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Abstract — Variational approach to statistical evaluation of a
maximum likelihood state in a nonlinear dynamic system is
proposed. Mathematical justification of the approach and
comparison with the direct methods showed its advantages
concerning the obtained estimates, accuracy, and computational
efficiency. Numerical examples of autonomous orbit
determination according to navigational data are considered.

Keywords - Boundary conditions, boundary problem,
maximum likelihood method, navigation, quality analysis,
statistical estimation

I. INTRODUCTION

Routine methods of orbit determination use the direct
conditions of the maximum likelihood method (MLM) and
implicate the joint processing of measuring data for a
complete sample via the computation of first-order ballistic
derivatives [1]-[5], [10]-[12]. Appropriate improvements are
investigated thoroughly enough. The use of second-order
derivatives improves the convergence and conditionality,
though this essentially increases intensity of computations
[13], [14]. Variatonal approach to statistical estimation is an
effective alternative [6]-[9]. The main point of the
investigation is the substantiation and use of variational
necessary conditions of optimality. The development of
variational technology will allow considering the multi-point
problems of optimal control and the navigational estimation
problems within the common context and use similar methods.

The aim of the current research is the justification of a
variational variant of MLM. New mathematical basics of
navigational algorithms are also considered in the paper.

II. PROBLEM DEFINITION

Task 1. Let object dynamics be described via the following
vectorial differential equation:
X=p(x,C,1), X(ty)=X, telty,T]. (1)
The measurements involve the following m-dimensional
vector:
(0 =plx0).
Let y(¢;) =y, be a measured value of the vector i at the
time point “#. Then we get the following measuring model:
¥(t,) = px()]+6,, i=1)N ;.t, €t,,T]. ()
Here 51 is an m-dimensional vector of random measuring
errors following a multivariate continuously differentiable
stochastic distribution f (é_‘,-,o_t,-) with parameters ¢; . This
distribution needs not be normal in a general case.

Our aim is to determine estimates of the vectors X, and ¢
providing minimum for the functional:

N
1= pi {50 71X & | (3)
i=1
where
pr =Infi () -PIEE). @) i=1ON . (@)
We assume that the functions ¢(x,c,¢) and y[x(¢;)] are
bounded and continuously differentiable for all arguments
over the whole domain.
We see that functional (3) is nothing else than a logarithmic
likelihood function.
We assume that the observability conditions [3] hold.

III. VARIATIONAL CONDITIONS OF OPTIMALITY

To define functional (3) in an integral form we introduce
the function

PO FIZOL @)} ==n fFO)-FIXOLa @)}, ()
where y(¢) and a/(¢) are arbitrary continuously differentiable
vectorial functions (for example, Lagrange polynomials)
taking time points ¢, to y; and ¢, , respectively. Now we get
the following formula for functional (3)

T N
1= [ ply), w IO 5(t—t,)dt (6)
1y i=l1
here §(¢—¢;) is an impulse S-function.
The additional vector X, () =c and the system
x(O=9, (x,0)=0; xi(tg)=¢ O]
allow defining the state space. Moreover, task 2 for the

extended k-dimensional ( k=n+l ) state vector
Z(t) =[x(1), %, (£)]" substitutes for task 1.
Task 2. Under the conditions of:
z=9.z0; . =[p.9,1";
(1) = WilZ()]+ 6,5 ®)

T N
I=[ p{y). WO 6(t —t,)dt
P i=1
an optimal estimate z is to be evaluated.

The following necessary conditions of optimality for the
estimate z, were obtained via the well-known procedures of
variational calculus.

Theorem. Optimal estimate z, for task 2 and the
corresponding optimal trajectory z(z,,¢) establish a solution

for a two-point boundary problem defined via the following
canonical system
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- OH - OoH where U(t,7) is a normalized fundamental matrix of the
Py A, = & ©) equation
under boundary conditions 5_ - 9p(x,1) é? ,
A(t)=0;  A.(T)=0; o
_ B B obtained via the linearization of system (1).
A, ) =2,(@; )+—'?{)7i,17 [2(t)1}; Using linearity of the conjugate system we get variational
0z optimality conditions for estimates (10)
where _ N oy’
H=71'5.; AT.q)= ZV(T,r,-)?K;}w,- ~y(x)]1=0, (13)
— i=1 i
A, is a k -dimensional vectorial function.

4
Hence, the task can be regarded as a two-point boundary
problem with an additional condition for the conjugate vector
A(t).

