHYECKUX rpadax, HO OHH HE yYHUTHIBAIOT
HEYeTKHIl XapaKkTep IapaMeTpOB TPAHCIOPTHOH CETH, a TAakKe 3aBHCHMOCTb NPOIYCKHBIX CHOCOOHOCTEI, CTOMMOCTEH IepeBO30K M I1apaMeTpOB BPEMEHH OT
MOMEHTA OTIpPaBlIeHHs T0ToKa. OCOOEHHOCTh OCTAHOBKY 3a/1a4d B TOM, YTO IapaMeTPhl TPAHCTIOPTHOMU CETH, TaKHe KaK HIDKHUE U BepXHUE ITPAHUIIbI IIOTOKA U
CTOMMOCTH 33/IaI0TCS B HEYETKOM BHUJE, NOCKOIbKY Ha JTH HapaMeTphl BIHAIOT (aKTOPHI OKPYXKAIOIIeH Cpelbl, HOTPeNIHOCTH B HM3MEPEHHIX, KoleOaHus B
neHax Ha OeH3uH. Taroke JaHHAs ITOCTAaHOBKA 3aJaudl IIPEAIOJIAraeT 3aBHCHMOCTh IApaMeTPOB TPAHCIOPTHOH CETH OT BPEMEHU OTIIPABIICHUS IIOTOKA, 4TO
MO3BOJISIET CYMTATh PACCMATPUBAEMYIO TPAHCIIOPTHYIO CETh MCTUHHO JMHAMHYECKOH B OTIMYME OT «CTallMOHAPHO-IMHAMHYECKHX», PACCMAaTPHBAEMBIX B
KJIaCCHYECKOH IHTepaType MO MOToKaM. [y pelreHus mocTaBICHHON HMpoOieMbl ObLT pa3paOOTaH aArOPUTM HA OCHOBE «PACTSHYTOrO BO BpeMeHH» rpada,
MO3BOJISIIONINI KOPPEKTHO NEpEeHTH OT HEYEeTKOro JUHAMHUYECKOro rpada K HEYeTKOMY CTaTHYeCKOMY BapHaHTy HcxonHoro rpada. ITocie mepexonma k
CTAaTHYECKOMY BapHaHTy MCXOJHOrO rpada, oCyIIeCTBISETCS IOUCK Leneil MUHUMAJIbHOH CTOMMOCTH, IO KOTOPBIM NEPENaeTcs MOTOK, 0 TeX Iop, I0Ka He
OyzeT moaydueHo TpedyeMoe 3HaueHUe MOTOKA. AITOPUTM, IpeIaraeMblil B JaHHOH CTaThe, MOXKET OBITh HCIIOIb30BaH HA PEaNTbHBIX CETSIX JOPOT I PeIeHHs
3a7a4 HAXOXKACHUS MapIIpyTOB IEPEeBO3KH MUHUMAIIBHON CTOMMOCTH, YYUTBHIBAIOIIMX BPEMEHHOH AMANa3oH, B TEUEHHE KOTOPOrO IOTOK JOJDKEH OBITH
nepeBe3eH. B pesyibraTe paboThHI aropuTMa MeI IIodydaeM TpeOyemoe 3HaueHHe II0TOKA HaliICHHOH MUHUMAJIbHOW CTOMMOCTH, 3aJJaHHOE B HEUETKOM BHJE, U
ocyIIecTBIIsIeEM 0OPaTHBIH Iepexoa K AnHaMuIeckoMy rpady.
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