Recall that similar conditions hold for the optimal control
problems with constrained state variables.

The obtained necessary conditions of optimality can be
easily adjusted for a concrete variant of an estimation problem
and for a given probability distribution of errors.

For the most common case of normal distribution

N(0,K ) of the vector 5, (with a zero average and the
correlation matrix K; ) we get the following boundary

problem defining optimal estimate x, of the initial state

L - opl_
x=¢(x,c,t); A=——>—21
_ Ox
/1(t0)=O;_T A(T)=0; (10)
765760+ 2 K -l
i=1(1)N .

Using the conditions of the theorem for estimates x, and
¢ we get the following boundary problem:
—7

ox

_ _ _ _ (11
Alt) =AT)=0;  ut)=p(T)=0;
= — . 0w -
) =2+ K3 el
i=11)N .
Assuming correlation matrices in (10) and (11) to be a unit
we obtain conditions for the varianional least squares methods.

IV. COMPARISON OF DIRECT AND VARIATIONAL
APPROACHES TO ESTIMATION
1. Let us consider a task of initial state estimation for
q =X, and the normal distribution of errors.
In this case, the direct conditions of MLM are described via
the system of normal equations

2o & T a!//T Irs (=
f@)=2U" ;1) = Ks[vi—w(x)]=0, (12)
i=1 '

l
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where V(t,7) is a normalized fundamental matrix of the
homogeneous conjugate system
o B0
Ox

Using the well-known properties of fundamental matrices
of linear conjugate systems we can state (see [8]) the
following equality:

V(T.t;) =V (T, 1)U (1;.1).
Taking into account (12) and (13) we have

AT,q)=V(T.1)f(q)- (14)

Now we see that variational conditions (13) hold only if the
direct conditions (12) also hold. Hence, the estimates received
for the both forms of optimality conditions will be equal.

2. Now let us compare calculation processes under the
assumption that the Newton’s method is used in both cases.

For the direct approach to a solution of equation (12) we
have

- -1
_ _ 0 -
Qi1 =49 _|:_J::| S - (15)
oq .
, o . , ,
Calculation of the matrix = in (15) can be carried out in
q

two ways. The first one gives an approximate solution [1]-[4],

ox; oy;
[11], [12]. It ignores dependencies of i_‘ and 4 on the
0q ox;
unknown value g =X, for derivatives of f (¢) in (12); thus,
only the dependencies on i; and g are taken into account. In
this case
T _r=y
oq i 09

07" o O
Wi g O

. 16
' (16)

The second way provides strict values of 2—{ according to
q
1, 1131, [14]

v N
a—{=R+ZG[ : (17)
oq i=1

The elements of the nxn matrix G; =[g§-r] can be
calculated as

L& @)
l, — dl, S Al,
g =22l

j1r

where ! and Ay! are elements of 7, and Ay, ;

i Yl . . . -
(d s ) are elements of the inverse correlation matrix Kj' .
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It is obvious that a more strict evaluation of the matrix e 21
q _ T oA
results in extension of a convergence area and raises the rate K7 = {U (Tt 0)% : (22)

of convergence. Furthermore, if the matrix R is ill-
conditioned then the use of (17) allows improving the
conditionality (see [13]). However, the calculation of second-
order derivatives implies computational complexity of greater
order.

Variational approach to estimation comes to search of roots
of equation (13). Thus, the computational scheme of the
Newton’s method is

— -1
__ Jaan
T/  e—
0q ‘

However, the vectorial functions A(q,7) and f(q,T)

should meet the constraint (14).

The vector j_’ (qo,T) is small for a good initial

A@q,.T). (18)

approximation g, . Hence, the following approximate equality
follows from (14)

ALD (1,1, LD (19)

oq 7]

Combining (14), (19), and (18), we approximately come to
a computational scheme (15), where it is possible to obtain
2—{ taking into account second-order derivatives of
q
measuring values with respect to estimated parameters.
Therefore, in terms of conditionality, convergence rate and
area, the variational algorithms are not worse than direct ones
using both the first-order and the second-order derivatives.
Since the variational schemes do not need the computation of
derivatives, an evident computational effect is granted. The
fulfilled analysis and experiments confirmed that the
computation speed of these algorithms was comparable with
(and in many cases exceeded) the speed of the routine direct
algorithms using only the first-order derivatives (16). Another
advantage of variational estimation algorithms relates to

simplicity of software.

V. ACCURACY OF OPTIMAL ESTIMATES

The accuracy of optimal estimates can be expressed via the
correlation matrix K. It is desirable to evaluate K through

numerical computation of optimal estimations of the vector ¢

without difficult additional calculations. Rao-Cramer’s
inequality provides the following approximation
N

K;=0 (y/q), (20)

where
o* _ = 0 - _ =~
C=——"-—mWG/q)=—-—70/q);
0q0q oq

W is a likelihood function;

q: is an estimation obtained via MLM.

Equality (19) is faithfully exact for the optimal estimations.
Thus, using (20) and taking into account (19) we get the
following formula for the calculation of K

-1 —~-1
B P P PINLCCCl IR Ko
K, = {V (T’“))aa} [agj V(T.ty) 1)

The last formula is convenient for practical computing. The
matrix 24 in (22) can be obtained for the optimal estimates
q

of the vector g . The matrix U(T,7,) can be easily

determined through the finite difference method as a result of
numerical integration of object dynamic equations

simultaneously with the calculation of Z_/E Analysis and

calculations confirmed that the estimations of the correlation
matrix K 7 were similar to estimations received via the

linearization method.

VI. ORBIT DETERMINATION BY MEASURING RESULTS

Let us consider the application of MLM to statistical orbit
determination by measuring current navigational parameters
of motion of an artificial satellite. The measurements can be
made at ground-based stations or on board.

Let us consider the equations of motion. We assume that the
flight takes place in the normal gravitational field of the Earth
(its oblateness is taken into account) at the enough altitude to
make the influence of the atmosphere negligibly small. Here
we use the absolute geocentric equatorial coordinate system
providing equations convenient for programming [4].

x=Vy y=V,; 2=V,

Vx =—ax+F,; K :—ay+Fy; .
V,=Qbc—a)z+F,,
a=blag +c(d-D];  b=Ryr—;
c= 1.56120R§f2 o d=5z%r"
Jo =—0.001082627 ; = 62564951 m* / s ;

0y =—67889,273m* /s*; R, =6371km;
1/2

(23)

where

r=(x2 +y2 +22)
The functions F, , F, and F, are projections of an
acceleration caused by the influence of the atmosphere

F==Sp|7| 7.

OomH >

where S is the ballistic coefficient of a satellite depending on
its mass, geometric and aerodynamic characteristics;
p is an atmosphere density depending on the altitude
(standard models can be used);
V,m 18 a velocity vector with respect to an approach flow (it
is assumed that the atmosphere rotates with an angular
velocity Q)

Vi =Va ¥ Qs V, =V, =Qx;
Here we get the conjugate system

/ix =(a- Gx? )ﬂVx - nyﬁVy - szﬁ,,z ;

Z()DIH - VZ :

Ay ==Gxy Ay, +(a—=Gy* )2y —Jyzhy ;
A, =—Jxky — Ay, +la=2be(l-d)~ Jz22 Ay
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y

/i,,z =1,

z

(24
G=r"[Ba+2bc(2d-1)]; J=G-10bcr™;

J, =Gz —2bcdz™".

Thus, variational MLM reduces the orbit determination task
to obtain unknown initial state vector X, =Xx(t,) via a
solution of a two-point boundary problem of twelve nonlinear
differential equations (23) and (24) with boundary conditions
A(ty)=A(T)=0 and discontinuous change of the conjugate
vector at the measuring points ¢;
0w (t,)

ox

205y =2(7) + K35 —wIx@)]) i=1(DN (24)

The function w(x,?) depends on the compound of
measurements.

One more differential equation and boundary conditions
should be added to (23) and (24) for obtaining the object
initial state vector and the ballistic coefficient according to
(11):

/L'l =—p | I7omH | (VxﬂmH AVX + Vym,w ﬁ’Vv + Vz

u(ty) = u(T)=0
The analysis proved that an account of the air drag and the
oblateness of the Earth in (24) did not result in an essential
change in a problem solution. Hence, in many cases the
following system can substitute for (24)

),

omn

- T — 3 4 = - —
A, :_O[ﬂV_r_z(””T)/lV]; Ay ==,

3 r
r
Y IR 1 L VN NV Y Y. O W

7y =398600,44 km® / 5%,
This follows from (99) under the condition of &,, =0 and
agrees with the model of a central gravitational field.

VII. OUTCOMES OF EXPERIMENTS

The numerical results given below illustrate the use of the
variational approach to orbit determination.

Computations were performed for a satellite in orbit of the
altitude h=1000 km and the eccentricity e=0.003. The
measurements of a current position were simulated at a given
time interval with the fixed step of Ar=1s . A random
number generator was used for the calculation of errors fitting
the normal distribution.

The received sample was regarded as a result of direct
measurements through ground-based navigational facilities.
The variational MLM method was used for data processing.
The strict Newton’s method and its simplified modification
were applied to a boundary problem (23)-(25).

The considered variants of maximal measurement errors are
enumerated in Table I.

The main goal of the numerical experiments was to
investigate the convergence of the proposed estimating

30

algorithms and the influence of errors upon the accuracy of
estimates as compared with the “strict” values.

TABLE 1
VARIANTS OF MAXIMAL ERRORS
variant A om | AV s
1 100 0.5
2 150 1
3 200 2

The initial approximations )_c(()) were chosen rather rough for

examination of a convergence area. They differed from X, by
500 km in coordinates and by 0.5 km/s in velocity projections.
The iterations ended at Ar <1 mand AV <1 cm/s.

The experiments under these conditions showed that the
strict Newton’s method converged in 2 iterations on average.
The speed of calculation rose up to 15% in comparison with
the traditional direct MLM of first-order derivatives as the
number of measurements increased. For the modified
Newton’s method the calculation time was half as large.

Typical stick-slip behaviour of conjugate variables
corresponding to position and velocity vectors at integration of
(24) is shown in Fig. 1 and Fig. 2. We can see that the
functions definitely meet zero boundary conditions.

The dependencies of the results upon the sample size are
shown in Fig. 3-6.

Mean square deviations of estimates are presented in Fig. 3
and Fig. 4, respectively.

Absolute errors (absolute differences from the “right”
values) of position and velocity coordinates are presented in
Fig. 5 and Fig. 6.

VIII. CONCLUSION

The variational MLM is an efficient addition to routine
estimation methods to be applied to state determination in
nonlinear dynamic systems and to navigational determination
of motion parameters for spacecraft, in particular.
Computational benefits of the proposed algorithms become
apparent when the dimension of parameters and the number of
observations grow, initial approximations become rough, etc.
These algorithms can be applied independently or with direct
(traditional) MLM to computation check, especially to reliable
mass on-line estimations. They can be also used for the

synthesis of measurement programs and for testing
approximate algorithms.
Nowadays, variational MLM is developed rather

intensively. New results were obtained in complex and
additive estimation, in nonlinear dynamic filtration,
sensitivity, measurement planning, etc. The details were
omitted because of space limitation.
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Fig. 1. Conjugate coordinates
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Fig. 2. Conjugate variables of the velocity vector
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Fig. 5. Absolute values of coordinate errors
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Vjaceslavs Mironovs, Jurijs Mironovs, Boriss Sokolovs, Rafaels Jusupovs. Maksimalas iespéjamibas metode un tas pielietoSana aerokosmiskas
navigacijas uzdevumos

Eksist&josas nelinearo dinamisko objektu kustibas parametru statistiskas noveértésanas metodes mérijjumu nelinearo modelu ar pilnu izlasi gadijuma sasniedza
savu pilnibu. Tas ir plasi aprakstitas literattra un lauj risinat plasu klastu svarigu, sarezgitu lietisku uzdevumu. Tomér jautdjumi par metoZu un to skaitloSanas
precizitates pilnveidoSanu joprojam paliek aktuali. Raksta piedavata metodologija balstas uz maksimalas iespg&jamibas un mazako kvadratu metozu pielietojumu,
kuras, ka rada prakse, ir vienas no efektivakajam kustibas parametru noteikSanas metodém. Ka zinams, maksimalas iesp&jamibas metodes izstradatajs ir
R. FiSers, kas izstradaja metodi statistiska tipa objekta modelim. Tas izmanto$anas procediira paredz iesp&jamibas funkcijas defin€Sanu un optimala veértgjuma
ieguvi, risinot normalvienadojumu sist€ému ar §is funkcijas maksimizacijas nosacljumu. P&c jégas, normalai sist€mai piedava nepiecieSamo optimalitates
nosacijumu, kas ir raksturigs tieSas optimizacijas metodém. Raksta ir paradits, ka, risinot dinamiskus noveérté$anas uzdevumus, minétajas metodes tiek pielietoti
tie pasi vertejumu optimalitates tieSie nosacljumi, tomér tie tiek defin&ti netiesi, balstoties uz sakotngjo diferencialvienadojumu sistému, kas apraksta objekta
kustibu, integréSanas procediram. Parasti tiek novertéts sist€émas sakotngja stavokla vektors. Raksta ir aprakstits piemérs, kas ilustré piedavatas maksimalas
iesp&jamibas metodes dinamiskas interpretacijas lietderigumu.

Bstuecsias U. Muponos, FOpuii B.Muponos, Bopuc B. Coxo.0B, Padaszas M. IOcynos. Mero MaKCMMaJIbHOI'0 NPAB/0NO100Hs H €ero NPpUMeHeHHe B
3aJa4yax a3pOKOCMHYeCKOil HaBHTaUuu

CyImecTByromue MeTobl CTATUCTUYECKOTO OLIEHUBAHUS TApAMETPOB JBUKEHHS HEIMHEHHBIX TMHAMUYECKUX OOBEKTOB NPU HEIMHEHHBIX MOJENAX U3MEPEHHI
II0 TIOJTHOHU BBIOOPKE JOCTHUIIIH BBICOKOTO COBepuIeHCTBA. OHU IIHPOKO OCBEIIECHBI B IUTEPaType U MO3BOJIIOT, B IIPUHIIHIIE, PEIIaTh MUPOKUH KPYT BaXKHBIX U
CIIOXKHBIX HPHKIATHBIX 3a7ad. OJHAKO BONPOCH! yTyYIIEHHS MX TOYHOCTHBIX M BBIYHCIUTENBHBIX XapaKTEPUCTHK IIPOJOJDKAIOT OCTAaBATHCSA aKTyalbHBIMH.
IIpennoxeHHast B CTaThbe METOMOJIOTHS B OCHOBHOM 0a3npyeTcsi Ha IPHMEHSHUH METO/a MaKCHMAaJbHOTO IIPaBJONON00US ¥ METoJa HaHMEHBIINX KBaJpaToB,
KOTOpbIC, KaK NOKa3bIBACT IPAKTHKA, SABIAIOTCA OJAHUMH M3 caMbIX 3((EeKTHBHBIX METOJOB ONpEAEICHUs HapaMeTpoB JBWKeHMs. Kak M3BeCTHO, MeTox
MaKCHMalbHOTo mpaspononobus (MMII) uzHavansHO OBLT pa3paboran P.dumepoM npuMeHHTENBHO K MOJENH 00beKTa CTaTHYecKkoro THma. IIponemypa ero
IIPYMEHEHNS TIPeLyCMaTPHBAET COCTaBICHNE (DYHKIMHU MIPaBJOIIOJO0HS U IOIyYeHIE ONTHMAIBHOM OLIEHKH ITyTeM PEIICHHUs CHCTEMBI HOPMAIBHBIX yPaBHEHUIH,
BBIp@XKAIOLIEil yclloBUEe MakcuMyMa 3Toi (yHKImu. [To cMblcily HOpManbHas CHCTEMa IIPeJICTaBIAET HEOOXOAMMOE YCIOBHE ONTHMAIIBHOCTH, XapaKTepHOE JUIs
IpsIMBIX METOZOB ONTHMH3AIMH. B cTaThe MOKa3aHO, YTO IPH PEHICHUM JHUHAMHYECKHX 3a1ad OLICHUBAHMS B YKa3aHHBIX BBIIIE METOJAX NPUMEHSIOTCS Te XKe
IpsIMBIE YCIOBHS ONTHMAIBHOCTH OLICHOK, OJHAKO, TEIepPh OHU PACCMAaTPUBAIOTCS KaK 3aJaHHbIC HESBHO Ha NPOLEAypaX HHTETPHPOBAHHS HCXOJHON CUCTEMBI
nudGepeHIaNbHbIX YPaBHEHHH, ONUCHIBAIOIICH [BIKEHHE 00bekTa. OOBIMHO OLEHKE IOUISKHUT BEKTOP HAYaIbHOTO COCTOSHHUSI CHCTEMBI. B craThbe
TIPUBOAUTCS IPUMEP, MILUTIOCTPUPYIOMIUI KOHCTPYKTUBHOCTD HCIIOJIB30BAHUS NMPEI0KEHHON TuHaMu4ecKkoil nuTepnperannu MMIL.
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